Ji-Woo Lee

Numerical Methods
for quantum systems

THE FIRST EDITION

KIAS/APCTP



Copyright © 2023 Ji-Woo Lee
PUBLISHED BY KIAS/APCTP
TUFTE-LATEX.GOOGLECODE.COM

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in com-
pliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/
LICENSE-2.0. Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an “As 1s” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations under
the License.

First printing, January 2023



Contents

PARTI EXACT DIAGONALIZATION
Making Quantum Basis 15

Exercises 19

PART II MONTE CARLO SIMULATION
Traditional Metropolis algorithm 23

PART III TENSOR NETWORK STATES
What is TNS? 29
Term Project 33

Index 37






List of Figures






List of Tables






Dedicated to those who appreciate KITEX
and the work of Edward R. Tufte and Donald E. Knuth.






Preface

This documents is for the lectures of Winter school in Statistical
Physics Division in Korean Physical Society.

Prerequisite

Prerequisite for "Numerical Methods for quantum systems"

Lecturer : Ji-Woo Lee

The students should prepare their laptop for the lecture.

On the laptops, the students should install some software we need.

Install Julia https://julialang.org/downloads/

It is recommended that you should install LTS (Long-term sup-
port) version.

Long-term support (LTS) release: v1.6.7 (July 19, 2022)

To learn Julia language, an online book is available.

https:/ /benlauwens.github.io/ ThinkJulia.jl /latest/book.html

Install Anaconda Anaconda is useful when we execute Julia pro-
gram in the jupyter web interface.

https:/ /www.anaconda.com/products/distribution

Depending on the system you have, you can download a proper
distribution.

Check that you can run anaconda navigator and in the menu
"HOME", you can launch jupyter notebook.

Connecting jupyter notebook and Julia In the Julia shell (REPL),

julia>using Pkg ; Pkg.add("IJulia")

This will enable Julia kernel in the jupyter notebook.

If you have any question, please contact jwlee@mju.ac.kr.
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Exact diagonalization






Making Quantum Basis

Ising Spins

The quantum mechanics starts with the vector basis.
All the quantum operators are linear operators in C"
Let’s start with a simple example.

Two lattice sites and for each site, the spin is located.

—J5152 (1)

If S1(S2) has two possible values +1 or —1, then there are 4 pos-
sible quantum states. In Dirac notation, we can write down 4 states
as

[++) [+ =)=+ =) @)

The corresponding energies are

_]r +]/+I/ _] (3)

In summary, the Hamiltonian is diagonalized (which is boring)

and the ground state is | + +) or | — —), which is degenerate’. * Degeneracy: two or more quantum
states have the same energy eigenvalue

Boson Model

Now a second example, we consider an extended Boson Hubbard

model? 2 See Boson localization and the superfluid-

insulator transition Matthew P. A. Fisher,

Peter B. Weichman, G. Grinstein, and

or 1. Daniel S. Fisher Phys. Rev. B 40, 546 —
Then the possible quantum states for two-site bosons are Published 1 July 1989.

With hard-core condition, the boson number at site i is restricted o

00), |01), [10), [11) (4)
The Hamiltonian is

H= —t(b;rbj +cc)+ Vnn; (5)

The diagonal elements are
0,0,0,V Q)
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Two states are connected: |01) and |10).
And we know

b'n) = vVn+1jn+1) (7)
bln) = v/nln —1) (8)

—t offdiagonal term appears!
The Hamiltonian matrix becomes

0 0 0 O
0 0 -t 0
H =
0 -t 0 0 ©)
0 0 0 U
Diagonalization
Windows

System Requirement: Windows 10, 11
1. JULIA 1.8.4 install
https:/ /julialang.org/downloads/
Pkg.add("TJulia")
https:/ /www.anaconda.com/products/distribution
Anaconda install

Ubuntu Linux

System Requirement: Ubuntu 22.04

1. Anaconda Install

https:/ /linuxhint.com/install-anaconda-ubuntu-22-04/

2. Julia install

https:/ /www.digitalocean.com /community/tutorials /how-to-
installjulia-programming-language-on-ubuntu-22-o4

Code: Two-site extended hardcore bosons

using LinearAlgebra

t=1

U=1

A=[0000;00-t0;0-t00; 00606U]
eigvals(A)

eigvecs(A)




Code: Hubbard model

This code works for open boudary conditions.

using QuantumLattices

using ExactDiagonalization

using LinearAlgebra: eigen

# define the unitcell of the square lattice

unitcell = Lattice([0.0, 0.0]; name=:Square, vectors=[[1.0, 0.0],
[0.0, 1.01])

# define a finite 3x4 cluster of the square lattice with open
boundary condition

lattice = Lattice(unitcell, (3, 4))

# define the Hilbert space (single-orbital spin-1/2 complex
fermion)

hilbert = Hilbert(site=>Fock{:f}(1, 2) for site=1l:length(lattice))

# define the binary bases of the a half-filled system on the above
cluster

bases = BinaryBases(1:12, 6) ® BinaryBases(13:24, 6)

# define the terms, i.e. the nearest-neighbor hopping and the
Hubbard interaction

~+
1]

Hopping(:t, -1.0, 1)

[
Il

Hubbard(:U, 8.0)

# define the exact diagonalization algorithm for the Fermi Hubbard
model

ed = ED(lattice, hilbert, (t, U), TargetSpace(bases))

# find the ground state and its energy

eigensystem = eigen(matrix(ed); nev=1)

# Ground state energy should be -4.913259209075605

print(eigensystem.values)

MAKING QUANTUM BASIS

17
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QR method

QR method is used for a dense matrix.
By iterating, it becomes more upper and upper!
Schur’s decomposition theorem

A=Qx*UQ (10)

Lanczos method

Lanczos method is used for a sparse matrix.



Exercises

1. Write down the partition function Z(T) for two-site Ising model.
Make a graph as a function of temperature.

2. Develop a code for modified Lanczos method to obtain the ground
state.

3. Can you generalize making a quantum states with hardcore
bosons? Write down a code for it. If you include —un; term, which

is chemical energy term, find the quantum critical points.

4. Let’s make a basis for 4-site fermion problems, which is Hubbard
model.

5. With QR factorization, make a code for getting eigenvalues of a
random matrix.

6. Using Lanczos algorithm, make a code for getting eigenvalues of a
random matrix.
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Monte Carlo simulation






Traditional Metropolis algorithm

The 10 Algorithms with the Greatest Influence on the Development
and Practice of Science and Engineering in the 20th Century

At Stanford:

NEW COURSE: The Top Ten Algorithms of the Century Math
224/CS 339

We thought that, along with Scientists and Engineers, the Math-
ematicians, Computer Scientists and Statisticians at Stanford would
benefit from a survey course covering roughly one algorithm per
week. This will be a high level review including basic ideas, applica-
tions, history, pointers to available code and theory.

Persi Diaconis Gene Golub

The most important algorithms

{\bf Metropolis Algorithm for Monte Carlo}

Simplex Method for Linear Programming

Krylov Subspace Iteration Methods

The Decompositional Approach to Matrix Computations

The Fortran Optimizing Compiler

QR Algorithm for Computing Eigenvalues

Quicksort Algorithm for Sorting

Fast Fourier Transform

Integer Relation Detection

Fast Multipole Method

New Kernel adding in Julia
https:/ /stackoverflow.com/questions/56284321/how-do-you-add-
jupyter-notebook-kernels-for-prior-versions-of-julia
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Metropolis algorithm

Full Diagonalization is impossible for the relatively small lattice size.
For example, 4 x 4 lattice Hubbard model is very hard problem.
Then, what can be done?
One of things we can do is that we use a stochastic evolution
method.

The Metropolis algorithm3 is one of the Monte Calro algorithm?. 3 Metropolis, N.; Rosenbluth, A.W.;

Rosenbluth, M.N; Teller, A.H.; Teller,

. E. (1953). "Equation of State Calculations

Then any observable can be obtained by by Fast Computing Machines”. Journal of
Chemical Physics. 21 (6): 1087-1092.
Bibcode:1953]ChPh..21.1087M.

Let’s suppose the system at a state s, has a probability of p(s).

ZP(S)O(S). (11) doi:10.1063/1.1699114. OSTI 4390578.
s S2CID 1046577. There is a controversy
If we sample correctly following p(s), then this will be on who first thought of this algorithm
and it seems that Metropolis was just
a system manager at Los Alamos Na-
ZO(S”) (12) tional Lab.
Sn

4 Monte Carlo algorithm was first
conceived by S. Ulam. von Neumann

Detailed Balance and Metropolis joined Ulam’s project
on solitare.

p(s)p(s = ") = p(s)p(s’ = 5) (13)

If we define p(s — ') as

(14)

then

Suppose, p(s") > p(s).

Then in Eq. (13), LHS = p(s). and p(s' — s) = p(s)/p(s'). So,
RHS = p(s).

Also suppose p(s') < p(s).

Then in Eq. (13), RHS = p(s’). and p(s — s') = p(s")/p(s). So,
LHS = p(s).

Ising Model

Local update

We pick up a random site, and try to flip its spin.

See the code

For nonlocal algorithm, there are Swendsen and Wang algorithm
and Wolff algorithm.

Swendsen & Wang algorithm

— ZefE[S]/kT _ Ze% (nm) SnSm (15)
S s



TRADITIONAL METROPOLIS ALGORITHM

=

Z= Y errkipSnsnm (16)

i,iNOTm,n

Code run

New Kernel adding in Julia
https:/ /stackoverflow.com/questions /56284321 /how-do-you-add-
jupyter-notebook-kernels-for-prior-versions-of-julia

Nonlocal algorithm

Fermionic Monte Carlo method

https://github.com/lch/dgmc_notebook

When U = 0, the system becomes noninteracting fermion system.
There is no correlation between spin-up and spin-down electrons.

Then we can obtain the ground state energy by filling the Fermi
energy levels.

When L x L = 2 x 2, half-filled:

The g.s. energy is —8.

The energy per site is —8/4 = —2.

4Co = 5157 = 6.

There are 36 states.

The code in ED-Hubbard works fine.

U =0,t=1,2 x 2 lattice with periodic boundary condition and
half-filled case. The g.s. energy is —8.0.

Cluster algorithm

Worm algorithm
Stochastic series expansion algorithm

Exercises

1. Check whether you can go up to 4 x 4 lattice size with Exact diag-
onalization code. Estimate the number of the possible quantum states
for the half-filled case.

2. Find the energy as a function of U for two-dimensional Hubbard
model with DQMC.

3. Compare the results of the exact diagonalization of 2 x 2 Hubbard
model and those of DQMC run.

25
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What is TNS?

A new paradigm from Quantum Information Theory.

The basic idea of tensor network states is that we decompose the
many-body quantum states with the product of tensors>.

Many body quantum state is usually writeen as

‘Y<i1/ iy, -+, 1 ZC i, - ‘ll/ riN> (17)

Not all quantum states in the Hilbert space of a many-body system
are equal: some are more relevant than otheres.

In particular, one can prove that low-energy eigenstates of gapped
Hamiltonians with local interactions obey the so-called area-law for
the entanglement entropy®. The entanglement entropy of a region
of space tends to scale, for large enough regions, as the size of the
boundary of the region and not as the volume.

Low-energy states of realistic Hamiltonians are not just any state in the
Hilbert space: they are heavily constrained by locality so that they must obey
the entanglement area-law.

Think of RG (renomalization group). RG methods keeps track
of the relevant degrees of freedom to describe a system. TN states
targets the most relevant corner of states.

Density Matrix RG ~ TN evolution of large entanglement  (18)

In Vidal’s work, he introduced the Time-Evolulution-Block-Decimation.

Time Evolution Block Decimation
The iTEBD (infinit-TEBD) starts with two tensors,
IMPS) =Y 1", /\ﬁf (19)

Note that p; are the physical index. For example, it can be 0,1 in
hard-core boson case, or 1, | in spin case. A’s are the entanglement
amplitude.

5 “Efficient Classical Simulation of Slightly
Entangled Quantum Computations”,
Guifré Vidal, ,Phys. Rev. Lett. 91, 147902
— Published 1 October 2003.

¢ Albert Einstein. “Zur Elektrodynamik
bewegter Korper. (German) [On the
electrodynamics of moving bodies]”.
In: Annalen der Physik 322.10 (1905),
pp- 891—921. poI: http://dx.doi.org/
10.1002/andp.19053221004
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The iTEBD is the same as power method.
For the time evolution, we multiply the state with an operator,

exp(—eH) (20)

where H is the Hamiltonian.
Let’s think of a random state.
The random state can have the overlap with the basis

R) = }_|E)(EIR) = |Eo)(Eo|R) + |E1)(Eq|R) + -+ (21)
E
If we act exp(—€H) to this state,

exp(—€H)|R) = e F0|Eg)(E|R) + e “F1|E1)(Eq|R) + -+ (22)

e~ Fo(|Eg) (Eg|R) + e~ F1=F0) |Ey) (E4|R) + - - - (23)

As we multiply time-evolution operator, the amplitude of excited
states are diminishing.

The same thing happens in TEBD.

If € is reasonably small,

exp(—eH) ~ exp(—eHip) exp(—€eHy1) (24)

Let’s focuss on Hys.

O(py, p) = (pipal exp(—€eH)|py, p2)TP1 A TP (25)

This new tensor is decomposed to a new I'’s and A’s.

The mathematical formalism for the decomposion is “singular value
decomposition”.

We iterate this procedure until we get the reliable values for the
ground state.

Density matrix renormalization group

S. White’s seminal paper.
Numerical RG with density matrix.
Usually, numerical RG was done by taking the low-energy states.
In DMRG, the states with maximized density matrix eigenvalues
are kept.

DMRG with MPO

MPO: Matrix product operators.
For the Transverse Field Ising model”,

7 Subir Sachdev. Quantum Phase Tran-
sitions. Cambridge University Press,
2011.



WHAT IS TNS? 31

H = ] Y (07071 +807) (26)

With Bogoliubov transformation, e, = —2J(1 + g2 — 2gcosk)1/2.

E L dk
=5 | e 27)
MPO
I 0 0
H=|c* 0 0 (28)
oc o* 0
Consider H; ® Hj.
L, 0 0 L 0 0 L®b 0 0
o7 0 0|®|d 0 0f= G ®h 0 0
of of L oy o5 L b+ oi@o+h®e Lo LD
(29)

At the right boundary, x (I, 0,0)7, then It becomes (I; ® I, 07 ®
L, of@h+o;®0;+1 ®05).
At the left boundary, (0,0, ) x, then it becomes

FRh+o®a+heo (30)

which is really two-site Hamiltonian.

Exercises

1. For a hard-core boson system, find the operator exp~¢H12 in a
closed form.

2. Develop a code for the original S. White’s DMRG algorithm.
3. How can you make finite-size DMRG algorithm?

4. Develop a code for TFIM model by modifying the XX code ex-
plained in the lecture.






Term Project

1. (Challenging, TNS) Find some references on the solution of two-
dimensional quantum problems with tensor network states and dis-
cuss the way they achieved.

2. (Challenging, Monte Carlo) Compare the Monte Carlo simulations
using Metropolis, Swendsen, and Wolff algorithms.
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