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This talk is based on
S., Sufficient symmetry conditions for free boundary minimal annuli to be
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Introduction

Let φt : Σ
k → Bn ⊂ Rn, t ∈ (−ϵ, ϵ) be a one-parameter family of

immersions with φt(∂Σ) ⊂ ∂Bn. Then,

d

dt

∣∣∣∣
t=0

Area(Σt) = −
∫
Σ
⟨H⃗,X ⟩dV +

∫
∂Σ

⟨η,X ⟩ds, (1)

where H⃗ is the mean curvature vector of Σ, η is the outward unit
conormal vector along ∂Σ, and X := ∂

∂tφt is the variational vector of
ϕt .

If ϕ : Σ → Bn is a critical point of area functional for every variational
vector fields, ϕ is said to be free boundary minimal submanifold in Bn.
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Free boundary minimal surface in a ball

Definition 1.

An immersed (resp. embedded) submanifold φ : Σk → Bn ⊂ Rn is said to
be an immersed (resp. embedded) free boundary minimal submanifold in
Bn if

Σ is a minimal submanifold, i.e. mean curvature is zero.

Σ meets ∂Bn orthogonally along ∂Σ.

Note that embedded free boundary minimal submanifold in Bn is proper,
i.e. φ(Σ) ∩ ∂B3 = φ(∂Σ) ̸= ϕ. Equivalently,

Definition 2.

An immersed (resp. embedded) submanifold φ : Σk → Bn ⊂ Rn is said to
be an immersed (resp. embedded) free boundary minimal submanifold in
Bn if the coordinate functions xi , i = 1, . . . , k satisfy

∆Σxi = 0 in Σ.
∂xi
∂η = xi on ∂Σ.
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Examples of free boundary minimal surfaces

Figure: Equatorial disk Figure: Critical catenoid
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In relation with Steklov eigenvalue problem

Let Mm : Riemannian manifold, Ω ⊂ M : smooth bounded domain.
Steklov eigenvalue problem is finding all σ ∈ R for which there exists
u ∈ C∞(Ω) which satisfies{

∆u = 0 in Ω
∂u
∂η = σu on ∂Ω,

(2)

where η is the outward unit conormal vector on ∂Ω.

η
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It is known that the eigenvalues σ of this problem are discrete and it form
a sequence, 0 = σ0 < σ1 ≤ σ2 ≤ · · · → ∞. Note that constant functions
are Steklov eigenfunctions with eigenvalue σ0 = 0. In addition, for
i = 0, 1, · · · , we have

σi+1(M) = inf
f ∈C∞(∂M)\{0}

{ ∫
M |∇f̂ |2∫
∂M f 2

∣∣∣∣∣
∫
∂M

fuk = 0 for k = 0, · · · , i

}
,

(3)

where f̂ ∈ C∞(M) is the harmonic extension of f and uk is a Steklov
eigenfunction corresponding to σk .
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Recall that an immersed free boundary minimal surface M in B3 satisfies{
∆M(x1, x2, x3) = (0, 0, 0) in M
∂
∂η (x1, x2, x3) = (x1, x2, x3) on ∂M

. (4)

Lemma 1.

Any coordinate functions, xi , i = 1, 2, 3, are Steklov eigenfunctions of M
with eigenvalue 1. It implies σ1(M) ≤ 1.

Lemma 2 (Orthogonality).

Let u be a first Steklov eigenfunction of M. Then, we have∫
∂M

u = 0. (5)

If σ1(M) < 1, we have∫
∂M

uxi = 0 for all i = 1, 2, 3. (6)
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Some questions posed by Fraser and Li (2012)

Question 1.

Which compact orientable surfaces with boundary can be realized as
properly embedded minimal surfaces in the unit ball B3 with free
boundary?

Question 2.

Let M ′ be a compact embedded free boundary minimal hypersurface in
Bn. Is σ1(M

′) = 1?

Question 3.

Is the critical catenoid the only embedded free boundary minimal annulus
in B3 up to congruence?
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Closed minimal surfaces in S3

Those relation and questions are inspired by the relation between closed
minimal surface in S3 and the Laplace eigenvalue problem.
An immersed closed minimal surface N in S3 satisfies

∆N(x1, x2, x3, x4) + 2(x1, x2, x3, x4) = (0, 0, 0, 0) in N . (7)

Lemma 3.

Any coordinate functions, xi , i = 1, 2, 3, 4, are Laplace eigenfunctions of N
with eigenvalue 2. It implies the first (nonzero) eigenvalue λ1(N) ≤ 2.
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Question* 1.

Which closed surfaces can be realized as embedded closed minimal
surfaces in the sphere S3?

Yes, it is proved by Lawson in 1970.

Question* 2 (Yau’s conjecture (1982)).

Let N ′ be a closed embedded minimal hypersurface in Sn+1. Is λ1(N
′) = n?

Question* 3 (Lawson’s conjecture (1970)).

Is the Clifford torus the embedded closed minimal surface of genus 1 in S3
up to congruence?

Yes, it is proved by Brendle in 2013.
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Rigidity of free boundary minimal surface in a ball

(Nitsche, 1985) An immersed free boundary minimal disk in B3 is an
equatorial disk.

In the same paper, Nitsche claimed the following statement, which is now
well-known by Fraser and Li.

Conjecture.

An embedded free boundary minimal annulus in B3 is a critical catenoid.
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Rigidity of free boundary minimal surface in a ball

(Nitsche, 1985) An immersed free boundary minimal disk in B3 is an
equatorial disk.
↭ Almgren (1966) for S3.

In the same paper, Nitsche claimed the following statement, which is now
well-known by Fraser and Li.

Conjecture.

An embedded free boundary minimal annulus in B3 is a critical catenoid.
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Rigidity of free boundary minimal surface in a ball

(Nitsche, 1985) An immersed free boundary minimal disk in B3 is an
equatorial disk.
↭ Almgren (1966) for S3.

In the same paper, Nitsche claimed the following statement, which is now
well-known by Fraser and Li.

Conjecture.

An embedded free boundary minimal annulus in B3 is a critical catenoid.
↭ Lawson’s conjecture (1970) for S3, solved by Brendle (2013).
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Previous results

(Fraser-Schoen, 2016) If an immersed free boundary minimal annulus
in Bn has the first Steklov eigenvalue 1, it is congruent to the critical
catenoid.

Let Σ2 be an embedded free boundary minimal annulus in B3.

(McGrath, 2018) If Σ is invariant under the reflections of the three
coordinate planes, then it is congruent to the critical catenoid.

(Kusner-McGrath, 2020) If Σ is invariant under the antipodal map,
then it is congruent to the critical catenoid.
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Previous results

(Fraser-Schoen, 2016) If an immersed free boundary minimal annulus
in Bn has the first Steklov eigenvalue 1, it is congruent to the critical
catenoid.
↭ Montiel-Ros (1985) for S3.

Let Σ2 be an embedded free boundary minimal annulus in B3.

(McGrath, 2018) If Σ is invariant under the reflections of the three
coordinate planes, then it is congruent to the critical catenoid.
↭ Ros (1995) for S3.
(Kusner-McGrath, 2020) If Σ is invariant under the antipodal map,
then it is congruent to the critical catenoid.
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Notation

Σ : embedded free boundary minimal annulus in B3.

M0 : embedded free boundary minimal surface of genus zero in B3

with b ≥ 2 boundary components,

(∂M0)1, . . . , (∂M0)b.

M will be defined in various situations.
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Uniqueness results

Theorem 1 (S.).

If Σ has one of the following symmetry conditions, then Σ is congruent to
the critical catenoid.

Σ is invariant under the reflections through two distinct planes.

Σ is invariant under the reflection through a plane that does not meet
∂Σ.

Dong-Hwi Seo (Hanyang U.) 2023.02.09 15 / 27



Corollary 1.

Let Σ′ be an embedded free boundary minimal annulus in B3 ∩ {x3 ≥ 0}.
If one boundary component is contained in the open hemisphere and the
other boundary component is contained in the equatorial disk, then Σ′ is
congruent to the half of the critical catenoid, Σc ∩ {x3 ≥ 0}.
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Remark.

The boundary condition in Corollary 1 would be necessary. Carlotto, Franz,
and Schulz constructed a compact embedded free boundary minimal
surface Σ1,1 of genus 1 in B3 with only one boundary component. Note
that Σ1,1 has the dihedral symmetry D2. The author expect to have
additional reflection symmetry and gives the following expected example.
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An Idea of the proof of Theorem 1

The strategy of the proof is the method of proof by contradiction by
assuming σ1(Σ) < 1. Then, by the work of Fraser and Schoen, Σ is
congruent to the critical catenoid.
We briefly review the previous approach of the works of McGrath and
Kusner-McGrath.

Definition 3 (Nodal domain).

Let u be a Steklov eigenfunction of Σ. Then the nodal set of u is
N = {p ∈ Σ| u(p) = 0}. A nodal domain of u is a component of Σ \ N .

Lemma 4 (Courant nodal domain theorem).

If u is a first Steklov eigenfunction, then u has exactly two nodal domains.
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Using the Courant nodal domain theorem, McGrath obtained

Lemma 5 (Symmetry of a first eigenfunction).

If Σ is invariant under the reflection through a plane and σ1(Σ) < 1, then
a first Steklov eigenfunction is invariant under the reflection.

In addition, using the two-piece property by Lima-Menezes (2021), Kusner
and McGrath obtained the following convexity result.

Lemma 6 (Convexity of the boundary components of M0).

Each boundary component of M0 is strictly convex on S2. In other words,
there are at most two intersection points of a boundary component and a
great circle.
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From the convexity we can further observe that the existence of a
coordinate plane Π that satisfies

Observation.

1 Π does not meet ∂Σ.
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From the convexity we can further observe that the existence of a
coordinate plane Π that satisfies

Observation.

1 Π does not meet ∂Σ.

2 For a plane Π′ that is perpendicular to Π, it intersects ∂Σ in at most
four points.
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One main ingredient of the observation is as follows.

Claim.

A strictly convex closed curve C on S2 does not meet a coordinate plane
perpendicular to F (C) :=

∫
C x , where x = (x1, x2, x3) is the position vector

in R3.

Using this claim, we can show that Π ∩ ∂Σ = ϕ. By minimality of Σ,

0 =

∫
Σ
∆Σx =

∫
∂Σ

∂x

∂ν
=

∫
∂Σ

x =

∫
(∂Σ)1

x +

∫
(∂Σ)2

x . (8)

Thus, if we find Π by the claim with (∂Σ)1, then Π ∩ ∂Σ = ∅.
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Using the previous observation, we can show that the following :

Lemma 7.

If σ1(Σ) < 1, then a first Steklov eigenfunction u is sign-changing in one
of boundary components of Σ. Furthermore, the nodal set of u in this
component of ∂Σ is exactly two points.

(Sketch of proofs of Theorem 1) Let

fi :=

∫
(∂Σ)i

x∣∣∣∫(∂Σ)i
x
∣∣∣ ∈ S2, i = 1, 2. (9)

By assumption, we say Σ is invariant under the reflection RΠ through a
plane Π. Then, RΠ(f1) = f1 or RΠ(f1) = f2. For simplicity, let f1 = (0, 0, 1).
The two cases are equivalent to
Case 1. The Reflection planes are {x1 = 0} and {x2 = 0}.
Case 2. One of the reflection planes is {x3 = 0}.
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Let N be the nodal set of the first Steklov eigenfunction u whose
eigenvalue < 1. Using the previous lemma, we may assume that u is
sign-changing in (∂Σ)1 and let p1, p2 ∈ N ∩ (∂Σ)1.
Case 1. Let Π1 := {x1 = 0} and Π2 := {x2 = 0} be the reflection planes.
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Let N be the nodal set of the first Steklov eigenfunction u whose
eigenvalue < 1. Using the previous lemma, we may assume that u is
sign-changing in (∂Σ)1 and let p1, p2 ∈ N ∩ (∂Σ)1.
Case 1. Let Π1 := {x1 = 0} and Π2 := {x2 = 0} be the reflection planes.
by the symmetry of u, N ∩ (∂Σ)1 ⊂ Π1 ∪ Π2 and if p1 ∈ Π1, p2 ∈ Π1.
Then, u does not change its sign in (∂Σ)1 because of the symmetry of u.
Contradiction.

(∂Σ)1

Π2

Π1

p1

p2
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Let N be the nodal set of the first Steklov eigenfunction u whose
eigenvalue < 1. Using the previous lemma, we may assume that u is
sign-changing in (∂Σ)1 and let p1, p2 ∈ N ∩ (∂Σ)1.
Case 2. Let Π1 := {x3 = 0} be one of the reflection planes. by the
symmetry of u, we have p3, p4 ∈ N ∩ (∂Σ)2 and RΠ1({p1, p2}) = {p3, p4}.
Then, we have a plane Π2 passing through p1, p2, p3, p4 which is
perpendicular to Π1.
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Let Π2 = {x2 = c}. By the Observation,
Π2 ∩ ∂Σ = {p1, p2, p3, p4}. by the
symmetry of u, the sign of u does not
change at each
((∂Σ)1 ∩ {x2 > c})∪((∂Σ)2 ∩ {x2 > c})
and ((∂Σ)1 ∩ {x2 < c}) ∪
((∂Σ)2 ∩ {x2 < c}).
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Thus, we have ∫
∂Σ

u(x2 − c) ̸= 0. (10)
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Thus, we have ∫
∂Σ

u(x2 − c) ̸= 0. (10)

On the other hand, σ1(Σ) < 1 implies that
∫
∂Σ u =

∫
∂Σ ux2 = 0 (see

Lemma 2 (Orthogonality)), which leads a contradiction with the previous
identity.
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Conclusion

Using our method, we have the following sufficient conditions for Σ to be
the critical catenoid.
A Condition on a component of ∂Σ

The reflection symmetries through two distinct planes.

Conditions on ∂Σ

The reflection symmetries through two distinct planes.

The reflection symmetry through a plane with additional conditions.
▶ The reflection plane Π does not meet ∂Σ.
▶ The reflection plane Π intersects ∂Σ and the two components of ∂Σ

are congruent.
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The rotoreflection symmetry by A := B ◦ R ∈ O(3), where R is the
reflection through a plane Π with R(f1) = f2, and B is a rotation
about the axis perpendicular to Π.

▶ B is an irrational rotation.
▶ B is a rotation by an angle θ := b

a · π, where a is an odd number and
they are relatively primes.
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Thank you!
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