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- Operator Spreading
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- MBL vs. Anderson localization vs. thermalization
- LIOM and the effective |-bit model

- Instability of a MBL phase



Thermalization



Closed guantum system

 No symmetry assumed, for simplicity, but energy conservation

* Unitary dynamics (reversible!)

t-indep. H

“P(l‘)) = U| T(())) [] = e—%Hf interacting

N — 00,1t —> o

e "Deterministic” time-evolution of a quantum state

How does thermalization arise in a unitary time evolution?

(N — oo, 1 > 00, local observables)



Figure 2

(a) Conventional quantum statistical mechanics assume that the system of interest is coupled to a reservoir
(or bath) with which it can exchange energy and particles. (b) Here, we are interested in the statistical mechanics
of a closed quantum system undergoing unitary time evolution. There is no external reservoir. (¢) It can

be useful to partition the closed quantum system into a (A) subsystem and (B) everything else. If the system
quantum thermalizes, then the region (B) is able to act as a bath for the subsystem (A).

Figure from Nandkishore and Huse, Annual Review of Condensed Matter Physics 2015



Thermal Ensembles

e Microcanonical ensemble

I=[E-AE+A] OMC(E)ELZ (a| O] )

Q
E €l

In a thermal system,

In the thermodynamic lIimit,
* (Grand-) Canonical ensemble

1 . L

5 2 (@l0la) =ulj,0]
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Pp = ~ exp(—pH), (O) = tr[p;0]



Observables

* Not all Hermitian operators are observables.

. [H, |a){al]=0
H= ) E,la)a]

But, | a){a | may not be measurable.

 "Physical” observables are something that can be measured.
- local spins, two-point correlator, etc.

- We consider mostly local observables.



(dynamical) thermalization

* |nfinite-time average (relaxation)

A

(A®D)

T
A = lim lJ dt (W (¢) \A\‘P(t))
T—oo 1 0

* |nfinite-time average ?= ensemble average

What makes this hold true?



Generic initial state

e Start with an initial state for a targeted E.

WO0) = ), c,la) :

04

1

[W(0) = e

W) = ) c,e 7 | a)

04

e Time-evolution of an observable

A i _ A [ = OO
(YO A1WD) = ) cheyerEBalAlf)  ——— Y lc,I* Ay,

(l,ﬂ 01



Diagonal hypothesis

e Time-evolution of an observable

(PO IAIPD) = ) cheger™™ A, e,
a.p

N — o0 I = 00

_ ]
If only diagonal terms survive, A o 2 ‘ C, ‘ZAOM ~ 5 Z Aaa
a E €l

thermalization!



Random Matrix Theory

 Assumption (Deutsch 1991, extended Berry's conjecture):

The eigenstates of ergodic Hamiltonian is essentially random vectors.

[—
~ 05, \ O —R,

D

 Random level repulsion: Wigner-Dyson distribution

P (a)) — A ﬂa)ﬂ GXp(— B,B 602) f = 1 (GOE): w. time-reversal symmetry

f = 2 (GUE): w.o. time-reversal symmetry



Eigenstate Thermalization Hypothesis

e Jensen & Shankar (1985), Srednicki (1994), Deutsch (1991), ...

 "ALL eigenstates are thermal." (strong-ETH)

Anp = Anc(E)S 5+ eSE2AE, 0)R, ;

S(E) : thermodynamic entropy
f(E, w) : a slowly varying function

= E,B — E(,l
R,z a "pseudo”-random variable



Entanglement of Eigenstates

 ETH implies the extensive entanglement of an eigenstate.

Eigenstate density matrix Microcanonical density matrix
ETH |
pp=|ENE| < puc=7 2 laXal
E €l
Subsystem A:
_<’> A A <’>_ A a _(’> AN A <‘>
oo [ B Pa = UBD oo | B

-O— 2% -O— O~
_C\E AI:/} _C\EIAI:/\
Y II.- ) PEA = PMCA g II Y
P9 PO




Volume-law of entanglement entropy

 The von Neumann entropy

o p=|EXE]
S=—-trl[plnp] —— > "0" (a pure state)

"Bipartite" entanglement entropy for |A| < | B|:
The subsystem A thermalizes with the same energy density.

Pa R PMCA = /d"s ——— Sy=—trlp,Inp,] x V,

* Every eigenstate obeying ETH satisfies the volume-law of EE.



ETH: off-diagonal terms

* Another implication of ETH: strong sensitivity to external perturbation

Aup = Anc(E)S 5+ e SE2AE, 0) R,

 Small perturbation -> exponentially large mixing in original eigenstates

(typical level spacing << off-diagonal element)

| AL = S -SCE

"many-body resonances"




Growth of Entanglement Entropy

 Quantum quench from a non-entangled initial state

S (t) X I (nonintegrable, quantum Ising chain; H. Kim and D. Hose, PRL 2013)

* Lieb-Robinson Bound: upper bound on information propagation

I[A®@), B]l| < CHAHHBHe/I(t "£R>



Operator Spreading

* In the Heisenberg picture,
A®t) = UWTAU®) [U,A] # 0

A s an observable few-site operator, but it spreads over many more sites.

e.g. a spin-1/2 system



A measure of operator spreading

e Qut-of-time-ordered correlation (OTOC) [Larkin & Ovchinnikov 1969,
Kitaev 2014]

C,(t) = (A0, B))"[A0), B)))

 How does it measure the operator spreading?

A\

eg. T=oc B=Z7Z AW=U®0X00="Y as0s

A

S

— =Y las0 P (15,2118,21) = Y, lao]’
S



Light cone

Ci(t) =) las(® *t[S;, Z1S;, Z]

1
Q
>
7/ N\
o~
|
\®)

linear light cone (LR bound)




Semi-Classical Chaos

dx(r) \°
CH) ~ (8@, p1) —— ((x@.p}}p) = <( djé;)) >~exp(/1Lt)

4 Why "squared" commutator?

dx(1)
Ax(0) | Ax(f) ax(0)

Operator spreading cannot be captured by
a two-point correlation function.
¥ ([A(®), B])

can be positive or negative.




Many-Body Localization

 There are some systems that do not thermalize.
- Quantum many-body scar, "traditional” integrable systems,
- Many-body localization (MBL)

 Why is MBL special?
- It remains "permanently” and "robustly" out of equilibrium.

- Dephasing without dissipation



Many-Body Localization



Anderson Localization

* Non-interacting spinless fermions in a 1D chalin

:/\:/\;/\:q:p:f\; e Benes X (0

"Strong" localization limit; no degeneracy
J<L|e—¢€ ]

All single-particle eigenstates are localized.



AL as an MBL

* All single-particle eigenstate are localized.

= Complete set of localized conserved operators.

A, = Zelnl+J Y (“‘a l.) - Y Eele,

(L) n,

[Hy, i) = 0 =[A,Asl  "Abasic structure of MBL"

"Localization in Fock space"



MBL with an interaction

» Consider a spin-1/2 chain. 'complete set of conserved operators"

 Add a nearest-neighbor interaction.

H = Z hZ: + g Z J(6:,61,1)
i i
« MBL Is stable at small g!

Basko, Aleiner, Altshuler 2006 Imbrie 2016
(perturbatively; any dimensions) (non-perturbatively; MBL unstable at D>1)



Phenomenology of MBL

Local observable: relaxation, but no thermalization
Single-particle transport: completely frozen like AL
'Area-law" of eigenstate entanglement. (cf. volume-law in ETH)

SA ~ V()l(aA) (cf. ETH: SA ~ VA)

"Logarithmic” spreading of quantum information

SpecInt E,NI040), Oplll < ct]0A|e™>



Unified picture of MBL

e Serbyn, Papic, Abanin 2013; Huse, Nandkishore, Oganesyan 2014

* (quasi-) Local Integral of Motion (LIOM) or "I-bit"
. complete set of conserved operators

o0
A7 TA (n) H(0)
Tf — Zaf + 2 Vl Ol.
n=1

77 =Uo?UT TE/Ld

. I—.li1+1 R ‘



Construction of LIOM

o0
# =276+ ) VWOW
n=1 \
j
— SEE B e e e e e p e
77 =Uo?UT
(1)
O'"
O
l
i liii1l...  roperator"localization length OO I
O I
l
OF I
l

‘/i(n) ™~ €Xp(—n/ éop)




Effective "l-bit" Hamiltonian

 "fully” many-body localization J; ~ Joeijilc/ T ~ Joe VKIS
A . A7 AZAZ AY Y EaY4 .
H — Z thl + Z ]l'jTiTj + Z ]ljkTiTka +
l 1> I>j>k
J!" decay length

* Important: effective interaction between two remote I-bits /

Jzil;f = Jop T Z Jakb%]i T Z Jaklb%if-? + e~y eXp(_X/éeff)
k k<l



Note: length scales in MBL

LIOM localization length &, in V™ ~ exp(—n/& )

Interaction decay length « in J;; ~ Joe ™"/

Effective interaction decay length cfeff in JEI ~ JO exp(—x/ feff)

They are all different, and their relationship is nontrivial.

Abanin, Altman, Bloch, Serbyn, RMP 2019

k> (6 +In2)2 & <k7'=(In2)/2 et < 280,



"dephasing” dynamics in MBL

Key feature: exponential decay of J'(x) ~ Jyexp(—=x/& )

Logarithmic growth of entanglement entropy, when quenched from nonent.

o) ~ & In(Jof) S(1) ~ &5 In(Jf)

Equilibration of an local observable

[T | ~

(Jo1)
Logarithmic light cone measured by OTOC



Entanglement spreading

Time-evolution subject to

"Z"Z
H ]12 1 2

1(\1T1>+HL1>)®1

( ™)+ U, )) = |¥(t =0)) Non-entangled initial state

V2 V2

| 1 .
— \‘If(r>>=5e—”wf(\M>+\w>)+5e”uf(\w>+\M>)

A s 1 1 cos(2.]12t) - P
— — ﬁ
D Iy P 5 \cos2 12t) i SA n2 when J12t — 7T




Entanglement spreading

S =T+ Z JaiTp T Z JapTTp + o ~ Joexp(—=X/Ge)
k k<l Tb

A\

L

’ ....... / ....... / ...... / // ....... / ...... / / ....... / ...... ’

The effective interaction includes all the intervening spins in its structure.
It is still the same two-spin problem even If they are separated over the distance.

These two spins at both ends get entangled when J_ 7 ~ 1.

During the time period ¢, entanglement spreads over the distance x_ (7) ~ &+ In(Jy0).



Entanglement spreading

Xent(1) ~ Geqr In(Jo?) entanglement entropy

Entangled region of length x_ (7)
+ non-entangled area outside

f }

S(f) & x... = & In(Jf)

eec0o0gcecoco0

: .. Logarithmic growth of EE
Logarithmic light cone



Equilibration of a local spin

* The effective interaction is a "dephasing” interaction.

o Effective "magnetic field operator” acting on an I-bit at site k

4 <

. — 7, (2 Z Z Z
D) =T T o T T s Tim1 T )

(example) | = 2 J k—2,k—1,k,k+1,k+2

J k,k+1,k+2 J k—1,k,k+1 J k—2.k—1.k

. ‘m
/
Jk—2,k—1,k,k+1 Jk—l,k,k+1,k+2




Equilibration of a local spin

Initial state (hon-entangled)

\\P(t=0)>=®i\/1§(‘ﬂi>+‘l}i>)

Reduced density matrix of I-bit at k (off-diagonal component) Pay ~

1

vz

1
poy(t) = o Z exp [2ih"({7'})t]  Q.Whatis the relevant value of [ ?
(7}

< < < <
T =G G o Temr T Tt T )



Equilibration of a local spin

------------------------------------------------

-------------------------------------------------

Entangled area = 2x,(f) ~ 2&.4 In(Jyf)

— [~ x, (7
Reduced density matrix

CLT | 1

1
-1, it /
Pay() = = E exp [2ihi"({z't| —— 2 — .
2 = V22t (Jot)
Ty ={(zF 15 s T T e T, TE ) A 1
k—0 “k—I[+1 k—1° "k+1 k+1—1"k+I —_— ‘<Tk>|N_



Out-of-time-ordered correlator

OTOC (effective I-bit model; = 0)
exponentially decaying effective interaction

F(1) = u[7;(07;7;(0)7;]

JE ~ Jyexp(— i — j| /&)

F(r) = cos(4tJ§ff)

Logarithmic light cone

U

disorder average fy = — o li=jllg

Jo€[-J,J] 4J

: [4t.] ( ‘ : , ‘ 5)] R. Fan et al., Sci. Bull. 62, 707 (2017)
_ S1n exp( — |1 —
F(r) = P / X. Chen et al., Ann. Phys. 1600332 (2016)

dtJexp(—|i—j|¢)

B. Swingle and D. Chowdhury, PRB 95, 060201(R) (2017)



Phase diagram

e One dimension

Stability of MBL is well accepted, but true transition point is hard to see.

MBL Prethermal? Crossover?

strong disorder éc weak disorder

* Higher dimensions

No MBL transition in d > 1, but there are MBL signatures at strong disorders.

Prethermal? Crossover?

strong disorder weak disorder



Avalanche scenario

 De Roeck and Huveneers, PRB 95, 155129 (2017)

e Start with a thermal block in a chain, trying to expand by absorbing I-bits.

Condition to stop avalanche:
level spacing >> off-diagonal matrix element

[~ e o/6

ETH holds here.

v

<—%n-><— n0—><—%n—>

Figure from Dumitrescu et al., PRB 99, 094205 (2019)



Avalanche scenario (1D)

ETH holds here.

Off-diagonal matrix element: | =

(ETH: A5 = e SO AE w) R, )

i4

on+ny

Level spacing: 0 =

There is discontinuity in ! 1
MBL is stable when — > In 2.

C



Avalanche scenario in d>1

-bit e~ 1l¢
® Off-diagonal matrix element: | =
\/2Nr+r0
_ |14
Level spacing: 0 =
2Nr+r0

Number of spins : NV, ~ (r + ro)d

Avalanche never stops for sufficiently large ro!

r

I d
gzgzexp —Z+a(r+r0) > 1




RG: KT-like transition

Dumitrescu et al., PRB 99, 094205 (2019)
Goremykina et al., PRL 122, 040601 (2019)

. L Thermal
p(l) : density of thermal block with size > [ A

Fixed points

p«=0,8">¢ (MBL)

p.=1,¢61=0 (Thermal)

Flow equation (phenomenological)

d —1

~ —1
i T




K1-like transition

BUT, dynamical scaling exponent

7 —> OO
low-T critical phase MBL
Vosk, Huse, Altman, PRX 2015
: . Tth ~ LZ
vortex fugacity density of thermal blocks

(thermalization time)

stiffness 1/¢
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