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Introduction

First variation formula
Let F : Σ× (−ϵ, ϵ) → M be a variation of Σ with compact
support.

d

dt t=0
Vol(F (Σ, t)) =

∫
Σ
⟨Ft ,H⟩dvolΣ,

where Ft is the variational vector field and H is the mean
curvature.

Definition 1

A submanifold Σ is said to be a minimal submanifold if its mean
curvature vanishes, H = 0. In other words, Σ is a critical point of
the volume functional. Moreover, if Σ is (n − 1)-dimensional, then
Σ is called a minimal hypersurface.



Introduction 3-manifolds n-mainfolds Weighted manifolds References

Second variation formula

d2

dt2 t=0
Vol(F (Σ, t)) =

∫
Σ
|∇Σφ|2

−φ2
(
RicM(N,N) + |B|2

)
dvolΣ,

where N is the normal vector on Σ, B is the second
fundamental form of Σ, and φ ∈ C∞(Σ).

Definition 2

We say that Σ is stable if

d2

dt2 t=0
Vol(F (Σ, t)) ≥ 0.
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3-manifolds

(Schoen and Yau (1979)) Let M be a complete 3-dimensional
Riemannian manifold with RM > 0. If M contains a closed,
two-sided, immersed, stable minimal hypersurface Σ, then the
hypersurface must have genus 0.

Moreover, any
area-minimizing surface is homeomorphic to either S2 or RP2.

(Fischer-Colbrie and Schoen (1980)) If RM ≥ 0, then the
genus of Σ must be zero or one. Moreover, if the genus is
one, then
(i) Σ is totally geodesic,
(ii) the normal RicM vanish all along Σ.
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(Shen and Zhu (1997)) If RM ≥ R0, then the area of any
closed, two-sided, stable minimal surface Σ with genus β ̸= 1,
satisfies{

A(Σ) ≤ 4π if R0 = 2 and β = 0

A(Σ) ≥ 4π(β − 1) if R0 = −2 and β ≥ 2.

(Bray, Brendle, Neves (2010)) If{
A(Σ) = 4π if R0 = 2 and β = 0

A(Σ) = 4π(β − 1) if R0 = −2 and β ≥ 2,

then
(i) Σ is totally geodesic,
(ii) the normal RicM vanishes along Σ.
Moreover, if Σ is area-minimizng and A(Σ) = 4π, then M is
isometric to S2 × (−ϵ, ϵ) in a neighborhood of Σ.
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Theorem 1 (Micallef and Moraru (2015))

Let M be a complete 3-dimensional Riemannian manifold with
RM ≥ R0. Assume that M contains a closed, two-sided,
embedded, area-minimizing hypersurface Σ.
(1) Suppose that R0 = 2 and A(Σ) = 4π. Then Σ has β = 0 and
it has a neighborhood which is isometric to the product g1 + dt2

on S2 × (−ϵ, ϵ).
(2) Suppose that R0 = 0 and Σ has β = 1. Then Σ has a
neighborhood which is isometric to the product g0 + dt2 on
T2 × (−ϵ, ϵ).
(3) Suppose that R0 = −2 and that Σ has β ≥ 2 and
A(Σ) = 4π(β − 1). Then Σ has a neighborhood which is isometric
to the product g−1 + dt2 on Σ× (−ϵ, ϵ).
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Proof of Theorem 1. By second variation of area for minimal
hypersurface, we have

0 ≤
∫
Σ
|∇Σφ|2 − φ2

(
RicM(N,N) + |B|2

)
dvolΣ,

where ∇Σ and dvolΣ are the gradient and the area element of Σ.

Choosing φ = 1 and using Gauss equation, we obtain

0 ≤
∫
Σ
−RM

2
+ KΣ − |B|2

2
dvolΣ

≤ −R0

2
A(Σ) +

∫
Σ
KΣdvolΣ.

By Gauss-Bonnet theorem, we get

R0A(Σ) ≤ 4πχ(Σ) = 8π(1− β),

where χ(Σ) is the Euler characteristic of Σ.
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If R0A(Σ) = 8π(1− β), then every inequality above is in fact an
equality. So we have Ric(N,N) = 0 and B = 0 on Σ.

Then we can use Jacobi equation L = ∆Σ + RicM + |B|2 to
construct a constant mean curvature foliation in a neighborhood of
Σ.
(i) R0 = 2 and A(Σ) = 4π,
(ii) R0 = 0 and β = 1,
(iii) R0 = −2, β ≥ 2 and A(Σ) = 4π(β − 1).
Using the Jacobi equation,We can show that a constant mean
curvature foliation is an area-minimizing surface in all cases.
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n-manifolds

Einstein-Hilbert functional

Y (g) :=

∫
M RMdvol

Vol(M)(n−2)/n
.

Writting g̃ = u
4

n−2 g for a positive function u on M, then

Yg (u) =

∫
M

(
4(n−1)
n−2 |∇u|2 + RMu2

)
dvol(∫

M u2n/(n−2)dvol
)(n−2)/n

Yamabe invariant

Qg (M) := inf
u>0

Yg (u)

σ-constant (or Yamabe constant)

σ(M) := sup
[g ]∈C

Qg (M),

where C is the space of conformal classes on M.
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Remark 1

When n = 3 and R0 = −2, then σ(Σ) = 4πχ(Σ) = 8π(1− β),
where χ(Σ) and β are the Euler characteristic and genus of Σ. i.e.,
in some sense, the σ-constant can be view as a generalisation of
the Euler characteristic to higher dimensions.

Theorem 2 (Moraru (2016))

Let M be an n-dimensional Riemannian manifold (n ≥ 4) with
RM ≥ R0. Assume that Σ be a closed, two-sided, embedded,
area-minimizing hypersurface.

(1) If R0 < 0 and σ(Σ) < 0, then R0A(Σ)
2

n−1 ≤ σ(Σ). Moreover, if
equality holds, then M is isometric to Σ× (−ϵ, ϵ) in a
neighborhood of Σ.
(2) If R0 = 0 and σ(Σ) ≤ 0, then σ(Σ) = 0 and M is isometric to
Σ× (−ϵ, ϵ) in a neighborhood of Σ.
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Proof of Theorem 2. By second variation of area for minimal
hypersurface, we have

0 ≤
∫
Σ
|∇Σφ|2 − φ2

(
RicM(N,N) + |B|2

)
dvolΣ,

where ∇Σ and dvolΣ are the gradient and the area element of Σ.

From the Gauss equation, we obtain

0 ≤
∫
Σ
2|∇Σφ|2 + (RΣ − RM − |B|2)φ2dvolΣ

≤
∫
Σ

(
4(n − 2)

n − 3
|∇Σφ|2 + RΣφ2

)
dvolΣ −

∫
Σ
RMφ2dvolΣ,

where in the last inequality we have used that 2 < 4(n−2)
n−3 for all

n ≥ 4. By the assumption RM ≥ R0 and hence, by Holder
inequality, the above inequality gives
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0 ≤
∫
Σ

(
4(n − 2)

n − 3
|∇Σφ|2 + RΣφ2

)
dvolΣ

−R0A(Σ)
2

n−1

(∫
Σ
φ

2(n−1)
n−3 dvolΣ

) n−3
n−1

.

Dividing the last inequality by

(∫
Σ φ

2(n−1)
n−3 dvolΣ

) n−3
n−1

> 0, we get

R0A(Σ)
2

n−1 ≤

∫
Σ

(
4(n−2)
n−3 |∇Σφ|2 + RΣφ2

)
dvolΣ(∫

Σ φ
2(n−1)
n−3 dvolΣ

) n−3
n−1

.

Therefore,

R0A(Σ)
2

n−1 ≤ σ(Σ).
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Remark 2

Let Σ := Sn−2 × S1(ℓ), where Sn−2 is the (n − 2)-dimensional unit
sphere and S1(ℓ) is the circle of radius ℓ. Let M := Σ× S1 with
the product metric. Then RM = (n − 2)(n − 3) := R+

0 > 0 and
σ(Σ) = σ(Sn−1). That is, σ(Σ) is independent of both R+

0 and ℓ.
Therefore, the area of Σ is arbitrarily large when ℓ increases.

(Mendes (2019)) Let M5 be a Riemannian manifold with
RM ≥ R0 > 0 and RicM ≥ 0. If Σ4 is a two-sided, closed,
embedded, area-minimizing hypersurface, then

A(Σ)

(
R0

12

)2

≤ A(S4) +
1

12

∫
Σ
|R̊ic |2dvolΣ,

where R̊ic is the traceless Ricci curvature. If equality holds,
then M is isometric to S4 × (−ϵ, ϵ) in a neighborhood of Σ.
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▶ Gauss-Bonnet-Chern formula: When n = 5

8πχ(Σ) =

∫
Σ

(
1

4
|WΣ|2 + 1

24
|RΣ|2 − 1

2
| ˚RicΣ|2

)
dvolΣ,

where WΣ and R̊ic are the Weyl and the traceless Ricci tensor
of Σ.

• (Deng (2021)) Let M be an n-dimensional Riemannian
manifold (n ≥ 4) with RM ≥ R0 > 0 and RicM ≥ 0. If Σn−1

is a two-sided, closed, embedded, area-minimizing
hypersurface with RicΣ = RΣ

n gΣ, then

A(Σ)
2
nR0 ≤ n(n − 1)A(Sn−1)

2
n .

If the equality holds, then M is isometric to Sn−1 × (−ϵ, ϵ) in
a neighborhood of Σ.

▶ The author assumed that the Σ is Einstein.
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Weighted manifolds

Weighted manifolds

(M, g , e−f dvg ), where f ∈ C∞(M).

Example of a weighted manifolds (Gaussian soliton)

(Rn, g0, e
− 1

4
|x |2dvg0),

where g0 is the standard Euclidean metric on Rn.
Bakry-Emery Ricci tensor{

Ricmf := Ric +Hessf − 1
mdf ⊗ df ,

Ricf := Ric +Hessf .

Weighted scalar curvature{
Rm
f := RM + 2∆f − m+1

m |∇f |2 ,
Rf := RM + 2∆f − |∇f |2.
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Rf := RM + 2∆f − |∇f |2.
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Weighted mean curvature

Hf := H − ⟨∇f ,N⟩.

Weighted Laplacian

∆f := ∆− ⟨∇f ,∇⟩.

Weighted area

Af (Σ) :=

∫
Σ
e−f dvol .

First variation for weighted area

d

ds

∣∣∣
s=0

Af (Σs) =

∫
Σ
φHf e

−f dvol .
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Second variation for weighted area

d2

ds2

∣∣∣
s=0

Af (Σs) =

∫
Σ
|∇Σφ|2

−φ2
(
Ricf (N,N) + |B|2

)
e−f dvol

Weighted stable minimal hypersurface (or f -stable minimal
hypersurface)

d2

ds2

∣∣∣
s=0

Af (Σs) ≥ 0.
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Theorem 3 (M. Fan (2008))

Let M be a complete 3-dimensional weighted Riemannian manifold
with Rf ≥ C0 for some positive constant C0. If M contains closed,
two-sided, immersed, f -stable minimal hypersurfaces Σ, then the
genus of Σ is zero.
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Theorem 4 (Castro and Rosales (2014))

Let M be a complete 3-dimensional weighted Riemannian manifold
with Rf ≥ C0e

−f . Consider a closed, two-sided, embedded, f -area
minimizing hypersurface Σ.
(1) If C0 < 0 and Af (Σ) =

8π(1−β)
C0

for β ≥ 2, then there is a
neighborhood of Σ in M which is isometric to a Riemannian
product Σ× (−ϵ, ϵ).
(2) If C0 = 0 and β = 1, then Σ is a flat torus and there is a
neighborhood of Σ in M which is isometric to a Riemannian
product Σ× (−ϵ, ϵ).
(3) If C0 > 0 and Af (Σ) =

8π
C0
, then β = 0 and there is a

neighborhood of Σ in M isometric to a Riemannian product
Σ× (−ϵ, ϵ).

Remark 3

If we replace Rf to Rm
f , then we can get similar results.
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Theorem 5 (Lee, Park, and Pyo (2022))

Let M be a complete n-dimensional weighted Riemannian manifold

(n ≥ 4) with Rm
f ≥ C0e

− 2f
n−1 for m ∈ (0, 1

n−3 ]. Assume that M
contains an (n − 1)-dimensional, closed, two-sided, embedded,
f -area minimizing hypersurface Σ.
(1) If C0 < 0 and σ(Σ) < 0, then we have

C0Af (Σ)
2

n−1 ≤ σ(Σ).

Moreover, if equality holds, then M splits isometrically as a
product in a neighborhood of Σ.
(2) If C0 = 0 and σ(Σ) ≤ 0, then σ(Σ) = 0 and M splits
isometrically as a product in a neighborhood of Σ.
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Theorem 6 (Lee, Park, and Pyo (2022))

Let M be a complete n-dimensional weighted Riemannian manifold
(n ≥ 4). If Rm

f ≥ C+
0 for some positive constant C+

0 , then there is
no (n − 1)-dimensional, closed, two-sided, immersed, f -stable
hypersurface Σ with σ(Σ) ≤ 0.

Remark 4

If we change Rm
f to Rf , then we can get same result.
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Thank you!



Introduction 3-manifolds n-mainfolds Weighted manifolds References

-References
[1] H. Bray, S. Brendle, and A. Neves, Rigidity of area-minimizing
two-spheres in three-manifolds, Commun. Anal. Geom., 30 (2020),
3542-3562.
[2] K. Castro and C. Rosales, Free boundary stable hypersurfaces
in manifolds with densityy and rigidity results, J. Geom. Phys., 79
(2014), 14-28.
[3] S.-Y. A. Chang, M. J. Gursky, and P. Yang, Conformal
invariants associated to a measure, Proc. Natl. Acad. Sci., 103
(2006), 2535-2540.
[4] H. Deng, A Bray-Brendle-Neves type inequality for a
Riemannian manifold, Acta Math. Sci., 41 (2021), 487-492.
[5]E. M. Fan, Topology of three-manifolds with positive p-scalar
curvature, Proc. Amer. Math. Soc., 136 (2008), 3255-3261.
[6] D. Fisher-Colbire and R. Schoen, The structure of complete
stable minimal surfaces in 3-manifolds of nonnegative scalar
curvature, Commun. Pure Appl. Math., 33 (1980), 199-211.



Introduction 3-manifolds n-mainfolds Weighted manifolds References

[7] S. Lee, S. Park, and J. Pyo, Rigidity results of weighted
area-minimizing hypersurfaces, Preprint.
[8] A. Mendes, Rigidity of volume-minimizing hypersurfaces in
Riemannian 5-manifolds, Math. Proc. Camb. Philos. Soc., 167
(2019), 345-353.
[9] M. Micallef and V. Moraru, Splitting of 3-manifolds and rigidity
of area-minimizing surfaces, Proc. Amer. Math. Soc., 143 (2015),
2865-2872.
[10] V. Moraru, On area comparison and rigidity involving the
scalar curvature, Ph. D. Thesis, University of Warwick (2013),
[11] V. Moraru, On area comparison and rigidity involving the
scalar curvature, J. Geom. Anal., 26 (2016), 294-312.



Introduction 3-manifolds n-mainfolds Weighted manifolds References

[12] I. Nunes, Rigidity of area-minimizing hyperbolic surfaces in
three-manifolds, J. Geom. Anal., 23 (2013), 1290-1302.
[13] R. Schoen, Conformal deformation of a Riemannian metric to
constant scalar curvature, J. Differ. Geom., 20 (1984), 479-495.
[14] R. Schoen, Variational theory for the total scalar curvature
functional for Riemannian metrics and related topics, vol. Topics in
calculus of variations (Montecatini Terme, 1987), edited by M.
Giaquinta, Springer Verlag, 1989.
[15] R. Schoen and S. T. Yau, Existence of incompressible minimal
surfaces and the topology of three dimensional manifolds with
non-negative scalar curvature, Ann. Math., 110 (1979), 127-142.
[16] Y. Shen and S. Zhu, Rigidity of stable minimal hypersurfaces,
Math. Ann., 209 (1997), 107-116.


	Introduction
	3-manifolds
	n-mainfolds
	Weighted manifolds
	References

