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Introduction

@ First variation formula
Let F: X X (—€,€) — M be a variation of ¥ with compact
support.

d VoI(F(Z,t)):/(Ft,H>dvo/>:7
dt =0 b
where F; is the variational vector field and H is the mean

curvature.

Definition 1

A submanifold X is said to be a minimal submanifold if its mean
curvature vanishes, H = 0. In other words, ¥ is a critical point of
the volume functional. Moreover, if X is (n — 1)-dimensional, then
> is called a minimal hypersurface.
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@ Second variation formula

d2
—  Vol(F(Z,t) = VEp|?
e VoIFE ) = [ 7%

2 (RicM(/v, N) + |B|2) dvols |
where N is the normal vector on ¥, B is the second
fundamental form of ¥, and ¢ € C*(X).

Definition 2

We say that ¥ is stable if

2

—  VWoI(F(X,t)) > 0.
o5, VOl(F(E,6)) > 0




3-manifolds
©0000

3-manifolds

@ (Schoen and Yau (1979)) Let M be a complete 3-dimensional
Riemannian manifold with RM > 0. If M contains a closed,
two-sided, immersed, stable minimal hypersurface ¥, then the
hypersurface must have genus 0.
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@ (Schoen and Yau (1979)) Let M be a complete 3-dimensional
Riemannian manifold with RM > 0. If M contains a closed,
two-sided, immersed, stable minimal hypersurface ¥, then the

hypersurface must have genus 0. Moreover, any
area-minimizing surface is homeomorphic to either S? or RP?.
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3-manifolds

@ (Schoen and Yau (1979)) Let M be a complete 3-dimensional
Riemannian manifold with RM > 0. If M contains a closed,
two-sided, immersed, stable minimal hypersurface ¥, then the
hypersurface must have genus 0. Moreover, any
area-minimizing surface is homeomorphic to either S? or RP?.

o (Fischer-Colbrie and Schoen (1980)) If RM > 0, then the
genus of ¥ must be zero or one.
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3-manifolds

@ (Schoen and Yau (1979)) Let M be a complete 3-dimensional
Riemannian manifold with RM > 0. If M contains a closed,
two-sided, immersed, stable minimal hypersurface ¥, then the
hypersurface must have genus 0. Moreover, any
area-minimizing surface is homeomorphic to either S? or RP?.

o (Fischer-Colbrie and Schoen (1980)) If RM > 0, then the
genus of ¥ must be zero or one. Moreover, if the genus is
one, then
(i) X is totally geodesic,

(i) the normal Ric™ vanish all along .
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o (Shen and Zhu (1997)) If RM > Ry, then the area of any
closed, two-sided, stable minimal surface ¥ with genus 8 # 1,
satisfies

A(X) < 4r if Roh=2 and [B=0
AX)>4n(8—1) if Ry=-2 and [ >2.
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o (Shen and Zhu (1997)) If RM > Ry, then the area of any
closed, two-sided, stable minimal surface ¥ with genus 8 # 1,

satisfies
AX) <4n if Rp=2 and =0
AX)>4rn(f—-1) if Ry=-2 and [>2.

o (Bray, Brendle, Neves (2010)) If

AX) = 4r if Rh=2 and [B=0
AX)=4n(8—-1) if Ry=-2 and [ >2,
then

(i) X is totally geodesic,
(ii) the normal Ric™ vanishes along X.
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o (Shen and Zhu (1997)) If RM > Ry, then the area of any
closed, two-sided, stable minimal surface ¥ with genus 8 # 1,

satisfies
AX) <4n if Rp=2 and =0
AX)>4rn(f—-1) if Ry=-2 and [>2.

o (Bray, Brendle, Neves (2010)) If

A(X) =4n if Rh=2 and =0
AX)=4n(8—-1) if Ry=-2 and [ >2,
then
(i) X is totally geodesic,
(ii) the normal Ric™ vanishes along X.
Moreover, if ¥ is area-minimizng and A(X) = 4, then M is
isometric to S? x (—¢, €) in a neighborhood of ¥.
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Theorem 1 (Micallef and Moraru (2015))

Let M be a complete 3-dimensional Riemannian manifold with
RM > Ry. Assume that M contains a closed, two-sided,
embedded, area-minimizing hypersurface .

(1) Suppose that Ry = 2 and A(X) = 4x. Then X has 3 =0 and
it has a neighborhood which is isometric to the product g; + dt?
on S% x (—¢,¢).

(2) Suppose that Ry =0 and X has 8 =1. Then X has a
neighborhood which is isometric to the product gy + dt? on

T2 x (—¢, ¢).

(3) Suppose that Ry = —2 and that X has § > 2 and

A(X) = 4n(8 —1). Then X has a neighborhood which is isometric
to the product g_1 + dt? on ¥ x (—¢,¢€).
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Proof of Theorem 1. By second variation of area for minimal
hypersurface, we have

0< / |VEp)? — 2 (RicM(N, N) + |B\2) dvols
>

where V> and dvols are the gradient and the area element of ¥.
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Proof of Theorem 1. By second variation of area for minimal
hypersurface, we have

0< / |VEp)? — 2 (RicM(N, N) + |B\2) dvols
>

where V> and dvols are the gradient and the area element of ¥.
Choosing ¢ = 1 and using Gauss equation, we obtain

RM ‘B|2
< KT — —dvol
0 _/): - + 5 voly
~JA®) + | K*dvoly.
pu

IN
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Proof of Theorem 1. By second variation of area for minimal
hypersurface, we have

0< / |VEp)? — 2 (RicM(N, N) + |B\2) dvols
>

where V> and dvols are the gradient and the area element of ¥.
Choosing ¢ = 1 and using Gauss equation, we obtain

RM ‘B|2
< K* — =L dvol
0 = /): 2" 2 O
——A(Z) + K*=dvols.
¥

IN

By Gauss-Bonnet theorem, we get
RoA(Y) < 4mx(X) = 8n(1 - ),

where x(X) is the Euler characteristic of X.
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If RYA(X) = 87 (1 — f3), then every inequality above is in fact an
equality. So we have Ric(N,N) =0and B=0on X.
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If RYA(X) = 87 (1 — f3), then every inequality above is in fact an
equality. So we have Ric(N,N) =0and B=0on X.

Then we can use Jacobi equation L = Ay + Ric + |BJ? to
construct a constant mean curvature foliation in a neighborhood of

Y.
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If RYA(X) = 87 (1 — f3), then every inequality above is in fact an
equality. So we have Ric(N,N) =0and B=0on X.

Then we can use Jacobi equation L = Ay + Ric + |BJ? to
construct a constant mean curvature foliation in a neighborhood of
3.

(i) Ro =2 and A(X) = 4,

(i) Rh=0and =1,

(i) Ro=—2, 8>2and A(X) = 4n (B — 1).

Using the Jacobi equation,We can show that a constant mean
curvature foliation is an area-minimizing surface in all cases.
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n-manifolds

@ Einstein-Hilbert functional

Y(g) =

4

@ Writting g = ur—2g for a positive function u on M, then
Iy ( 1|7 uf2 + RMu2> dvol

n—

(fyy u2"/ (=2 dvol) "~/

[y RMdvol
Vol(M)(n=2)/n"

Ye(u) =

@ Yamabe invariant

Qg(M) := inf Yg(u)

@ o-constant (or Yamabe constant)
(M) := sup Qg(M),
[gleC
where C is the space of conformal classes on M.



n-mainfolds
0®0000

When n = 3 and Ry = —2, then o(X) = 4nx(X) = 8n(1 — ),
where x(X) and [ are the Euler characteristic and genus of X. i.e.,
in some sense, the o-constant can be view as a generalisation of
the Euler characteristic to higher dimensions.
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When n = 3 and Ry = —2, then o(X) = 4nx(X) = 8n(1 — ),
where x(X) and [ are the Euler characteristic and genus of X. i.e.,
in some sense, the o-constant can be view as a generalisation of
the Euler characteristic to higher dimensions.

Theorem 2 (Moraru (2016))

Let M be an n-dimensional Riemannian manifold (n > 4) with

RM > Ry. Assume that ¥ be a closed, two-sided, embedded,
area-minimizing hypersurface.

(1) If Ry < 0 and o(X) < 0, then RyA(X)™1 < o(E). Moreover, if
equality holds, then M is isometric to X X (—¢,€) in a
neighborhood of X.

(2) If Ro =0 and o(X) <0, then o(X) =0 and M is isometric to
Y X (—¢,¢€) in a neighborhood of ¥.
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Proof of Theorem 2. By second variation of area for minimal
hypersurface, we have

0< / |VEp)? — 2 (RicM(N, N) + 15\2) dvols,
b

where V= and dvols are the gradient and the area element of ¥.
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Proof of Theorem 2. By second variation of area for minimal
hypersurface, we have

0< / |VEp)? — 2 (RicM(N, N) + 15\2) dvols,
b

where V= and dvols are the gradient and the area element of ¥.
From the Gauss equation, we obtain

0 < / 2|VEp)? + (R* — RM — |B]?)p?dvols
p

-2
< / (4(")va¢2 + nga?) dvols —/ RM o2 dvols,
s\ n—3 T

Hn=2) for all

where in the last inequality we have used that 2 <
n> 4.
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Proof of Theorem 2. By second variation of area for minimal
hypersurface, we have

0< / |VEp)? — 2 (RicM(N, N) + 15\2) dvols,
b

where V= and dvols are the gradient and the area element of ¥.
From the Gauss equation, we obtain

0 < / 2|VEp)? + (R* — RM — |B]?)p?dvols
p

4(n—2
< / <(")yv2¢2 + nga?) dvols —/ RM o2 dvols,
s\ n—3 T

where in the last inequality we have used that 2 < 4(,1":32) for all
n > 4. By the assumption RM > Ry and hence, by Holder

inequality, the above inequality gives



4(n—2
0 < /<(,73)|V290]2+Rzg02> dvols
- =

n

2 2(n—1)
—RoA(X) T </ p =3 dvo/z>
pN

w

n—
—1

S
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4(n—2
0 < /<(n3)|vzga]2 + R% 2) dvols
- =

n

w

n—

2 n—1
-1 < gp = dvolz>

n—
n—1

Dividing the last inequality by (fch n=3 dvo/>:> > 0, we get

—RoA(T)7

w

o Je (MR 4 REG?) dvols
RoA(E) 71 < )

n—

2(n—1) n—
(fch n=3 dvolz)

,_.
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4(n—2
0 < /<(n3)|vzga]2 + R% 2) dvols
- =

n

w

n—

2 n—1
-1 < gp = dvolz>

n—
n—1

Dividing the last inequality by (fch n=3 dvo/>:> > 0, we get

—RoA(T)7

w

: fz( =D |VE P2 4 RE2) dvols
—

n—

2(n n—
(fch = dvolz)

RoA(S) 71

,_.

Therefore,

2

RoA(E) 71 < o(X).
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Let ¥ := S"2 x S'(¥), where S"~2 is the (n — 2)-dimensional unit
sphere and S(¢) is the circle of radius £. Let M := ¥ x S! with
the product metric. Then RM = (n —2)(n —3) := R > 0 and
o(X) = o(S"1). Thatis, o(X) is independent of both Ry and .
Therefore, the area of X is arbitrarily large when ¢ increases.
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Let ¥ := S"2 x S'(¥), where S"~2 is the (n — 2)-dimensional unit
sphere and S(¢) is the circle of radius £. Let M := ¥ x S! with
the product metric. Then RM = (n —2)(n —3) := R > 0 and
o(X) = o(S"1). Thatis, o(X) is independent of both Ry and .
Therefore, the area of X is arbitrarily large when ¢ increases.

o (Mendes (2019)) Let M® be a Riemannian manifold with
RM > Ry > 0 and Ric™ > 0. If £* is a two-sided, closed,
embedded, area-minimizing hypersurface, then

Ro\? 1 .
A(Y) <1§> §A(S4)+12/Z\Ric|2dvo/z,

where Ric is the traceless Ricci curvature. If equality holds,
then M is isometric to S* x (—¢, €) in a neighborhood of ¥.
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» Gauss-Bonnet-Chern formula: When n=5
87(%) :/ Lwme+ Lirmp — LR ) dvois
s \ 4 24 2 ’

where W* and Ric are the Weyl and the traceless Ricci tensor
of 2.
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» Gauss-Bonnet-Chern formula: When n=5
87(%) :/ Lwme+ Lirmp — LR ) dvois
s \ 4 24 2 ’

where W* and Ric are the Weyl and the traceless Ricci tensor
of 2.

e (Deng (2021)) Let M be an n-dimensional Riemannian
manifold (n > 4) with RM > Ry > 0 and RicM > 0. If ¥
is a two-sided, closed, embegded, area-minimizing
hypersurface with Ric> = Rng, then

A(X)7 Ry < n(n — 1)A(S"1)5.
If the equality holds, then M is isometric to S"~! x (—¢,€) in
a neighborhood of .
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» Gauss-Bonnet-Chern formula: When n=5
87(%) :/ Lwme+ Lirmp — LR ) dvois
s \ 4 24 2 ’

where W* and Ric are the Weyl and the traceless Ricci tensor
of X.

e (Deng (2021)) Let M be an n-dimensional Riemannian
manifold (n > 4) with RM > Ry > 0 and RicM > 0. If ¥
is a two-sided, closed, embegded, area-minimizing
hypersurface with Ric> = Rng, then

A(X)7 Ry < n(n — 1)A(S"1)5.
If the equality holds, then M is isometric to S"~! x (—¢,€) in
a neighborhood of .

» The author assumed that the X is Einstein.
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Weighted manifolds

o Weighted manifolds
(M,g,e "dv,), where f € C*(M).
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Weighted manifolds

o Weighted manifolds
(M,g,e "dv,), where f € C*(M).

e Example of a weighted manifolds (Gaussian soliton)
(Rna 80, e_%Mdego)»

where gy is the standard Euclidean metric on R”.
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Weighted manifolds

o Weighted manifolds
(M,g,e "dv,), where f € C*(M).

e Example of a weighted manifolds (Gaussian soliton)
(Rna 80, e_%Mdego)»

where gy is the standard Euclidean metric on R”.
@ Bakry-Emery Ricci tensor

Ricf" := Ric + Hessf — Ldf ® df,
Rics :== Ric + Hessf.
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Weighted manifolds

o Weighted manifolds
(M,g,e "dv,), where f € C*(M).

e Example of a weighted manifolds (Gaussian soliton)
(R", go, e <M dvy,),
where gy is the standard Euclidean metric on R”.
@ Bakry-Emery Ricci tensor
{Ric;" ‘= Ric + Hessf — Ldf ® df,
Rics :== Ric + Hessf.

o Weighted scalar curvature
R .= RM 4 2Af — ™1 |y )12
Rf == RM 4 2Af — |Vf]2.
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@ Weighted mean curvature

Hf :== H— (Vf,N).
o Weighted Laplacian

Af = A —(VF,V).

@ Weighted area

Af(X) = / e Tdvol.
>

@ First variation for weighted area

d

ds

Af(Xs) = / ©Hr e~ dvol.
s=0 b
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@ Second variation for weighted area

d2 Y 2
—| A(Z) =
452 | .o A (Xs) /ZIV ol
—¢? (Rice(N, N) + |B|?) e dvol

o Weighted stable minimal hypersurface (or f-stable minimal
hypersurface)

d2

ds?

0 Af(Zs) > 0.
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Theorem 3 (M. Fan (2008))

Let M be a complete 3-dimensional weighted Riemannian manifold
with Rf > Gy for some positive constant Cy. If M contains closed,
two-sided, immersed, f-stable minimal hypersurfaces ¥, then the
genus of X is zero.
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Theorem 4 (Castro and Rosales (2014))

Let M be a complete 3-dimensional weighted Riemannian manifold
with Rf > Cye~f. Consider a closed, two-sided, embedded, f-area
minimizing hypersurface ¥.

(1) If Go < 0 and Ap(%) = ELLE) for 5 > 2, then there is a
neighborhood of ¥ in M whlch |s isometric to a Riemannian
product X X (—¢,€).

(2) If Go=0and B =1, then X is a flat torus and there is a
neighborhood of ¥ in M which is isometric to a Riemannian
product X X (—¢,€).

(3) If Co >0 and Af(X) = C , then 8 =0 and there is a
neighborhood of ¥ in M isometric to a Riemannian product

Y X (—¢€,¢).
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Theorem 4 (Castro and Rosales (2014))

Let M be a complete 3-dimensional weighted Riemannian manifold
with Rf > Cye~f. Consider a closed, two-sided, embedded, f-area
minimizing hypersurface ¥.

(1) If Go < 0 and Ap(%) = ELLE) for 5 > 2, then there is a
neighborhood of ¥ in M whlch |s isometric to a Riemannian
product X X (—¢,€).

(2) If Go=0and B =1, then X is a flat torus and there is a
neighborhood of ¥ in M which is isometric to a Riemannian
product X X (—¢,€).

(3) If Co >0 and Af(X) = C , then 8 =0 and there is a
neighborhood of ¥ in M isometric to a Riemannian product

Y X (—¢€,¢).

If we replace Rf to R{", then we can get similar results
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Theorem 5 (Lee, Park, and Pyo (2022))

Let M be a complete n-dimensional weighted Riemannian manifold

2f
(n > 4) with R" > Coe™ 1 for m € (0, 15]. Assume that M
contains an (n — 1)-dimensional, closed, two-sided, embedded,
f-area minimizing hypersurface .

(1) If Go <0 and o(X) <0, then we have

2

C()Af(Z) n—1 < U(Z)

Moreover, if equality holds, then M splits isometrically as a
product in a neighborhood of .

(2) If o =0 and o(X) <0, then o(X) =0 and M splits
isometrically as a product in a neighborhood of ¥.
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Theorem 6 (Lee, Park, and Pyo (2022))

Let M be a complete n-dimensional weighted Riemannian manifold
(n>4). If R™ > C" for some positive constant C;", then there is
no (n — 1)-dimensional, closed, two-sided, immersed, f-stable
hypersurface ¥ with o(X) < 0.
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Theorem 6 (Lee, Park, and Pyo (2022))

Let M be a complete n-dimensional weighted Riemannian manifold
(n>4). If R™ > C" for some positive constant C;", then there is
no (n — 1)-dimensional, closed, two-sided, immersed, f-stable
hypersurface ¥ with o(X) < 0.

Remark 4

If we change R{" to Ry, then we can get same result.




Thank you!
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