Importance Sampling



Problem: Estimate
E(O) = [ dz p(x)O(z)

when O is only non-zero where p(z) is very small.

What is the problem? Suppose
/da: p(z) Toso < 1075,

Then for numerical simulations, we have to draw ~ 10® samples from p(z) to
get even one sample where the expectation is non-zero.



Suppose
v = /daz p(x) Zo.

Draw N samples from p(z). Then the estimate

has variance




Confidence interval for v estimate (CLT!):

YN £ Za/2 VVar(yn).

For example, if a = 0.01, the confidence interval for v < 0.1 is

2.576 x \/Var(yn) < 0.1vy.

How big must N be?
2. 1 —
N~ ( 576)2 y v
0.1 7y

If v ~ 107% we need almost 7 x 10® samples!



Basic idea of importance sampling

v= [aeate) To = [ a ate) B Zo = £, (20 1),

Pick q(x) so that Zpn(x) = 1 is not rare in the distribution ¢(x).

Evaluate the new observable O, = % 1o.



Intuitively, maximize q(x) where Zp(x) > 0.

Any q leads to the same expectation with more draws.
So pick ¢ to minimize the variance of O,.

v= [[arpt) Zo = [[ar o) 22 1o = £, (8 10)

Pick q(x) so that Zp(x) = 1 is not rare in the distribution g(x).

Evaluate the new observable O, = % Io.

E, (@3) _ / dz ¢(z) (M)Qz@(x) — B,(0,).

q(z)



Does this always work?

NO!

p(x) = Aexp(—Ax), x>0,

We want to estimate 7, for some large y.

Try
q(x) = pexp(—px)??
Then

A2 [
By(Z2) =2 [ do exp(-20 - o)
q Sy

- u(%A— 3 (exp(—(% — )y —exp(—(2A — u)L)> :

No minimum at any finite value of L.



Now, let’s apply this IS measure redefinition to actually prove Cramér’s theorem.
Remember, I didn’t actually prove Gartner-Ellis, I just motivated it, and then
cheated by using GE to prove Cramér.



Cramér’s Theorem, revisited
Remember Chebyshev. Redo the proof:

BE((3C; Xi —np)?) _ o?

n2e? ne2’

ZX > €)= ZX—n,u>ne)>

and the same argument holds for P(—2 Y. X; > p+€).

Now, the same argument applies if we take 1 to be any non-negative in-
creasing function:

P(L 30X > 5) < PU(Y X0) = w(ns)) < —os (Y X0)

Take ¥ (s) = exp(As). Then

1 1 1
—P(— X; < =) — In E AX;)).
(%> 9) < dot 1 3 In Bexp(AX,)

n

Recognize the cumulant generating function? So

_%P(% ZX > 5) 2 sup(As — Kx(A)).



Cramér’s Theorem: Lower bound

Define a new probability measure

() = p(0) .
This is still normalized:
Eq(1) = Ep(;;}féi;()) = 1.

Now

1 1 1 1
~lnP(=Y X;>s)>—InP —y X >
nn (n _S)_nn (S+6>n S)
1

= In E, <exp(—n)\X)M)"g()\)I(8 +e> %ZXZ > 3))

1 1
> — )\ Kx (A —In P, — X; > s).
> —A(s+e)+ Kx(\) + —InPy(s+e>— > X;>s)



How do we choose ) :

1
lim In P, > — X; >s)— 07
E1f(f)1n (S + € nz > 5)

Note K% (\) = E,(X) = B(X exp AX)Kx ()L,
Kx(A=0)= p,

and
K’ (A = 00) = maximum of support of X.

So by the mean-value theorem there is some A(s) € [0, 00) such that

So, finally,



Let’s use this probability ‘tilting’ to make ML maximization trivial.



Mayer cluster expansions

For a single spin, taking values in {£1}, the partition function is

7 = % [exp(—e(w +b)) + exp(—e(—w + b))}

where NN is the number of configurations and € is the inverse temperature. Write
exp(—eVi;) =1 — (1 —exp(—€Vi;)) =1+ A;;. Then

Z:% Z H(1+Aij).

configs 1<j
Expand in A :
1
Z=1+ Z [ZAU +ZZAUA“+“']'
configs 1<J 1< k<l

In usual statistical mechanics situations, this cluster expansion becomes a more
or less geometric expansion because the constituents might be molecules so there
are constraints on what configurations can contribute to each separate sum.

For us, things will be much simpler but it’s good to know the general idea.



For a single spin, taking values in {41}, the partition function is

1

7 = 5 [exp(—ew) + eXp(—G(—’w))]

SO we get

Z:%[(1+A+)+(1+A_)] :1+%(A++A_).

For € small we can expand the A terms if we want:

€ 62 62

Z~1-— i(w —w) + Z(w2 + (—w)?) =1+ —(w?).

Take-away message: In this limit Z is trivial to calculate.



For two interacting spins, taking values in {£1}, the partition function is

7 = 1 Z [exp(—ew'o; + w’o109)].

01,02

Now let’s be more organized about this expansion. Note (for any variable o =
+1)

exp(wo) = cosh wo + sinh wo = cosh w + o sinh w = coshw[1 4 ¢ tanh w].

So now the cosh terms don’t depend on ¢ values at all so they can come out of
the sum over configurations.

1
7 = 1 cosh(w') cosh(w?) cosh(w?) Z (1407 tanh w') (1405 tanh w?) (140105 tanh w?).

01,02

The only terms that will survive in the sum over configurations will be terms that
have no linear ¢ dependence on either of the o;, for example, tanh w! tanh w? tanh w?.
For € small, each w comes with a factor of € and tanh x ~ x for small x. Take-
away message: Even with interacting spins, Z is very simple to calculate, espe-
cially for small e.



Let’s go back to Lecture 1, where we saw

ODkr(fllp)
00;

= E(0;) — E¢(0;)
and we said that
E(O;) = 0y, In Z(0)
was difficult to calculate because of Z summing over all configurations.
Was I lying then or am I lying now??
The problem is that we have no idea of the magnitude of the interactions of the

spins. In other words, you cannot change the temperature of a system if you
have no idea what temperature it’s at. All we have is some observed data.



Be concrete: RV: spins o; € {+1},9=0,...,N — 1.
Spin ‘interactions’: Op € {o;,0;0;,...}.
Want to assign probabilities for any realization of the RV:

exp (w! Or(0))

P(ofw) = =270 S0

and M L maximization

— | w™ P(O‘Obs‘w*) — f(aobs) — n(o-obs)

Zobs n(o-obs) .

obs

DKL(fobsHp) = Zfobs In <f0bs)
obs



Where’s the temperature?



Minimizing

DKL(fobsHp) = Zfobs In <£0b8>

by gradient descent:
dw' = a[Er(Or) — Ey(Oy)],

where (as before)

E,(Or) = Z q(0)O;(0).

configs o;==*1



In the small € limit,

2
Iy _ € 12
Z(ew') = 1—|—§ EI (w)* 4 h.o. terms.

So in this limit
E1p€ (OI) = ewl,

where we define

)= P!

D configsP(config)p(config)<—1 '




How is this useful at all? What happened to ensuring that fobs = Pobs?

Redefine
f(obs)p(obs)™)

f€ (ObS) N Zall observations f<ObS)p(ObS)€_1> |

Now minimizing

Dgr(fellpe)

still gives

f(obs) = p(obs),

but gradient descent is

su' o [Ey,(O1) — By (O1)] = [Ey, (1) — ew'].



Why is this useful??

The sum in EY, is only over observations! NO sum over all configurations.

Hopfield solution: ¢ =1 = w! = E;(Oy)

Analogy with damping term in a differential equation:

d I
% = Efe (O[) — ewl.



Learning during Iteration
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(a) original image ISy |
(b) hoisy image (c) recovered image
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