Formal exponential maps and Atiyah class of dg manifolds

Seokbong Seol Korea Institute for Advanced Study

The 18th KIAS Geometry Winter school Jeongsun, 2023-02-10

Joint work with Mathieu Stiénon and Ping Xu

1 Infinite jet of exponential maps

2 Atiyah class of a dg manifold

3 Formal exponential maps on dg manifolds

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

1 Infinite jet of exponential maps

2 Atiyah class of a dg manifold

3 Formal exponential maps on dg manifolds

★□>
★□>
★□>
■

Exponential maps arise naturally in the contexts of linearization problems

- 1 Lie theory
- 2 smooth manifolds

PBW isomorphism in Lie theory

- $\blacksquare \mathfrak{g}$: finite dimensional Lie algebra
- $\exp: \mathfrak{g} \to G$
- exp : local diffeomorphism from nbd of 0 to nbd of 1
- Differential operators of \mathfrak{g} evaluated at $0 \in \mathfrak{g}$ is $D'(0) = S\mathfrak{g}$:

$$S\mathfrak{g} = \bigoplus_{n\geq 0} \mathfrak{g}^{\otimes n}/\{x\otimes y = y\otimes x\}$$

called the symmetric algebra of \mathfrak{g} .

• Differential operators of G evaluated at $1 \in G$ is $D'(1) = U\mathfrak{g}$:

$$U\mathfrak{g} = \bigoplus_{n\geq 0} \mathfrak{g}^{\otimes n} / \{x \otimes y - y \otimes x = [x, y]\}$$

called the universal enveloping algebra of ${\mathfrak g}.$

PBW isomorphism in Lie theory

• exp induces an isomorphism on differential operators evaluated at $0 \in \mathfrak{g}$ and $1 \in G$:

$$\mathsf{pbw} = (\mathsf{exp})_* : S\mathfrak{g} \xrightarrow{\cong} U\mathfrak{g}$$
$$X_1 \odot \cdots \odot X_n \mapsto \frac{1}{n!} \sum_{\sigma \in S_n} X_{\sigma(1)} \cdots X_{\sigma(n)}$$

Both Sg and Ug have canonical coalgebra structure.

Fact: Poincaré-Birkhoff-Witt map is an isomorphism of coalgebras.

C is coalgebra \iff its dual $A = C^*$ is an algebra

e.g. $\Delta : C \to C \otimes C$ is a comultiplication then $\mu : C^* \otimes C^* \to C^*$ is a multiplication defined by

$$\mu(f,g) = (f \otimes g) \circ \Delta : C \to C \otimes C \to \mathbb{R} \otimes \mathbb{R} \cong \mathbb{R}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Exponential map on smooth manifolds

- an affine connection ∇ on smooth manifold M
- $\exp^{\nabla} : T_M \to M \times M$ (bundle map) defined by $\exp^{\nabla}(X_m) = (m, \gamma(1))$ where γ is the smooth path in M satisfying $\dot{\gamma}(0) = X_m$ and $\nabla_{\dot{\gamma}}\dot{\gamma} = 0$. (i.e. geodesic)
 - $\Gamma(S(T_M))$ seen as space of differential operators on T_M , all derivatives in the direction of the fibers, evaluated along the zero section of T_M
 - $\mathcal{D}(M)$ seen as space of differential operators on $M \times M$, all derivatives in the direction of the fibers, evaluated along the diagonal section $M \to M \times M$

pbw[∇] := exp[∇]_{*} : Γ(S(T_M)) [≅]→ D(M) is an isomorphism of left modules over C[∞](M) called Poincaré–Birkhoff–Witt isomorphism.

pbw^{∇} as infinite jet of exp

The Taylor series of the composition

$$T_m M \xrightarrow{\exp^{\nabla}} \{m\} \times M \xrightarrow{f} \mathbb{R}$$

at the point $0_m \in T_m M$ is

$$\sum_{J\in\mathbb{N}_0^n} \frac{1}{J!} \big(\mathsf{pbw}^{\nabla}(\partial_x^J) f \big)(m) \otimes y_J \quad \in \hat{S}(T_m^{\vee}M).$$

- $(x_i)_{i \in \{1,...,n\}}$ are local coordinates on M
- (y_j)_{j∈{1,...,n}} induced local frame of T[∨]_M regarded as fiberwise linear functions on T_M

Hence pbw^{∇} is the fiberwise infinite jet of the bundle map $exp: T_M \to M \times M$ along the zero section of $T_M \to M$.

Algebraic characterization of pbw^{∇}

Theorem (Laurent-Gengoux, Stiénon, Xu, 2014)

$$\mathsf{pbw}^{\nabla}(f) = f, \quad \forall f \in C^{\infty}(M);$$

 $\mathsf{pbw}^{\nabla}(X) = X, \quad \forall X \in \mathfrak{X}(M);$
 $\mathsf{pbw}^{\nabla}(X^{n+1}) = X \cdot \mathsf{pbw}^{\nabla}(X^n) - \mathsf{pbw}^{\nabla}(\nabla_X X^n), \quad \forall n \in \mathbb{N}.$

Therefore, for all $n \in \mathbb{N}$ and $X_0, \ldots, X_n \in \mathfrak{X}(M)$,

$$\mathsf{pbw}^{\nabla}(X_0 \odot \cdots \odot X_n) = \frac{1}{n+1} \sum_{k=0}^n \left\{ X_k \cdot \mathsf{pbw}^{\nabla}(X^{\{k\}}) - \mathsf{pbw}^{\nabla}(\nabla_{X_k}(X^{\{k\}})) \right\}$$

where $X^{\{k\}} = X_0 \odot \cdots \odot X_{k-1} \odot X_{k+1} \odot \cdots \odot X_n$.

Example

- G: Lie group, X_i^L : Left invariant vector field
- Choose a connection ∇ such that $\nabla_{X_i^L} X_j^L = 0$. Then,

$$\mathsf{pbw}^{\nabla}(X_1^L \odot \cdots \odot X_n^L) = \frac{1}{n!} \sum_{\sigma \in S_n} X_{\sigma(1)}^L \cdots X_{\sigma(n)}^L$$

- (pbw[∇])⁻¹ : D(M) → Γ(S(T_M)) takes a differential operator to its complete symbol
- The algebraic characterization of pbw[∇] does NOT involve any points of *M* or any geodesic curves of *∇*.
- The map pbw[∇] is a sort of formal exponential map defined inductively.

Both $\Gamma(S(T_M))$ and $\mathcal{D}(M)$ are left coalgebras over $R := C^{\infty}(M)$.

Proposition

$pbw^{\nabla} : \Gamma(S(T_M)) \to \mathcal{D}(M)$ is an isomorphism of coalgebras over $C^{\infty}(M)$.

Note: pbw^{∇} does **NOT** preserve multiplication.

1 Infinite jet of exponential maps

2 Atiyah class of a dg manifold

3 Formal exponential maps on dg manifolds

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Atiyah class of holomorphic vector bundle

- X : complex manifold
- E : holomorphic vector bundle over X
- (smooth) connection $\nabla^{1,0}: \Gamma(E) \to \Omega^{1,0}(E)$ of type (1,0):

$$abla^{1,0}(f \cdot s) = \partial(f) \cdot s + f \cdot
abla^{1,0}(s), \quad s \in \Gamma(E), f \in C^\infty(X)$$

• Choose
$$\mathcal{R} = \nabla^{1,0}\bar{\partial} + \bar{\partial}\nabla^{1,0} : \Gamma(E) \to \Omega^{1,1}(E)$$
, then

 $\mathcal{R} \in \Omega^{1,1}(\operatorname{End}(E)).$

Definition (Atiyah, 1957)

The Atiyah class α_E of E is the cohomology class

$$lpha_{E} = [\mathcal{R}] \in H^{1}(X; \Omega^{1}_{X} \otimes \mathsf{End}(E))$$

- Atiyah class α_E is an obstruction to the existence of holomorphic connection on E.

Graded vector space

Definition

A graded vector space V is a space $V = \bigoplus_{i \in \mathbb{Z}} V_i$ where V_i consists of degree *i* vectors.

Example

Let $\Omega^{k}(M)$ be the space of k-forms. We can declare $w \in \Omega^{k}(M)$ is of degree k. Then space $\Omega^{\bullet}(M)$ of all forms on M is a graded vector space (infinite dimensional).

Degrees here have no effect. However, for example, if you consider the multiplication (i.e. graded algebra), then $\Omega^{\bullet}(M)$ is not commutative, but is graded commutative:

$$\xi \cdot \eta = (-1)^{nm} \eta \cdot \xi$$

for $\xi \in \Omega^m(M), \eta \in \Omega^n(M)$.

There is a certain (heuristic) duality between space and commutative algebras.

- X: space $\Rightarrow A = \{f : X \to \mathbb{R}\}$: algebra of functions on X
- A: commutative algebra $\Rightarrow X = \{ \text{maximal ideals in } A \}$: space

Idea:

use "algebra of smooth functions" to define a smooth manifold!

We will define graded manifold by a graded commutative algebras of special type.

Differential graded manifolds

M: smooth manifold, \mathcal{O}_M : (sheaf of) ring of smooth functions.

Definition

A Z-graded manifold \mathcal{M} with base manifold M is a sheaf \mathcal{A} of Z-graded commutative \mathcal{O}_M -algebras such that

 $\mathcal{A}(U)\cong\mathcal{O}_{\mathcal{M}}(U)\hat{\otimes}\hat{S}(V^{\vee})$

for sufficiently small open subsets $U \subset M$ and some \mathbb{Z} -graded vector space V. In other words, smooth functions on \mathcal{M} are locally formal power series in V with coefficients in \mathcal{O}_M .

 $C^{\infty}(\mathcal{M}) := \mathcal{A}(\mathcal{M})$

Definition

A dg manifold is a \mathbb{Z} -graded manifold \mathcal{M} endowed with a (homological) vector field $Q \in \mathfrak{X}(\mathcal{M}) = \text{Der}_{\mathbb{K}}(\mathcal{C}^{\infty}(\mathcal{M}))$ of degree +1 such that $[Q, Q] = 2 \ Q \circ Q = 0$.

examples

Example

Given a Lie algebra \mathfrak{g} , $(\mathfrak{g}[1], Q = d_{CE})$ is a dg manifold.

$$\mathcal{C}^\infty(\mathfrak{g}[1]) = \Lambda^ullet \mathfrak{g}^ee$$

• $Q = d_{\mathsf{CE}} : \Lambda^{\bullet} \mathfrak{g}^{\vee} \to \Lambda^{\bullet+1} \mathfrak{g}^{\vee}$ — Chevalley–Eilenberg differential

Example

Given a smooth manifold M, $(T_M[1], d_{dR})$ is a dg manifold; $C^{\infty}(T_M[1]) = \Omega^{\bullet}(M)$ — Space of differential forms on M $Q = d_{dR} : \Omega^{\bullet}(M) \to \Omega^{\bullet+1}(M)$ — de Rham differential

Example

Given a complex manifold X, $(T_X^{0,1}[1], \overline{\partial})$ is a dg manifold;

- $C^{\infty}(T_X^{0,1}[1]) = \Omega^{0,\bullet}(X)$ Space of anti-holomorphic forms
- $Q = \bar{\partial} : \Omega^{0,\bullet}(X) \to \Omega^{0,\bullet+1}(X)$ Dolbeault operator

Example

Given a regular foliation F of M and the associated (regular) integrable distribution $T_F \subset T_M$, $(T_F[1], d_{dR})$ is a dg manifold;

- $C^{\infty}(T_F[1]) = \Omega_F^{\bullet}$ Space of leafwise differential forms
- $Q = d_{dR} : \Omega_F^{\bullet} \to \Omega_F^{\bullet+1}$ de Rham differential

Example

Given a vector bundle $E \to M$ and smooth section s, $(E[-1], i_s)$ is a dg manifold, called derived intersection of s with the zero section.

$$C^{\infty}(E[-1]) = \Gamma(\Lambda^{-\bullet}E^{\vee})$$

• $Q = i_s : \Gamma(\Lambda^{-\bullet}E^{\vee}) \to \Gamma(\Lambda^{-\bullet+1}E^{\vee})$ — interior product with s

For instance, if $f \in C^{\infty}(M)$, then $(T_M^{\vee}[-1], i_{df})$ is a dg-manifold called derived critical locus of f.

Connection on a graded manifold

Definition

An affine connection on a graded manifold $\mathcal M$ is a $\Bbbk\text{-linear}$ map

$$abla:\mathfrak{X}(\mathcal{M}) imes\mathfrak{X}(\mathcal{M}) o\mathfrak{X}(\mathcal{M})$$

of degree 0 satisfying

$$\nabla_{fX} Y = f \nabla_X Y,$$

$$\nabla_X (fY) = X(f) Y + (-1)^{|X||f|} f \nabla_X Y,$$

for all $f \in C^{\infty}(\mathcal{M})$ and all homogeneous $X, Y \in \mathfrak{X}(\mathcal{M})$.

• ∇ is torsion-free if

$$\nabla_X Y - (-1)^{|X||Y|} \nabla_Y X = [X, Y].$$

Atiyah class of a differential graded manifold

- Choose a torsion-free connection ∇ on a dg manifold (\mathcal{M}, Q) .
- Define a degree +1 section $\mathsf{At}^{\nabla} \in \Gamma(\mathsf{Hom}(S^2(\mathcal{T}_{\mathcal{M}}), \mathcal{T}_{\mathcal{M}}))$

$$\operatorname{At}^{\nabla}(X,Y) = L_Q(\nabla_X Y) - \nabla_{L_Q X} Y - (-1)^{|X|} \nabla_X (L_Q Y)$$

for homogeneous vector fields $X, Y \in \mathfrak{X}(\mathcal{M})$.

Note: At^{∇} := $L_Q \nabla$ but $\nabla \notin \Gamma(\text{Hom}(S^2(T_M), T_M))$

Lemma

•
$$L_Q \circ L_Q = 0$$
 and $L_Q \operatorname{At}^{\nabla} = 0$
• $[\operatorname{At}^{\nabla}] \in H^1(\Gamma(\operatorname{Hom}(S^2(T_{\mathcal{M}}), T_{\mathcal{M}})), L_Q)$

is independent of the connection ∇ .

Definition

At[∇] ∈ Γ(Hom(S²(T_M), T_M)) is an Atiyah cocycle of ∇.
 The Atiyah class of the dg manifold (M, Q)

$$\alpha_{\mathcal{M}} := \left[\mathsf{At}^{\nabla}\right] \in H^1\big(\Gamma(\mathsf{Hom}(S^2(\mathcal{T}_{\mathcal{M}}), \mathcal{T}_{\mathcal{M}})), L_Q\big)$$

is the obstruction to existence of a connection on \mathcal{M} compatible with the homological vector field Q.

A connection ∇ on a dg manifold (\mathcal{M}, Q) is said to be *compatible* with the homological vector field if

$$L_Q(\nabla_X Y) = \nabla_{L_Q X} Y + (-1)^{|X|} \nabla_X (L_Q Y) \quad \text{for all } X, Y \in \mathfrak{X}(\mathcal{M}).$$

Example

Let \mathfrak{g} be a finite-dimensional Lie algebra

- $(\mathcal{M}, Q) = (\mathfrak{g}[1], d_{\mathsf{CE}})$ is the corresponding dg manifold
- $T_{\mathcal{M}} \cong \mathfrak{g}[1] imes \mathfrak{g}[1]$ implies

 $H^{1}(\Gamma(S^{2}(\mathcal{T}^{\vee}_{\mathcal{M}})\otimes\mathcal{T}_{\mathcal{M}}),Q)\cong H^{0}_{\mathsf{CE}}(\mathfrak{g};\Lambda^{2}\mathfrak{g}^{\vee}\otimes\mathfrak{g})\cong (\Lambda^{2}\mathfrak{g}^{\vee}\otimes\mathfrak{g})^{\mathfrak{g}}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

• $\alpha_{\mathfrak{g[1]}} \leftrightarrow$ the Lie bracket of \mathfrak{g}

Example

Let X be a complex manifold.

- $(\mathcal{M}, Q) = (\mathcal{T}_{X}^{0,1}[1], \overline{\partial})$ is a corresponding dg manifold;
- There exists a "good" quasi-isomorphism

$$(\Gamma(T_{\mathcal{M}}), L_Q) \xrightarrow{q.i.} (\Omega^{0,\bullet}(T_X^{1,0}), \bar{\partial})$$

There is an isomorphism

 $\begin{aligned} H^{1}(\Gamma(\operatorname{Hom}(S^{2}(\mathcal{T}_{\mathcal{M}}),\mathcal{T}_{\mathcal{M}})),L_{Q}) \\ &\cong H^{1}(\Omega^{0,\bullet}(\operatorname{Hom}(S^{2}(\mathcal{T}_{X}^{1,0}),\mathcal{T}_{X}^{1,0}),),\bar{\partial}) \\ &\subset H^{1}(X,\Omega_{X}^{1}\otimes\operatorname{End}(\mathcal{T}_{X})) \end{aligned}$

• $\alpha_{\mathcal{T}^{0,1}_{X}[1]} \leftrightarrow$ the classical Atiyah class of X

$T_F \leftrightarrow T_X^{0,1}, \quad \mathcal{N}_F \leftrightarrow T_X^{1,0}, \quad T_M \leftrightarrow T_X^{\mathbb{C}}$

Example

Let T_F be a regular integrable distribution of T_M and $\mathcal{N}_F := T_M/T_F$ be its normal bundle.

- $(\mathcal{M}, Q) = (T_F[1], d_{dR})$ is a corresponding dg manifold;
- There exists a "good" quasi-isomorphism

$$(\Gamma(T_{\mathcal{M}}), L_Q) \xrightarrow{q.i.} (\Omega_F^{\bullet}(\mathcal{N}_F), d_{dR})$$

There is an isomorphism

 $H^{1}(\Gamma(\operatorname{Hom}(S^{2}(T_{\mathcal{M}}), T_{\mathcal{M}})), L_{Q})$ $\cong H^{1}(\Omega_{F}^{\bullet}(\operatorname{Hom}(S^{2}(\mathcal{N}_{F}), \mathcal{N}_{F})), d_{dR})$

• $\alpha_{T_F[1]} \leftrightarrow$ the Atiyah-Molino class of the regular foliation F

1 Infinite jet of exponential maps

2 Atiyah class of a dg manifold

3 Formal exponential maps on dg manifolds

Exponential map on graded manifolds

$\mathcal{M}: \text{ graded manifold}$

Theorem (Liao, Stiénon, 2015)

1 The formal exponential map associated to an affine connection ∇ on \mathcal{M} is the morphism of left $C^{\infty}(\mathcal{M})$ -modules

$$\mathsf{pbw}^
abla : \mathsf{\Gamma}(S(\mathcal{T}_\mathcal{M})) o \mathcal{D}(\mathcal{M})$$

inductively defined by an algebraic formula.

2 Moreover,

$$\mathsf{pbw}^
abla : \mathsf{\Gamma}(S(\mathcal{T}_\mathcal{M})) o \mathcal{D}(\mathcal{M})$$

is an isomorphism of graded coalgebras over $C^{\infty}(\mathcal{M})$.

$$\mathsf{pbw}^{\nabla}(f) = f, \qquad \mathsf{pbw}^{\nabla}(X) = X$$
$$\mathsf{pbw}^{\nabla}(X_0 \odot \cdots \odot X_n) = \frac{1}{n+1} \sum_{k=0}^n \pm \left\{ X_k \cdot \mathsf{pbw}^{\nabla}(X^{\{k\}}) - \mathsf{pbw}^{\nabla}(\nabla_{X_k}(X^{\{k\}})) \right\}$$

Given a dg manifold (\mathcal{M}, Q) , there exists two differential graded coalgebras:

1
$$(\Gamma(S(T_{\mathcal{M}})), L_Q)$$

2 $(\mathcal{D}(\mathcal{M}), \mathcal{L}_Q := [Q, -])$

Question

When is

$$\mathsf{pbw}^
abla : (\Gamma(\mathcal{S}(\mathcal{T}_\mathcal{M})), L_Q) o (\mathcal{D}(\mathcal{M}), \mathcal{L}_Q)$$

an isomorphism of differential graded coalgebras?

- If pbw^{∇} is an isomorphism of differential graded coalgebras, then we can consider it as "a formal exponential map" of (\mathcal{M}, Q) .

Theorem (S, Stiénon, Xu, 2022)

The Atiyah class $\alpha_{\mathcal{M}}$ vanishes if and only if there exists a torsion-free connection ∇ such that

$$\mathsf{pbw}^{\nabla} : \Gamma(S(T_{\mathcal{M}})) \to \mathcal{D}(\mathcal{M})$$

is an isomorphism of differential graded coalgebras over $C^{\infty}(\mathcal{M})$.

In general, the failure of pbw^∇ to preserve dg structure is measured by

$$(\mathsf{pbw}^{\nabla})^{-1} \circ \mathcal{L}_Q \circ \mathsf{pbw}^{\nabla} - L_Q = \sum_{k=0}^{\infty} R_k$$

where $R_k \in \Gamma(\operatorname{Hom}(S^k(T_M), T_M))$ are sections of degree +1. $R_0 = R_1 = 0, \quad R_2 = -\operatorname{At}^{\nabla}$

Kapranov $L_{\infty}[1]$ algebra on dg manifolds

Theorem (S, Stiénon, Xu, 2022)

The $R_k \in \Gamma(\text{Hom}(S^k(T_M), T_M[1]))$ for $k \ge 2$ are completely determined by Atiyah cocycle At^{∇} , the curvature R^{∇} , and their exterior derivatives.

In particular, if the curvature vanishes (i.e. $R^{\nabla} = 0$), then

$$R_2 = -\operatorname{At}^{\nabla}, \quad R_{n+1} = \frac{1}{n+1}d^{\nabla}R_n \quad \text{for } n \ge 2$$

Why do we care about R_k ?

Theorem (S, Stiénon, Xu, 2022)

The $R_k \in \text{Hom}(S^k T_M, T_M[1])$ for k = 2, 3, ..., together with L_Q induce an $L_{\infty}[1]$ algebra on the space of vector fields $\mathfrak{X}(\mathcal{M})$.

Example

- **g** : finite-dimensional Lie algebra
- $(\mathcal{M}, Q) = (\mathfrak{g}[1], d_{\mathsf{CE}})$ is a dg manifold
- $\mathfrak{X}(\mathcal{M})[-1] = \Lambda \mathfrak{g}^{\vee} \otimes \mathfrak{g}$ is an L_{∞} algebra equipped with

$$L_Q = d_{CE}^{\mathfrak{g}}, \quad R_2 = 1 \otimes [\ ,\]_{\mathfrak{g}}, \quad R_{\geqslant 3} = 0$$

– Chevalley-Eilenberg cohomology $H_{CE}(\mathfrak{g},\mathfrak{g})$ is a Lie algebra.

Here, ${\mathfrak g}$ action on ${\mathfrak g}$ is the adjoint action

Theorem (Kapranov, 1999)

Let X be a Kähler manifold. The Dolbeault complex $\Omega^{0,\bullet}(T_X^{1,0})$ admits an $L_{\infty}[1]$ algebra structure $(\lambda_k)_{k\geq 1}$ where λ_k is the wedge product

$$\Omega^{0,j_1}(\mathcal{T}^{1,0}_X)\odot\cdots\odot\Omega^{0,j_k}(\mathcal{T}^{1,0}_X) o\Omega^{0,j_1+\cdots+j_k}(S^k(\mathcal{T}^{1,0}_X))$$

composed with

$${\mathcal R}_k: \Omega^{0,ullet}(S^k(\mathcal{T}^{1,0}_X)) o \Omega^{0,ullet+1}(\mathcal{T}^{1,0}_X)$$

where \odot is graded symmetric tensor (w.r.t to j_1, j_2, \cdots) and $R_1 = \bar{\partial},$ $R_2 = \mathcal{R} = \mathcal{R}^{\nabla^{1,0}}$ is an Atiyah cocycle, $R_{n+1} = d^{\nabla^{1,0}}(R_n)$ for $n \ge 2$

Theorem (S. Stiénon, Xu, 2022)

- X: Kähler manifold
- $(\mathcal{M}, Q) = (\mathcal{T}_X^{0,1}[1], \bar{\partial})$ is a dg manifold
- $\mathfrak{X}(\mathcal{M}) = \mathfrak{X}(\mathcal{T}^{0,1}_{X}[1])$ admits an $L_{\infty}[1]$ algebra structure
- There is an $L_{\infty}[1]$ quasi-isomorphism

$$(\mathfrak{X}(\mathcal{T}_{X}^{0,1}[1]), \{\mathcal{R}_{i}\}) \xrightarrow{L_{\infty}[1] q.i.} (\Omega^{0,\bullet}(\mathcal{T}_{X}^{1,0}), \{\lambda_{i}\})$$

Moreover, our $L_{\infty}[1]$ algebra structure on $\mathfrak{X}(\mathcal{T}_{X}^{0,1}[1])$ can be transferred to Kapranov's $L_{\infty}[1]$ algebra structure on $\Omega^{0,\bullet}(\mathcal{T}_{X}^{1,0})$.

Thank you!