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Lecture 1

1.1 Inverse problem in statistical physics >= data science?

1.2 What are the assumptions we make in statistical physics?
1.3 Where is information theory in all this?

1.4 What does large deviations mean?



Maximum likelihood and why we need models:

If we observe frequencies f; for specific events,
then the standard way to find the probabilities of
these events is to maximize ML = [[p/, subject to » p; =1

fi g
D

ZPz‘ZXZﬁ;:l — A=1 = f;=p;

This is a so-called trivial solution because it says that

the probability of observing any new event is just the
frequency with which that event was observed already.

Op, (In ML + X( 1—22% =



Our aim is to make better predictions from observations.
 Need models for calculating probabilities <-> frequencies
* Need way to evaluate model performance
* Need framework to compare models

Maximum likelihood and information theory
In ML=} filnp = Zlen— +Zlenfz
Z filn f; is a constant, depending only on the data.

So we need to focus on maximizing Z fi In 22

fz



Convex functions:
fxit+xa(1 —1)) <tf(xr) + (1 —1t)f(z2) Vt € [0,1]

f(z)

tf(z1) + (A=) f (22)

F (tr + (1~ t)a) >

T tr, + (1 — t).rg T2

FO wit) <Y tif(@) if Y t;=1, V>0

By Eli Osherovich - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=10764763



The general form we will use sometimes is called Jensen's inequality:
f(E[X]) < E[f(X)]
for any convex function f and any random variable X.

Proof: (> _wit:) <) tuf(x:)if Y t; =1, ¥t >0 by induction and limits.

Some notation: Expectation value of O = E(O) = ZtAO(A) for t4 > 0, ZtA =1
A A




Z f, DPi  looks very similar to what we just saw for convex functions
' because Z fi=1and f; >0and — In(z) is convex!

So maximizing Z Jiln E is the same as minimizing

3

Dir(fllp)= ) filn=

)

This is the Kullback-Leibler divergence, a measure of how similar two
probability distributions are but it is NOT symmetric in the two arguments!!

Convexity = Dgr(f||p) > h’lZfz = —1In Z p; > 0
_ufi>0

Zazz <thxz ) if Zt =1Vt; >0



To recap: We have found that we want to minimize Dgr(f||p) = Z fi ln

and we need some sort of model for the probabilities.

Statistical physics is all about probabilities following Boltzmann. A physical
system with fixed energy will occupy all accessible states with equal
probability and this is encoded in maximizing

—sz' In p;

If we do a Legendre transform to a more convenient intensive variable, we
want to maximize

= — sz' Inp; — 5ZPiE¢ + A(qu; —1)



= —Zpi Inp; — 5(szEz — U) + )\(sz' _ 1)

Op;
oS
=2 i 1=

0S
%‘ZPZ’EZ'_U_O Note: S = (G(U — F)

— p = ZRCOE M0 —up

Z =exp(—pF) = ZGXP(_BEi)



So now we start to see what form of probabilities we could
use in our inference. We expect in this analogy that higher
energy states will have lower probability and that is why we
observe them with lower frequency.

How do we know that the appropriate probability distribution
we are trying to infer is of this exponential form??

We could always write  p; = exp(ln pz))

BUT we will see that there are many calcuylations that we want
to do that do not work unless Inp; = 6 - O; + f(0)

More formally, we will be able to investigate models where the
probability distribution that we are trying to infer belongs to
the exponential family.



Exponential family distributions:

e normal

e beta Must take the form

* Poisson

* exponential p(x]0) = h(x)g(0) exp(d - f(x))

e Dirichlet R A

* gamma observation

* Bernoulli variables parameters we

e Wishart want to determine

e geometric from data

* multinomial (with fixed # of trials) set of functions of

the observation
variables



Some examples:

exp(o0)
oce1—1,1 0) = — "7
{ } plo]0) 2 cosh 6
‘ - 5 eg-(ao,al,aoal)
0; < {07 1}77’ = O) 1 p(0-070-1|9 = (007917901)) — 1 i eQO —1—691 + eQO—|—01—|—001
AT -
r ZO,T = Z p(r‘)\):_e—A:e_erln)\

r! r!

‘Natural parameter": In A



We will always work with natural model parameters
that we want to infer because of convexity.

Generating function of correlations: / = E 69'0

8an ZO—: ()

0°In 7

Zviijij =FE(v-O-—FE{w-0)(v-O—-FE({v-0))) >0

2

So the log of Z is convex as a function of natural Iparame*ters*!




Correlation functions <=> moments in statistics
Connected correlation functions <=> cumulants in statistics

So the generating function of moments is Z(@)

and the generating function of cumulantsis In Z(0) = W (0)

Remember that & denotes the vector of natural parameters!

E.(0;0;) = E((0; — E(0;))(O; — E(0;)) < Why??



Let's see how this generating function is going to help us find
parameters from data. Going back to the Kullback-Leibler
divergence, we want to make the model probability
distribution as close to the observed frequencies as possible.

Dgr(fllp) =)  falnfa—Inpa) =D fa(lnfa—6-O(A) +1nZ)
A

> A
Sum over / ODxifllp) _ E(O;) = ) fa0i(A)
A

: 00;
observations

7 80, A
/ \ \Expectation in data

Use this for gradient Expectation in model,
descent to find difficult to compute

parameters. because it requires a sum
over all configurations!




Statistical physics from the perspective of probability theory

Macroscopic description <=> Law of large numbers
Behavior of fluctuations <=> Central limit theorem
Probability of rare events <=> Large deviation principles
Probability of empirical pdf <=> Level 2 LDP

L



Law of large numbers

1 N-—1
N Z x; <X (N — 00)
1=0
Chebyshev's theorem:

For a random variable with a finite expected value and a finite non-zero
variance, 1

Pr(X —pul > ko) < 5

Proof:

o? = B(|X — ul?)
= B(IX — pP||X — pl < ko)Pr(|X — pl < ko) + E(|X — pl*||X — p| > ko) Pr(|X — p| > ko)
>0 x Pr(|X — pu| < ko) + (ko)*Pr(|X — p| > ko)



Central limit theorem CLT

Under quite general circumstances, the appropriately normalized
sum of independent random variables (RVs), the distribution of the
sum will tend (in the limit) to the normal distribution. The reason
this distribution is called the Gaussian is because (as with so much
else) Gauss figured this out first.

1 (z — p)?

WQXP(_ 207 )

The CLT lies at the heart of many proofs in statistics for the
asymptotic behavior of inference algorithms, but keep in mind that it
IS a theorem and it comes with hypotheses so you can’t blindly
assume that it will always hold for real data!

N(x|p, o) =




Statement of the CLT

n—1
1
limY,=— Y X, ~N(|0,0) if B(X;)=0and Var(X;) =0c°V i, X; iid.
mvi= o> (10,0) if E(X;) ()

This is NOT uniform convergence but only convergence in
distribution. Why is that important? The tails of the
distribution converge more slowly than the center. So the

CLT is really telling you about moderate deviations from the
mean.



What’s behind the CLT?

Xq ~ N(-|,LL1,O'1) and Xo NN(°‘,LL2,O'2) —

X1+ Xo ~ N(|u1 + pa, /07 + 03)
X ~N(|p,0) = ¢X ~ N(-|cp,co)

This second property is essentially a defining property of the normal

distribution. From

we see that the limiting distribution will be normal, so really the
question is entirely one of convergence.



Moment generating function
Mx (t) = E(exp(tX))

Expand in formal powers of t and you get coefficients that are
the expectations of powers of X, by definition, the moments.

Useful identities
MX—I—Y (t) — MX (t)My (t) if X, Y independent.
M.x(t) = FE(exp(ctX)) = Mx(ct)



Cumulant generating function
Kx(t) = log Mx (1)
Kxiv(t) = Kx(t) + Ky (t), Kex(t) = Kx(ct)
Kx(t=0)=0



Cumulant scaling

If K&m) < C < 00 ¥Ym then K™ (Y;) < gz 0 for m > 2
This is really the proof. It assumes that the RV has
been shifted so that the expectation value of each X
Is 0. In other words, the cumulants of the sums tend
to the cumulants of a normal distribution! We left out
the Levy continuity theorem which is needed to
show that the implicit assumption that the moment
generating function converges doesn’t matter.



A couple of examples ...

Bernoulli RV -> Binomial RV
t2

Kper(p) (1) = I(Mper(p) (1)) = In((1 = p) +pexp(t)) = tp + Zp(1 —p) + ...

KBin(n,p) (t) — ln(MBin(n,p) (t)) =nln MBer(p) (t) —7ntoo (np) (eXp t— 1)

<
Poisson \
p)

)\k
Poisson(k|\) = exp(—\) o /
¢

> k cX
KPoisson (t) — ln(exp(—)\) Z A klj')(tk>)

k=0




Moving on to more control of rare events ...

Suppose we have random bits taking values 0 or 1. We
want to calculate the probability that the mean value of
the bits observed is a certain value.

n—1
1
R, =~ Z% b; We want to calculate P(R, = ).

Every possible vector of n bits is equally likely so we want to sum
over all possible n bit vectors with the correct sum specified by r.

n!

D A e T(CRTa I

b:R,(b)=r




Stirling’s approximation
n! ~n" exp(—n)
(rn)! ~ exp(rnln(rn)) exp(—rn)

So we find our first Large Deviations result

P(R, =r1) ~exp(—nl(r))
I(r)y=In2+rlnr+ (1 —7r)In(1 —r)

Notice that I(r) is convex and has a unique zero at r = 1/2.

N

Rate function (binary cross-entropy form)



{0,1} P(X;=0)=1—«aand P(X;=1) =«

S 1—s
I(s)=sln—+ (1 —s)In ——,
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From H. Touchette, The large deviation approach to statistical physics



Another example: i.i.d. normal variables

P(Y, =s) = / . 5(Yy (Z) — s) HdwiN(xim, o)

— n eXp(—n(S o ILL)2)
Subleading term —— V 27m0? 20

So we find our second Large Deviations result

(s — )
202

Again convex and with a unique zero.

I(s) =



I,(s)

From H. Touchette, The large deviation approach to statistical physics



Yet another example: i.i.d. exponential variables

1
X ~ —exp(—g) for p >0

p T

P(Y, = s) = (= exp(—2))" /OOO [T ots— S

]
So, after doing the integral and using Stirling again, we get
S

I(s)~ 2 —1-n2, >0
P P

Again convex and with a unique zeroat s = 4



Now some theory ...

A large deviation principle amounts to
Some probability P, ~ exp(—nl) as n 1 oo, with I > 0.

More formally:

With A,, a family of RVs and B a set,
1
lim ——In P(A, € B) =1Ip
nToo M

IB = rate.



To connect to the rate functions we have calculated,

P(Y, € [s,s+ds]) =~ exp(—nl(s))ds

Now we turn to more direct ways to calculate rate functions.



Gartner-Ellis Theorem

Suppose we have found a rate function, I(s). Then we have

. P(Y, € |la,a + dal]) = exp(—nl(a))da.

<exp(tYn)> ~ /exp(ta —nl(a))da.

Setting t = kn for some real number k£, we have

<eXp(tYn)> ~ /exp n(ka — I(a))da.



Laplace’s approximation (or saddle-point) then says that

<exp(tYn)> ~ expnsup(ka — I(a)).

a

In other words,

A(k) = lim 1 In < exp(knYn)> ~ sup(ka — I(a)).

n—oo N, a

What is this telling us??

The cumulant (after scaling!) is the Legendre-Fenchel transform of the rate
function!




The Legendre-Fenchel transtorm

For a convex function f(t), define a new function by

g(s) = sup(ts — f(t)).

t

Then g(s) is also convex and we have a duality:

f(t) = sup(ts — g(s)).

S

This is the more general form of the usual physics Legendre transform:

f(t) +g(s) =ts,

which is only valid when f, g are differentiable.



(a) (b)

A(k) "
/71 (0)=u
\ 1(0)=0)/ \ k
/ k N
slope=a(k)

From H. Touchette, The large deviation approach to statistical physics



Reminder of how Legendre transforms work

Pick a variable, t or s. Then we regard all appearances of the other variable as
an implicit function of the chosen variable. Treating s as a fixed parameter, we
get

(9tf = S.

This defines
s(t) = O f, and vice versa t(s) = 0s9(s).
Now we have the very important relation:

Ors(t) = 00, f, and Ost(s) = 050s9.

But this gives us

0tatf = (85689)_1 .




How do we use this abstract nonsense?

Suppose we have a cumulant generating function for an RV X : Kx(t) =

In Mx(t). Then
E(X exp(Xt))

E(exp(Xt))
In the language of Legendre transforms, E(X)(t) = X.(¢) is the analog of s(¢). So
by thinking in terms of the Legendre transform, we see that the large deviation

rate function, which is a function of the expectation value, is naturally the
Legendre transform of the cumulant generating function.

E(X)(t) = 0. Kx(t) =

WARNING: What if the rate function is not convex? The cumulant generating

~ function is always convex (Why?). The Legendre transform of a non-convex
function is convex, but the double Legendre transform does not give back the
original non-convex function!!




()

(b) (c)
I koK

From H. Touchette, The large deviation approach to statistical physics



Cramér’s Theorem

This is where the theory of large deviations actually started. Here, we approach
it as an application of the Gartner-Ellis Theorem. Suppose X; are i.i.d. RVs.
Then the scaled cumulant generating function is

A(k) = lim 1 1n<exp(kZXi)> = lim 1 1nH<eXp(l-€X¢)> = 1n<exp(kX)>.

nToo N nToo N

In other words, the cumulant generating function of any of the variables s the
scaled cumulant function. So we can get the rate function directly from this
cumulant function.

We will use this result over and over.




Example again: i.i.d. normal variables

fexp(—%) exp(kz) \ o2 k>
(x—p)? =k + ’
(— ) 2

2072

so we need the Legendre transform of pk + "22’“2. As A(k) is differentiable,

OuA(k) = s(k) = u+ o’k

SO

Therefore

I(s) = k(s)s = \(k(s)) = 55 = p=—5 = =5 (s = 4)? = 55 (s — )

as we found before.



Again with Cramer: i.i.d. exponential variables

Ak) = In(exp(kX)) = —In(1 — kpu),

so again A(k) is differentiable, and we have

INK) = s(k) = —1

1 —ku

Now

Therefore

as we found before.



Sanov’s Theorem

All our results work perfectly fine for vector RVs. Sanov’s theorem says that
they also work for functions that are RVs. One case in particular is exactly
what data science is all about: Determining the probability density underlying
a set of empirical observations. Define an empirical probability density L,, :

1
L,(x) = - Z d(o; — x), where {o;} = observations.

L, (z) is a function that is an RV. Now

Ak) = ln/dx p(z)exp(k(x)) = ln<exp k(X)>

Notice that k is now a function! With the same arguments as before, we find
a rate function which measures the probability of any given probability density

[T

I(plp) = /dw p(z) In %-

You should recognize our old friend, the Kullback-Leibler divergence, here.



Inverse Sanov’s Theorem

To be honest, Sanov’s theorem doesn’t help us directly because we don’t know
p, the true probability density. What we want is a data-driven version that tells
us about convergence to the true density but based only on the observed data.
The approach usually to prove an Inverse Sanov Theorem is Bayesian:

P(Ly|p)P(p)

P(p|Ln) — P(Ln) 9

where p is a possible model for the true distribution, and Sanov’s theorem is
used for calculating P(L,|p). This requires a little more mathematical effort.
We may return to it later.



Varadhan’s Theorem

A(f) = lim —(expnkf(A,)) = sup(f(a) — I(a))

nfToo M a

for any continuous bounded function f. This is not just a trivial generalization.
It holds in much more general circumstances than the Laplace saddle-point
argument that we gave to justify when f(a) = ka.



Contraction principle

Suppose B, is some other RV, and B,, = h(A,,), where h may be many-to-
one. Then a rate function for A,, implies a rate function for B,, because

Ip(b) = a:hi(rg:b T4(a).

Why is this true?
The LEAST improbable value of a for which h(a) = b!

What happens if there is no such value of a? Then I (b) = 0o, because such
a value of b is never observed.



Warning example!

Suppose
C

]+ a)
for x real. Now Var(X) is finite, so the CLT holds. But what is I(s)?

p(fL’)Z( B >3

AMk) =00V k #0.
Therefore I(s) = 0.

In general, we can use Cramér’s theorem locally at values where A(k) is
differentiable.



Suppose the RV is a ‘stuck’ coin, so it’s either 1,1,1,...0or —1,—1,—1.... Then

p(Y =) = 5 (6(y +1) + 6y — 1)).

What is I(s)? First, we calculate

1
A(k) = lim — Incosh(nk) = |k|.

ntoo N
On the other hand, we can directly see that

I(s) =0 for s =41, and I(s) = oo everywhere else.

This is non-convex! The Legendre-Fenchel transform is

Iip(s) = sgp(ks — |kl).

For s < —1, or s > 1, the supremum gives I r(s) = oo, but for s € [—1,1], we
have ILF(S) = 0!



Suppose Y, = Z + %ZZ X,;, where X, are i.i.d. normal RVs and Z = %1

with probability % We already know

P(Y, = 8|7 = +1) ~ exp(—nls(s), with L(s) =
o)

so we get (summing over the probabilities of the Z values)
P(Y, =s)~exp(—nl(s)), I(s)=min(l;(s),1_(s)).

Now we have 2
AR = K]+

and like the previous example

Itr(s) =0 for s € [—1,1],
(@) (b)

with Ip(s) = I+(s) for £5 > 1. Is) A

\

(s¥1)°

-1

From H. Touchette, The large deviation approach to statistical physics

(c)

I**(s)




Another type of random variable

Consider sequences w = (w1, ws ..., Wy, ). w; could be random i.i.d. or a Markov

chain. Then the probability of a sequence P, (w) is an RV, and we can calculate
the rate of

A, (w) = —% In P, (w).

If random i.i.d.,

)\(/{)zlimlln<Pn >—hm anP =3 Plw; =

nfToo M nfToo N



Suppose I(a) is convex and has a unique minimum, a*. Then

lim(A,,) = a”,
lim (An)
but also
lim A,, = a® almost surely.

nToo

The first implies that the mean Boltzmann-Gibbs-Shannon entropy
Z P,(w)In P, (w) = a*,

which is the Kolmogorov-Sinai entropy or the entropy rate. The second is the
Asymptotic Equipartition Theorem or the Shannon-McMillan-Breiman theo-
rem, and it says that most of the probability is in sequences with P, (w) =
exp(—na*). So how many such typical sequences are there? exp(na*).



Large Deviations and Equilibrium Statistical Physics
Microstates <> w = (w1,wa,...,wy)

Macrostate <+ f,(w)

A priori distribution on the space of microstates P(dw)
Mean energy per particle h,(w) = Hy(w)/n.

Thermodynamic limit n — oo

Basic idea:
Observed macroscopic variables concentrate at minima of their rate functions




Entropy

Q(hy, € du) = / dw

w:hy(w)Edu
assuming a uniform measure on the space of microstates.

Define a rate function

1
(u) = lim ——In P( u)

assuming a uniform it a priori measure dw/|A|™.

Then |
I(u) = In|A| = lim — InQ(h,, € du).

ntToo 1N

Rate function = — Entropy up to log of ‘volume’



P(h, € du) x Q(h,, € du)

so with
Z(8) = [ dwexp(~BH,(w)
we have
A(k) = lim ! In ( exp(kH,)) = lim ! In Z,(5) In |A]
= 11 — X n = — n — .
nToo N P nToo M B=—k

It follows that the Massieu potential ¢(8) = —A(k = —f) is a concave function
of 8 (we normalize |A| = 1).



Using Varadhan’s theorem and the Gartner-Ellis theorem, we see our usual
dualities:

6(8) = inf(Bu — s(u))

and

s(u) = nf(Bu — ¢(8)).

(inf?? Why?)



