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Three major natural light harvesting complexes
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Review of key experimental and theoretical results.
Comprehensive description of all guantum mechanical principles and

calculations.
|dentification of key design principles.

Jang and Mennucci, Rev. Mod. Phys. 90, 035003 (2018)
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e Self-contained and full
derivation of molecular
exciton Hamiltonian.

 Detailed account of
theories for the dynamics
and spectroscopy of
molecular excitons. NANOPHOTONICS SERIES

Jang, Dynamics of Molecular Excitons (Elsevier, 2020)



Quantum Dynamics and Kinetics in
Condensed and Complex Environments

« Th Devel t:
(Computation) (Spectroscopy) ( Simulation ) cory Levelopmen

1} Energy transfer &
C ined Model Electron transfer
oarse-grame 0dels * Method Development:
s 2 Path integral &
[Quantum Dynamics Calculation] Quan’.tum Master
equation

Long Term Objective: All-atomistic computational methods capable of
providing quantitative description of quantum coherence, tunneling,
nonlinearity, and anharmonicity.

New theories and computational demonstration of Chemical Sensing,
Quantum Sensing & Information at molecular level
New Approaches for Machine Learning Interfacing Theories and
Computational & Experimental Data



Outline of Talk

Overview of open system quantum dynamics and quantum
information & sensing

Quantum estimation theory
Quantum entropy production

Issues with Markovian approximation in open system quantum
dynamics

Exact equations for open system quantum dynamics and recent
advances

Brief accounts of my own research on open system quantum
dynamics



Open System Quantum Dynamics?

Description of the dynamics of a quantum system
interacting with environments/reservoirs/baths of
much larger (often assumed infinite dimensional) size.

Nuclear magnetic resonance

Quantum Optics

Condensed Matter Physics

Mathematical Physics & Astrophysics

Quantum Computation, Information, Control, and Sensing
Chemical and Biological Physics: Excited electronic and
vibration dynamics of molecules or aggregates

Quantum Master Equation (QME): Time evolution of a reduced density
operator.

Master Equation (ME): Time evolution of populations

Quantum Fokker-Planck Equation (QFPE): Phase-space representation
of QME, which approaches a Fokker-Planck Equation in the classical
limit.

Direct real time path integral calculation: Influence functional
formalism



Quantum Computation: Potentials and Issues
Quantum algorithms for classically intractable problems — factorization
Complexity theory arguments — quantum states prepared by quantum

computers have “super-classical properties,” eg. correlated
probabilities

Quantum computer of reasonable size cannot be simulated by any
classical computer

Measurement error for super-conducting Q-bits: 1% (Trapped ions are
worse)

Error correction requires much more qubits than actual qubits
involved in calculation

John Preskill, “Quantum computing in the NISQ era and beyond,”
Quantum 2, 79 (2019)[ arXiv:1801.00862v3]



Current Status of Quantum Information —

Noisy Intermediate Scale Quantum Computing
(NISQ) and Quantum Sensing

Quantum computation in the near term — demonstration and
confirmation of quantum supremacy, but not yet for verifiable &
reliable computation

Variational Quantum Algorithms — Use parmetrized quantum
circuits that run on gquantum computers and outsource the
parameter optimization to a classical optimizer. [Cerezo et al.,

Nature Rev. Phys. 3, 625 (2021)]

Quantum communication — technology to distribute quantum
entalgment (secret key) is needed.
Quantum sensing — relatively near-term high-impact applications

John Preskill, “Quantum computing in the NISQ era and
beyond,” Quantum 2, 79 (2019)[ arXiv:1801.00862v3]



Quantum sensing (QS) and requirements

* Quantum sensors must have discrete and well-defined quantum
states. Examples - polarization of photons, quantized currents
in superconducting circuits, electronic or nuclear spin states

* |t should be possible to initialize the sensor into a single and
well-known states such that the desired stimulus produces a

specific, predictable, and measurable outcomes

e Sensors must be addressable for manipulation, for example, by
optical, microwave, or radio frequency waves

* Sensors must incorporate a sensor read-out pathway to measure
the signal response

C.-J. Yu, ..., D. E. Freedman, ACS Cent. Sci. 7, 712 (2021)



Quantum sensors must interact with the environment strongly
enough so as to produce necessary changes. (major difference
from quantum computation)

Quantum sensors should be capable of generating coherent
guantum states with long enough lifetimes because they enable
the use of entanglement to boost sensor performance in multi-
sensor or ensemble measurement.

C.-J. Yu, ..., D. E. Freedman, ACS Cent. Sci. 7, 712 (2021)

Understanding and controlling open system quantum dynamics
that leads to measurement or estimation process is a major issue

Can there be other effective quantum sensing technique that
does not rely heavily on entanglement, which is fragile and

expensive to create?

General theory for quantum sensing is needed.



Quantum (parameter) estimation

Estimation of physical parameters or properties of a quantum
system that cannot be measured directly either in principle or due
to experimental difficulty.

Examples are entanglement and purity for which there does not
exist well-defined operator with physical observable.

Global Quantum Estimation — Determine a single positive operator
value measure (POVM) minimizing a suitable cost functional, which
is averaged over all possible values of the parameters to be

estimated, for example, estimation of global temperature scale [J.
Rubio, Quantum Sci. Technol. 8, 015009 (2022)]

Local Quantum Estimation — Looks for the POVM maximizing the
Fisher information, i.e., minimizing the variance of the estimator at
a fixed value of the parameter.

M. G. A. Paris, Int. J. Quantum Information 7, 125-137 (2009)



Positive Operator Value Measure (POVM)

Measurement
(— I
2 I A
dx' 1l::i= 1
[ _7/1

- X
/ Result of measurement

Hermitian and Positive operator

POVM is more general than von Neumann’s projection operator.
POVM accounts for the cases where detailed post-measurement
states do not have to be specified.

Each component of a POVM for different values of x does not
have to commute with the other component.

A A A

(|11, |) > 0 & For x # ', [l,,11,/] # 0 is possible




POVM for Work Measurement

Work requires measurement at two times

H(t:)|bm,i) = Emildm,i) & H(ts)|Om,r) = Em.f|dm,f)

W(w) =) [ bm Uz, 2:)0n,:)*8 (W = (Brn, g — Bni)) |6n,i) (¢l

/ dwW (w) = 1

A ) Same as the probability of work determined
P (w) =1r {W(w)p (t’b) } from two-time energy measurement

— an,z'“gbm,f’ﬁ(tf,ti)‘¢n’i>’25 (w o (Em,f — En,@)) ‘¢n,z><¢n,z‘

Roncaglia, Cerisola, and Paz, Phys. Rev. Lett. 113, 250601 (2014)



Theoretical issues with quantum
sensing and quantum estimation

|dentification of appropriate POVM for desired estimation

Identification of appropriate quantum states and transitions that
maximize the precision of the estimation, which amounts to
identifying states that maximizes the quantum Fisher information

Relationship with thermodynamic uncertainty principle and
guantum speed limit

Accurate enough method for quantum dynamics simulation is
essential for reliable prediction and verification of the outcome

of sensing or estimation



(Classical) Cramer-Rao inequality

[Adapted from “Course note by A. Merberg and S. Miller
https:/ /web.williams.edu/Mathematics / sjmiller / public_html/Bro
wnClasses /162 /Handouts /CramerRaoHandout08.pdf”]

p(xz|A) : Probability density for a random variable x

given a fixed parameter A
For n, random variables

517527 T 7€nr drawn from p(xp\)a

assume that there exists an unbiased estimator
E(&1, -+ ,&,. ) such that

/dﬂ?1/ /dl‘n (T1, , Tn,) Hp(ﬂfk\)\)
k=1

_ / dx E(x)P(x|\)



Assume that

9,

LE(x) =0,

o)\ = /dx(E(X) — A\)?*P(x|)\) < o0

Since P(x|\) =
k=1

/dx (E(x) —A) P(x|A\) =0

H p(xx|A) is normalized,

Taking derivative with respect to A

[ x (B -0 5

P(x

A) =

4 A

/ dxP(x; A)

- Y,
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P = - (pt)) T oty
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Taking square A r :
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Applying Cauchy-Schwarz inequality,
2 — 0 2
(U dx (E(x) — \) P(M))JK/ dx P(x\)\)( alnp(xj])\» ] > 1
1—1
" /

T '
O\ /

:i/dxl---/dasz(xM) (%lnp(wﬂk))z
+§; ;Zé; (a% / da:jp(xju)) ((% / dxy, p(xklk))



Cramer-Rao inequality

1
>
A= FO)
L

Number of random variables
used to estimate A

FO) = [ dop(al (glnmw)z
:/daj(6?,\19(=”13M))2

p(z|A)




Consider a quantum system with density operator p(\),

where A represents a parameter that can be estimated.

Noethat p(a|A) = Tr {TLp(0) }

. 0 ~ 0
IS ] — A) =Tr<Il,—p(A
II,. is independent of A I\ (x| ) r { 6)\;0( )}
R 2
Tr {IL, -2 H( )\
Therefore, F()\) = /d:l: ( { N A )})
Tr {Hm A()\)}
A can be estimated from n, random variables, 1

£1,€2, -+, &, generated according to p(z|A), B >
in terms of the same estimator, F (&, -+ ,&,,) - an(A)



How to express Tr{ﬁxai;\ﬁ()\)}

in a form that involves Tr{ﬁ()\) . }

Define a symmetrization (with density operator) super-operator

. | N 1 .
R,(0) = 5 (Op — ,00) = Z 5(193' +Pk)0jk|JI>/<{f‘
.k

Define an inverse symmetrization super-operator Ejgenstate of

[R_ 1 ( O)] o 20 ik Defined in the Hilbert space where
P gk (pj —|—pk) p = Zp]‘]x]‘ 1S nonzero.
J

Braunstein and Caves, Phys. Rev. Lett. 72, 3439 (1994)



Proof that R;l is inverse of R,

for O that is complete in the domain where Rp_l can be defined.

R, (R0) =3 = (R(O)) 1k

P + D) ik
2 (p] ‘|‘pk)
= Ojk|g)k
]k(pj+pk) 9 J’><’




For any A and B, which are complete

in the domain where R[jl can be defined

Tr {AB} — Re [Tr {ﬁAR;l(B)H

. A ~ 2B,
Proof: AR, (B)=) A2 |j)(k

1,k
. . 2B
#T{AAR_lB}: k4,
(Tr{pAR—l(B)})*:Zpk et ki
’ — Wy tpe) Y
_ 2Bj 2B,
%;pk (pj + o)’ %ﬂ:p‘? (pj +pr)
Re [Tr {,512172;1(3)}] = Z%(pj —l-pk)(pj ipk)BjkAkj Ir {AB}



Since the square of a real number is smaller than the square of the
absolute value of a complex number,

Tr {ﬁ(A)ﬁngl (xP(N) } ‘2

F(\) < /dm



Define
PN/ 1L 0

5 Alfep—1{ 9 . Ary\1/2
T (aAp(A)) )

T {pOLR; ! (Za0) |

/dx Tr{ 2P( )}
 falmlora aenn o)
Tr{f[xﬁ()\)}
N

:/daz v {aB}| )
/d:c[Tfr {AAT}]|Tr {BBTH /dw‘Tfr {BBTH

Cauchy-Schwarz inequality

A=




PO < [ {LR " (500) s00R, ! (5500) |
=\Tr (R, (5500 o0R, (55000) |
Note that [ dr 1, =1

Combining this with the (classical) Cramer-Rao inequality,

1 1
> >
e n.EF(A) — n.Fgo(\)

Fo(\) =Tr {ﬁ(k) (Rpl (a%ﬁm))Q}




Estimation is bounded by intrinsic property of the density
operator and parameter, not the type of measurement used
for estimation!



Braunstein and Caves, Phys. Rev. Lett. 72, 3439 (1994)

F(\) = Fo(\) if
%

o 1 {sovts (2 500)}] =06

o o .\
[/25(0)Y2 = ¢, IR (m (A)) AN/

» J1l/2 (1 — xR, (8(9)\ A(A))) =0 & C; is a real number

® Distinguishability metric for density operator &
General uncertainty relation for estimating parameter A



Jones and Kok, “Geometric derivation of the quantum
spped limit,” Phys. Rev. A 82, 022107 (2010)

Derivation of Mandelstam-Tamm inequality

Time required for a quantum s h
system to naturally evolve to L= 9 - )
Vi) =

an orthogonal state

)2

Derivation of Margolus-Levitin inequality

T h
t > _ ,
2 (i - I,




Applications of Quantum Fisher Information
to quantum metrology, quantum sensing, and
quantum thermodynamics

* M. G. Paris, "Quantum estimation for quantum
technology,” Int. J. Quantum Information 7, 125-137 (2009)

¢ Jing Liu et al., “Quantum Fisher information matrix and
multiparameter estimation,” J. Phys. A: Math. Theor. 53,
023001 (2020)

* Hasegawa, “Thermodynamic uncertainty relation for general
open quantum systems,” Phys. Rev. Lett. 126, 010602 (2021) —
with additional Lindblad dynamics and continuous time
measurement



Issues with the Proof of Quantum
Thermodynamic Uncertainty Relation for
Open system Quantum Dynamics

* Definition of total entropy production is not well
understood, especially considering the effect of correlation

(entanglement) between system and reservoir

e Exact details of the underlying quantum dynamics for open
system, which can be detrimental for entropy production
and the actual time dependences of physical observables,
are not well-known.

* Most theoretical results are based on Lindblad equation and
the resulting continuous time measurement formulation.
While these are axiomatically correct, to what extent they
represent the dynamics of real system is not clear.



Entropy Production in Open System
Quantum Dynamics

[ Esposito et al. New ]. Phys. 12, 013013 (2010)]

5(0) = =Trs {ps(0)Inps(0)} — Z Try {0, In pp?}



U(t) = exp ) {—%/0 dT[:I(T)}
Note that S(O) — _Trs {ﬁs (O) In ,55 (O)} o Z Trr {PAf,(iq In ﬁqenq}
—Trs {ps(0)Inps(0)} = —Tr{p(t) Inp() }

+ ) Tre {5yt In 7}

Let us define AS,(t) = Ss(t) — 55(0)
= —Trs {ps(t) Inps(t) ; +Trs {ps(0) In ps(0)



AS,() = — Try {pu(t) In pi(t >} T {5(8) In p(1))
— ZTTT {p?1n p2d

Ty {Trgey {50} 0 s} + Tr {p(6) In (1)}
— Z Try {p¢?1n g}

Ty {p(t) In pa(8)} + T (1) In (1)}
— ZTT {p(t)In ps?}

— ZTTr {pe?In pet} + ZT’F {p(t) In p57}



A%@:—TM ( IL’)

o+ Tr p(t) In p(t)}

— ZTTr {39 In pei} + ZTW {pr(t)In pc1}

Note that p,(t)

— TTS,{?’"#T‘} {IO( )}

ASg(t) = A;Ss(t) + AeSs(t)

A8 (1) :TT{M i (5

D | p(t)]|ps(t)

p(t)

Ilp

)AH pr’ >}

Relative quantum
entropy production



— Z Tr {(pr(t) — p5) In p5?}
External

contribution — — Z B, T, { ( ) I(’};‘fq) H r}

to quantum
entropy

production = Z 8,0, (t) Heat flow from reservoir
of system

In general, A;Ss(t) = D | p(t)||ps(t H,Z},ffq > 0

This is a special case of
DIpl|#'] = Tr {pInp— plnj'} > 0

Quantum Kullback-Leibler divergence




More generally, we can show the following inequality
Dy(A, B) = Tr{ f(A) - f(B) - (A~ B)f(B)} > 0

where f(z) is any convex function of x.

f(332) > f(l“l)—l—(ajg—ajl)f’(ajl) f(xs)
for any y and 2o /-
S (xp) } ‘

Let us denote the complete sets of eigenstates of

A and B respectively as |¢;)’s and [1);)’s

Algi) = ai| i) & Bli) = bi|y;)



Dy(A, B) = Z<¢¢!f(fl)—f(3) (A= DB)f'(B)|¢:)

—Z{ — (&l F(B)]e3)

—ai{il /' (B)@3) + (6:| B (B)|3) }

Expanding all the operators involving B with respect to [Y)’s

o o o o o oy,

i g : —————————————

Pl A i)
Smmmmsmmooooooooot TS Y---
Nonnegative because f(x) is a convex function. Nonnegative

Therefore, D¢(A, B) > 0



Consider [f(a:) = xln%, A=p,& B=/)
Convex function for x > 0
Dy(p,p) =Tr{pnp—p'Inp" —(p—p )(hl +1)}
=Tr{plnp—p'Inp —plnp' +p'Inp’}
=Tr{plnp—plnp'} = D[p[|p'] >0
Equality holds when p = p’

This means that AS;(t) = 0 if
ﬁ —,05 Hp’req _TT{T} {/0 }Hp’req

Thus, AS;(t) represents entropy production

due to mutual correlation between system and reservoir.



Further generalization
ASS(t):—TM ( Hp ) C T {p(t) In p(t))
— ZTW {pe?In pet} + ZT%« {pr(t)In pc7}

This identity holds even when pg? is replaced with p,-(0)

Therefore, ASS( ) — AZSS( )‘|‘ AeSs( )

A;Ss(t) =Tr {P< ) In ( s(t )f_([t)pr( )> }




Recent Works on Entropy Production and
Quantum Fluctuations in Open System
Quantum Dynamics utilizing the general

relationship: AS (1) = A;Ss(t) + AcSs(t)

 Manzano et al., ”Quantum fluctuation theorems for
arbitrary environments: Adiabatic and nonadiabatic
entropy production, Phys. Rev. X 8, 031037 (2018)

* Landi and Paternostro, “Irreversible entropy

production: From classical to quantum,” Revs. Mod.
Phys. 93, 035008 (2021)



Challenges for Theoretical Understanding of
Entropy Production for General Open System
Quantum Dynamics

* Exact calculation of system entropy production still requires
information on full dynamics of the system and reservoirs.
This means reformulation of traditional open system
guantum dynamics approach in order to extract the missing
information.

 The majority of the dynamics being employed, Lindblad
dynamics, although axiomatically correct and easy to work
with, relies on the assumption of extremely weak system-
bath coupling and/or coarse-graining in time. What are real
effects of these on actual dynamics and entropy production
are not well understood.



Lindblad Equation — A form of Markovian quantum
Master equation (QME) for system density operator
|G. Lmdblad Commun Math. Phys 48, 119 (1976)

———————————

:' ’L A N : 1 A A 2 A A R N D A \I
::_ﬁ[Hsa ps]i""i Z {QLapsLL - LLLOAPS — psLLLa}i

\ - T )

System Dynamics Effects of reservoir/environment/bath

* This form of QME is necessary and sufficient condition for
the direct product of the density operator and identity

operator for its reservoir, with arbitrary degrees of
freedom, to remain always positive — complete positivity

* This assumes instantaneous relaxation and/or
entanglement of the environment.

What is the entropy production for such relaxation?



Quantum Master Equation (QME) —
Markovian form

Lindblad Eqn., Redfield Eqn. (2" order & Markovian appro.),

d (R

o Ps(t) = =< [He, pa(t)] + Rps(t)

No Markovian QME satisfies all of the following three requirements.

1. To remain positive semi-definite (no negative eigenvalues).

2. To approach an appropriate equilibrium state at long times.

3. To satisfy the principle of translational invariance (position independent friction).

Redfield equation — non-positive & can be made positive by secular
approximation (ignoring non-resonant off-diagonal components) but
then violates 3.

Lindblad equation — does not satisty 2 or 3.

Kohen et al. J. Chem. Phys. 107, 5236 (1997)



Debates between Pechukas and Alicki
on Complete Positivity of Markovian QME

* Pechukas, “Reduced dynamics need not be completely positive, Phys.
Rev. Lett. 73, 1060 (1994)

« Alicki, Phys. Rev. Lett. 75, 3020 (1995): Comment
« Pechukas, Phys. Rev. Lett. 75, 3021 (1995): Reply

Consider ps — Aps =11, {[}'(I)(I@S)UT}

Desired properties of ®, which maps a system state

to a pure state in system plus reservoir

(a) ® preserves mixture

(b) Tr, {®p} = .

(c) ®(ps) is positive for all positive ps
The only mapping that satisfies all is direct product map: ®(ps5) = Ps ® Py



Debates between Pechukas and Alicki
on Complete Positivity of Markovian QME

Pechukas, “Reduced dynamics need not be completely positive, Phys.
Rev. Lett. 73, 1060 (1994)

Alicki, Phys. Rev. Lett. 75, 3020 (1995): Comment
Pechukas, Phys. Rev. Lett. 75, 3021 (1995): Reply

Pechukas: “Product map i1s valid only for weak coupling and does not
represent many important and real physical situations. Therefore,
complete positivity has to be abandoned because other properties cannot
be given up. This 1s possible by limiting the domain of system states.”

Alicki: “Complete positivity is essential and finding the exact condition
for the positivity preserving domain is not possible. Rather, condition
(a) or (b) can be given up.

Pechukas: “There 1s more serious physical issue by giving up (a) or (b),
and 1t is OK to give up complete positivity for practical purposes.”



Other debates on complete positivity and more recent
theoretical works addressing this issue

Vacchini [Phys. Rev. Lett. 84, 1374 (2000)]: Derivation of completely positive

equation based on Boltzman type operators > Debate between O’Connell
[PRL 87, 028901 (2001)] and Vacchini [PRL 87, 028902-1 (2001)].

Vacchini’s eqn. does not lead to the canonical distribution of unperturbed
system Hamiltonian. Ford and O’Connell’s work [PRL 82, 3376 (1999)] does
so but is based on rotating wave Hamiltonian that does not satisfy
translational invariance.

« Lindblad, “Brownian motion of quantum harmonic oscillators,”
J. Math. Phys. 39, 2763 (1998)

* Farina and Giovannetti, “Open-quantum-system dynamics:
Recovering positivity of the Redfield equation via partial
secular approximation,” Phys. Rev. A 100, 012107 (2019)

e Trushechkin, “Unified Gorini-Kossakowski-Lindblad-
Sudarshan quantum master equation beyond the secular
approximation,” Phys. Rev. A 103, 062226 (2021)



Derivation of formally exact QME

d A A b i A
—p(t) = —iL(t)p(t) = —<[H(t), p(t)
dt h
H(t) = Ho(t) + Ha (1)
Consider in the interaction picture with respect to the zeroth
order Hamiltonian

~ —i [t dTI:I V/h ) ¢ ~
Ot t) = e, o THOD 1/ dr Hy(7)
to

€(+) h
N/ t T
- (72?) /to dr /to dr'Ho(T)Ho (") + - -
d . B ooy 2 LiF ;
aﬂl(t) = —iLy 1(t)pr(t) = _ﬁ[Hl,I(t)apI(t)]

Hy 1(t) = Ul (t,to) Hi())Uo(t, to), & pr(t) = U (t,t0) p(t) U (t, to)



Projection super-operator: P
Ppr(t) contains all the information needed.
Complement: @ =1—-7P

Lpiy(t) = —iPLy11(t)(P + Q)p1(t) = —iPLy 1 (t) Qpi (1)

dt /
Assume Pﬁl,](t)P _ O‘ This can always be satisfied by
appropriate definition of H(t)

] : :
5 Qp1(t) = —iQLy 1 (1)Qpr(t) —iQL11(t)Ph1 (1)



; ) .
- Qpr(t) +iQLy (1) Qpr(t) = —iQLy1(t)Pp1(t)

t A
R . —5 (P dr' QL1 (T A R
Qpr(t) = —@/ dr €(+)f7 ! >Q£1,I(T)PPI(7-)

to
—3 ft ClTQLALI(T) N
+e ) Qpr(to)

d. .. t 2 —i [ dm QL1 1(7) 4 5 /f\\\
—Ppr(t) = —/ dTPL11(t)e 5" QL (r)PAL(7))
dt to \\ //

A —1 ftt dTQ,CAl, (1) - -

— 27351,[(75)6(_'_) 0 ' Q/O(tO)

Formally exact time-nonlocal (TN) equation for



N i [PdT' Ly 1 (7)) .
p1(T) = 6(‘[) " pi(t)

Going backward in time is always well defined for the total density
operator because every dynamics is unitary.

t A
~ . —i [Ydr' QL 1 (T ~ i [tdr' L a(77) ~
0pr(t) = —i / dre, T AL gp ypei LA b 5

¢ (+) ) =) /
0
—’1, ft dTQEl a(Tt)

Insert P+ O =1
F. Shibata and T. Arimitsu, J. Phys. Soc. Jpn. 49, 891 (1980)

lf dT,Clj

t . rt / A / N
Qpr(t) = (1 + il (. t0)) " {—z/ dre T (rype TIppi(t)
to

—’L ft dTQ,Cl a(T)

t .
i —i [tdr’' QL 7’ A i (tdr' L T
F1,I(t,t0):/ dTe(_i_)fT QL1 )Qﬁl,I(T)P (f) 1,1(7")
to



d ; P -
= Ppi(t) = =PLyi(t)(1 +il1,1(t 1)) ™

d —
t ([t dr' OL ! A i T T / \
« / dm(‘jj)ff TRELT) O f 1 (r yPe, ! f dr'La.( ){79 1 ()
to /
\\_/

—1 ft drOL, 1(7)

— iPLy1(H)(1+ Ty 1(t,t0)) e, p(to

Formally exact time-local (TL) equation for
P() = ppTry {(-)} — QME for system density operator

= > ler){erlpy Tr{len)(#r|(-)} = ME for population
k

 Time-local form can account for all the non-Markovian
effect and does not necessarily means more approximate
than time-nonlocal (convolution form).

* QME for system density operator can be derived by going
back to Schrodinger picture in the system space.



Redfield equation — 24 order Markovian QME

d_. ; N -
—Ppi(t) = =PLyr(t) (1 + il (t,t0)) 7"

(+) (—)

iy A o 1 iy dmQLyp(T)
—Z’P,Cl’[(t)(l+ZF1,](t,tQ)) 16(_|_) 0 Qp(t())

t . rt / 2 / N i t 7_/ “1 7_/
></ dre, dr 97 QLr(T )QLLI(T)Pe Jrdm' L, )73,51(15)
to

P()=ppTry{(-)} — QME for system density operator

« 2" order approximation with respect to the interaction
term.

* Markvoian approximation, i.e., send the integral to
infinite.

* Go back to the Schrodinger picture with respect to the
system Hamiltonian.



Four major numerical approaches for nearly
exact open system quantum dynamics

* Hierarchy of density operators: For certain class of baths that can be
modeled single or multiple exponentially decaying functions in time, it is
possible to expand all the higher order terms as a hierarchy of auxiliary
density-like operators. (Y. Tanimura, Y. Yan, Q. Shi, ...)

 Generalized QME: It is possible to derive an exact intego-differential

equation for the unprojected part, which then can be simulated or
approximated. (Q. Shi, E. Geva, E. Rabani, D. Reichman, T.

Markland, ...).

* Within the path integral formulation, the environmental effect can be

accounted by influence functional, which can be calculated or simulated
(C. Mak, N. Makrj,...)

* Itis possible to devise tensor product equation for general open system
guantum dynamics, for which the tensor mapping can be learned from
exact calculation or machine learning (J.Cao, E. Geva, V. Batista,...)



Polaron in charge & exciton (excitation energy)
transfer/transport dynamics

Landau & Pekar, Frohlich, Holstein, Feynman, ... : dressed states for charge carriers

Bare electronic coupling
\

3

Renormalization of
electronic coupling:
Reduction due to
Franck-Condon
overlap factors of two
displaced oscillators

Renormalized electronic coupling

Silbey and coworkers : dressed states for excitation energy transfer, unified
treatment of incoherent and coherent dynamics



Polaron transformed quantum master equation approach

1. Make polaron-transformation (system dependent
displacement of harmonic oscillator bath) — Unitary
transformation in the total system plus bath space.

2. Redefine a small perturbation term.

3. Application of projection operator and make perturbation
approximation to obtain a practical time dependent QME.

Important detail not to overlook

The initial condition and physical observable should also be
transformed accordingly in order not to change the nature of
physical conditions and observables being measured.



PQME for exciton dynamics (27¢ order time-local
in the interaction picture)

d _ ~
- 01(t) = —R(£)31(t) + (1

S. Jang, Y.-C. Cheng, D. Reichman, and J. D. Eaves, . Chem. Phys., 129, 101104 (2008)

S. Jang, J. Chem. Phys. 131, 164101 (2009) : Coherent initial condition
S. Jang, J. Chem. Phys. 135, 034105 (2011) : Multistate system
L. Yang, M. Devi, S. Jang, |. Chem. Phys., 137, 024101 (2012): non-Condon effect

S. Jang, T. Berkelbach, and D. R. Reichman, New. . Phys., 15, 105020 (2012):
Application to donor-bridge-acceptor system

S. Jang, J. Phys. Chem. C 123, 5767 (2019) : Distance dependence of FRET

S. Jang, Chap. 9 in Ultrafast Dynamics at the Nanoscale (Eds. Haacke and
Burghardt, Pan Stanford) (2016)

S.].Jang, Dynamics of Molecular Excitons (Elsevier) (2020)

Works by Yuan-Chung Cheng, Ahsan Nazir, Jianshu Cao, Ivan Kassal, ....



Application to intramolecular exciton dynamics

Expeirmental dephasing time (1ps) and period of oscillation (1.2 ps)
can be reproduced by moderate polaronic effect and J =50 - 100 cm!
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Yang, Caprasecca, Mennucci, and Jang, J. Am. Chem. Soc. 132, 16911 (2010)



POME with non-Condon (or inelastic) effects
H =Ep|D)(D| + Ea|A)(A] + J(|D)(A] + [A)(D])

1
Zhwn (gnD|D){(D| + gnalA)(A|) Zhwn (bTb 4 2)

J = CO+Cl Sm(¢ ¢o) ¢ = Zgnqs +qu,)

1
08}
0.6}
0.4f

Co (em™!)  C; (em™)

I 30 -10
IT 30 -30
ITI 20 -10
v 20 -20

Time (ps)

Torsional modulation of electronic coupling by bath increase dephasing and
relaxation rates but details of its amplitude and reference (zero coupling)
angle have important effects.

Yang, Devi, and Jang, . Chem. Phys. 137, 024101 (2012)



Comparison of POME with Redfield and Hopping Dynamics

T=300K & Hw,. = 200 cm ™!
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Jang, Berkelbach, and Reichman, New. ]. Phys. 15, 105020 (2013)



Effective rates from PQME for donor-bridge-acceptor model
interpolates Redfield (super-exchange) and Hopping dynamics
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* Intermediate regime
where turn-over

occurs 1is fairly
broad.

* Significant interplay
of non-adiabatic
effects and quantum
coherence.

T=300 K &
fiw,. = 200 cm !

Jang, Berkelbach, and Reichman, New. ]. Phys. 15, 105020 (2013)



Issues with current version of 2" order PQME

* Over-relaxation of some slow modes — premature
suppression of some coherence terms. Inaccurate for slow
bath. [see comprehensive testing in, e.g., C.-K. Lee,J.
Moix, and J. Cao, J. Chem. Phys. 136,204120 (2012) ]

* No additional improvement for Ohmic bath and may lead to
pathological behavior for sub-Ohmic bath. [This is obvious
from vanishing of the Debye-Waller factor.]

e Variational PQME or frozen mode PQME

D. P. S. McCutcheon and A. Nazir, . Chem. Phys. 135, 114501 (2011)
H. -H. Teh, B. -Y. Jin, and Y. —C. Cheng, |. Chem. Phys. 150, 224110
(2019)

Partially polaron transformed QME as a more general
framework to address these 1ssues?



Partial polaron transformation

1
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Partially Polaron Transformed QME (p-PQME)

Interaction picture of H, &Projection operator P(-) = ppTry {(-)}
Formally exact p-PQME for 6;(t) = T'rp {eiﬁot/her(t)e_Ge_iﬁot/h}

Time non-local form

~

d _ t —i [Pdr' QL (7’ » =
G510 == [ arrn{Loi0e O QL o o ()
0

. ~ —i [P dTOQLy 1 (T) ~~
—iTr{Lra(t)e ) T Qp(0))

1

Lr() =2 [Hi®), ()] Qp(0) = e“p(0)e™" — pyTry{ep(0)e™}

Conventional second order approximation, higher order, HEOM, or GQME
approach can be developed starting from this formally exact equation.



Partially Polaron Transformed QME (p-PQME)
Time local form F. Shibata and T. Arimitsu, J. Phys. Soc. Jpn. 49, 891 (1980)

Lot - [ {2 im0

—i [Ydr' QL (T’ ~ i [Ydr' Ly 1 (T -
Xe(_'_)fT 1 ( )Q['ll( )7?6 f 1 ( )pb}al(t)

_ ZPZl,I(t)(l s irl,]@))_ (_:)fo dr QL4 I(T) Qp(O)

t ~ ~
—1 ¢ dT/Q£,1 7-/ ~ i t dT/£,1 7_/
'y 7(2) :/0 dTBH_)fT 1 >Q£17I(7-)7)6({T) a(77)

Time local form with second order approximation

%0‘1 (t) — /0 dTT?“b{Z:L](t)zl,I(T)pb}a-I (t)

T {1 1(£)Q5(0)} — / drTry{Ly.1(t) £r.1(7)Q5(0)}



Time-local second order p-POME

—or(t) = —R(t)or(t) + L(t)

Untransformed part

R(t Y 3 / A (Bin(0) By (D) T4 (0, Ty ()51 (0] + e,

jk 197, k'=1

Polaron-transformed part

— e = = — e o o o e e e o o e o= A i —

_________________________________________

") cos(wpt) — isin(wnt))

hwy \ .
M i ( Z hwnGn i0Gn. ik (1 — Wi (wn))Wh(wy) (cos(wnt) — i coth (5 2w ) sin nt))

b h;’”) cos(wnt) — isin(wnt))

Cijr(t) =Y hPwlgn jgn.j (1 = Wh(wn))? (coth(

n

Cross terms

S.J. Jang, J. Chem. Phys. 157, 104107 (2022)



Inhomogeneous terms

L) =-+ g: g: TTb{ ()0 e j’k’} ok (0) [Tk (1), Tirrr (0)]

IZ(t) = — hQ . 2 / TT’I" { ’k’ )510b,j’/k”}
X 0 (0)[ Tk (t), Tjrwr (7)Tja (0)] + Hec.
Tro{Bjk ()00} = wire {jjk <6_Kjk’j’k/(t)fjk,k’ (t) — 1) + 05k (M jrrr (t) + by () },

fikw (t) =exp {22’ Z Ik 0Gn ik Wh(wn)? sin(wnt)}

B (8) =23 g s (1 = Wi () Wi () cos(wnt)
A closed form expression for Tr {Bjk(t)éj,k,(T)aﬁb,juku} involves
Kk, (8), M g0 (8), Cjjo (8), fin e (8), & g (2)

S.J. Jang, J. Chem. Phys. 157, 104107 (2022)



Two-level system coupled to the same type of local-bath
(Spin-boson Hamiltonian without common modes)

By = B+ Bo2) 01+ Ju( @l + )1 + S (a5 5)
ﬁl — Zhwn(l — Wh(wn))(bn T bf];z,) (gn,1‘1><1‘ + gn,2’2><2’)

+J{(0 - w)|1)2[ + (0 — w)|2)(1]}
) — eXn Wn(wn)(gn,1=0n,2)(b),—bn) w = (0) = (07

Calculation of R(t) involves only the following three correlation functions:

K(t) = % /0 RAACIN A (coth (%) cos(wt) — isin(wt))

w2

M) =+ /O " w1 = Wi (w)) (cos(wt) _ i coth (BTH“’) sin(wt))

w

S.J. Jang, J Chem. Phys. 157, 104107 (2022)
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POME: Summary and Future Direction

Formally exact QMEs and polaron-transformed QME (PQME).
PQME, with time dependent relaxation super-operator and
inhomogeneous terms, works well in both weak and strong coupling to

bath.

General p-PQME applicable to broad range of open system quantum
dynamics including exciton and charge transport dynamics

Weighting function and its parameters can be used to find the best 2@
order approximation

Potential applications to quantum information processing and sensing

Extension to time dependent polaron transformation approach is feasible
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Generalized quantum Fokker-Planck equation for photoinduced
nonequilibrium processes with positive definiteness condition

Seogjoo Jang?

Department of Chemistry and Biochemistry, Queens College, City University of New York,

65-30 Kissena Boulevard, Queens, New York 11367, USA and Ph.D. Programs in Chemistry and Physics,
and Initiative for Theoretical Sciences, Graduate Center, City University of New York, 365 Fifth Avenue,
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This work provides a detailed derivation of a generalized quantum Fokker-Planck equation (GQFPE)
appropriate for photo-induced quantum dynamical processes. The path integral method pioneered by
Caldeira and Leggett (CL) [Physica A 121, 587 (1983)] is extended by utilizing a nonequilibrium
influence functional applicable to different baths for the ground and the excited electronic states.
Both nonequilibrium and non-Markovian effects are accounted for consistently by expanding the
paths in the exponents of the influence functional up to the second order with respect to time. This
procedure results in approximations involving only single time integrations for the exponents of the
influence functional but with additional time dependent boundary terms that have been ignored in
previous works. The boundary terms complicate the derivation of a time evolution equation but do
not affect position dependent physical observables or the dynamics in the steady state limit. For an
effective density operator with the boundary terms factored out, a time evolution equation is derived,
through short time expansion of the effective action and Gaussian integration in analytically continued
complex domain of space. This leads to a compact form of the GQFPE with time dependent kernels
and additional terms, which renders the resulting equation to be in the Dekker form [Phys. Rep.
80, 1 (1981)]. Major terms of the equation are analyzed for the case of Ohmic spectral density
with Drude cutoff, which shows that the new GQFPE satisfies the positive definiteness condition
in medium to high temperature limit. Steady state limit of the GQFPE is shown to approach the
well-known expression derived by CL in the high temperature and Markovian bath limit and also
provides additional corrections due to quantum and non-Markovian effects of the bath. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4952477]



Caldiera and Leggett (CL) QME & QFPE

p? man Coy 2
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Caldeira and Leggett, Physica A 121, 587 (1983):

Feynman-Vernon influence functional formalism

2

Tw) =5 > ——5(w - wa) = wO(w/w)

2 Mo Wea
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s [ o w8 ) (g cosw) — isint) ) = S8 () = L, (0

O(w/w,.) : Cutoff function decaying faster than w./w ( w. : cutoff frequency )



 Short time expansion of the influence functional
« High temperature and Markovian approximation

~
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Caldeira and Leggett (CL) QME
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CL Quantum Fokker-Planck Equation (CL-QFPE)
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Issues with CL-QME or CL-QFPE

* Non-positive definite - can lead to negative
probability for certain initial condition.

« Application of both high temperature limit
and Markovian approximation may not be
well defined.

1 kT
. << we << B2 (4 x 10571 at 300 K)
time scale of system h

CL-QME or CL-QFPE is in fact identical to the second order
QME in the high temperature Markovian bath limit, which
suffers from the same issue.



Correction and Extension of CL-QFPE

L. Diosi [Physica A 199, 517 (1993)]: QFPE in Dekker-Form (a kind of
Lindblad Eqn. satisfying translational invariance) for intermediate
temperature regime — Derived from a kind of cumulant
approximation with neglect of initial non-equilibrium relaxation

Ankerhold, Pechukas, and Grabert [Phys. Rev. Lett. 87, 086802 (2001)]:
Quantum Smoluchowski Equation for the diagonal elements (in
position space) of the reduced density operator, Strong friction and
Markovian bath limit. — Strong coupling limit of influence functional
formalism



OME in the Dekker-Form

Ge(qy(-);t) :/dq//dq”‘q'ﬁe((J’M’Cqg(°)5t)<fJ"\

J . i . i KM@

5;0e(4g(-);t) = —7[Heyps(t), 0e] — > ma(D) [(j’ 17 36}}
(B - e
20 fa6.0) - g 5.5
- Term>missing
Heps(t) = 5 7y Ueldsay ()1 in CL-QME



OME for Drude spectral density of bath
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QFPE for Wigner Distribution
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QFPE in the steady state & at intermediate/high temperature

For e™** 2 0,7.(t,q,(-)) = 0, and Shw, << 1

5, p 9 , \NH B 5?

= J— )L 4% p+D, L
Wt = { =22 (V0 ~ Fo) 4 + Ay + Doy

0 o ,
B D,— t hw,
Me.s = 1 — 275, Where v = Ye/we
_ 2 _ M B = 2kpTry, 20

4 (1 - 2’73) Me s B (1 - 2’75)2

(1 — 67, + 1072) (1 — 67, + 1072) p. — _ OsksT
Dy = 2my.kpT (1— 27,)2 = nkgT (1—27,)2 T mwe(1 — 27,)2

A new positive definite QFPE applicable to intermediate
couplings and temperature



QFPE: Summary and Future Direction
Non-positivity of CL-QFPE is an outcome of Markovian approximation

Inclusion of finite time scale of bath leads to positive definite QFPE, which
remains valid except for very low temperature limit

New generalized QFPE can be applied to both nonequilibrium
photoinduced processes and equilibrium quantum dynamics, and well-
defined positive definiteness condition clarifies when it can be used

New correction of CL-QFPE for intermediate coupling and intermediate
temperature, which can be used for quantum barrier crossing, quantum
thermodynamics including quantum generalization of thermodynamic

uncertainty relation.

Development of Langevin-type equation for new QFPE — allows more
general multidimensional quantum simulation in open environments



Overall Summary and Future Direction

There are important exact relations on quantum estimation and
guantum entropy production, but many final expressions applicable
to actual systems are based on Lindblad and/or other simplified
dynamical equations.

There is much to understand the effects of non-Markovian open
system gquantum dynamics, beyond weak system-bath (reservoir)
couplings and how these manifest in quantum sensing, which in
general involves intermediate to strong interactions with quantum
systemes.

Significant progress has been made in developing very accurate
open system quantum dynamics methods.

Further advances and recent efforts to combine Machine Learning
approaches will likely to produce quantitatively reliable methods
that are generally applicable.






