Weighted scalar curvature rigidity for weighted area-minimizing hypersurface

Sanghun Lee
(Pusan National University)
2023 KIAS Geometry winter school

February 6 ~ 10, 2023

Table of contents

(1) Introduction
(2) 3-manifolds
(3) n-mainfolds
(4) Weighted manifolds
(5) References

Introduction

- First variation formula

Let $F: \Sigma \times(-\epsilon, \epsilon) \rightarrow M$ be a variation of Σ with compact support.

$$
\frac{d}{d t}{ }_{t=0} \operatorname{Vol}(F(\Sigma, t))=\int_{\Sigma}\left\langle F_{t}, H\right\rangle d v o l_{\Sigma}
$$

where F_{t} is the variational vector field and H is the mean curvature.

Definition 1

A submanifold Σ is said to be a minimal submanifold if its mean curvature vanishes, $H=0$. In other words, Σ is a critical point of the volume functional. Moreover, if Σ is ($n-1$)-dimensional, then Σ is called a minimal hypersurface.

- Second variation formula

$$
\begin{aligned}
& \frac{d^{2}}{d t^{2}} \operatorname{Vol}(F(\Sigma, t))= \\
& \int_{\Sigma}\left|\nabla^{\Sigma} \varphi\right|^{2} \\
&-\varphi^{2}\left(\operatorname{Ric}^{M}(N, N)+|B|^{2}\right) d v o I_{\Sigma}
\end{aligned}
$$

where N is the normal vector on Σ, B is the second fundamental form of Σ, and $\varphi \in C^{\infty}(\Sigma)$.

Definition 2

We say that Σ is stable if

$$
\frac{d^{2}}{d t^{2}}{ }_{t=0} \operatorname{Vol}(F(\Sigma, t)) \geq 0
$$

3-manifolds

- (Schoen and Yau (1979)) Let M be a complete 3-dimensional Riemannian manifold with $R^{M}>0$. If M contains a closed, two-sided, immersed, stable minimal hypersurface Σ, then the hypersurface must have genus 0 .

3-manifolds

- (Schoen and Yau (1979)) Let M be a complete 3-dimensional Riemannian manifold with $R^{M}>0$. If M contains a closed, two-sided, immersed, stable minimal hypersurface Σ, then the hypersurface must have genus 0 . Moreover, any area-minimizing surface is homeomorphic to either \mathbb{S}^{2} or $\mathbb{R} \mathbb{P}^{2}$.

3-manifolds

- (Schoen and Yau (1979)) Let M be a complete 3-dimensional Riemannian manifold with $R^{M}>0$. If M contains a closed, two-sided, immersed, stable minimal hypersurface Σ, then the hypersurface must have genus 0 . Moreover, any area-minimizing surface is homeomorphic to either \mathbb{S}^{2} or \mathbb{R}^{2}.
- (Fischer-Colbrie and Schoen (1980)) If $R^{M} \geq 0$, then the genus of Σ must be zero or one.

3-manifolds

- (Schoen and Yau (1979)) Let M be a complete 3-dimensional Riemannian manifold with $R^{M}>0$. If M contains a closed, two-sided, immersed, stable minimal hypersurface Σ, then the hypersurface must have genus 0 . Moreover, any area-minimizing surface is homeomorphic to either \mathbb{S}^{2} or \mathbb{R}^{2}.
- (Fischer-Colbrie and Schoen (1980)) If $R^{M} \geq 0$, then the genus of Σ must be zero or one. Moreover, if the genus is one, then
(i) Σ is totally geodesic,
(ii) the normal Ric^{M} vanish all along Σ.
- (Shen and Zhu (1997)) If $R^{M} \geq R_{0}$, then the area of any closed, two-sided, stable minimal surface Σ with genus $\beta \neq 1$, satisfies

$$
\begin{cases}A(\Sigma) \leq 4 \pi & \text { if } \quad R_{0}=2 \quad \text { and } \quad \beta=0 \\ A(\Sigma) \geq 4 \pi(\beta-1) & \text { if } \quad R_{0}=-2 \quad \text { and } \quad \beta \geq 2\end{cases}
$$

- (Shen and Zhu (1997)) If $R^{M} \geq R_{0}$, then the area of any closed, two-sided, stable minimal surface Σ with genus $\beta \neq 1$, satisfies

$$
\begin{cases}A(\Sigma) \leq 4 \pi & \text { if } \quad R_{0}=2 \quad \text { and } \quad \beta=0 \\ A(\Sigma) \geq 4 \pi(\beta-1) & \text { if } \quad R_{0}=-2 \quad \text { and } \quad \beta \geq 2\end{cases}
$$

- (Bray, Brendle, Neves (2010)) If

$$
\begin{cases}A(\Sigma)=4 \pi & \text { if } \quad R_{0}=2 \quad \text { and } \quad \beta=0 \\ A(\Sigma)=4 \pi(\beta-1) & \text { if } \quad R_{0}=-2 \quad \text { and } \quad \beta \geq 2\end{cases}
$$

then
(i) Σ is totally geodesic,
(ii) the normal Ric^{M} vanishes along Σ.

- (Shen and Zhu (1997)) If $R^{M} \geq R_{0}$, then the area of any closed, two-sided, stable minimal surface Σ with genus $\beta \neq 1$, satisfies

$$
\begin{cases}A(\Sigma) \leq 4 \pi & \text { if } \quad R_{0}=2 \quad \text { and } \quad \beta=0 \\ A(\Sigma) \geq 4 \pi(\beta-1) & \text { if } \quad R_{0}=-2 \quad \text { and } \quad \beta \geq 2\end{cases}
$$

- (Bray, Brendle, Neves (2010)) If

$$
\begin{cases}A(\Sigma)=4 \pi & \text { if } \quad R_{0}=2 \quad \text { and } \quad \beta=0 \\ A(\Sigma)=4 \pi(\beta-1) & \text { if } \quad R_{0}=-2 \quad \text { and } \quad \beta \geq 2\end{cases}
$$

then
(i) Σ is totally geodesic,
(ii) the normal Ric M vanishes along Σ.

Moreover, if Σ is area-minimizng and $A(\Sigma)=4 \pi$, then M is isometric to $\mathbb{S}^{2} \times(-\epsilon, \epsilon)$ in a neighborhood of Σ.

Theorem 1 (Micallef and Moraru (2015))

Let M be a complete 3-dimensional Riemannian manifold with $R^{M} \geq R_{0}$. Assume that M contains a closed, two-sided, embedded, area-minimizing hypersurface Σ.
(1) Suppose that $R_{0}=2$ and $A(\Sigma)=4 \pi$. Then Σ has $\beta=0$ and it has a neighborhood which is isometric to the product $g_{1}+d t^{2}$ on $\mathbb{S}^{2} \times(-\epsilon, \epsilon)$.
(2) Suppose that $R_{0}=0$ and Σ has $\beta=1$. Then Σ has a neighborhood which is isometric to the product $g_{0}+d t^{2}$ on $\mathbb{T}^{2} \times(-\epsilon, \epsilon)$.
(3) Suppose that $R_{0}=-2$ and that Σ has $\beta \geq 2$ and
$A(\Sigma)=4 \pi(\beta-1)$. Then Σ has a neighborhood which is isometric to the product $g_{-1}+d t^{2}$ on $\Sigma \times(-\epsilon, \epsilon)$.

Proof of Theorem 1. By second variation of area for minimal hypersurface, we have

$$
0 \leq \int_{\Sigma}\left|\nabla^{\Sigma} \varphi\right|^{2}-\left.\varphi^{2}\left(\operatorname{Ric}^{M}(N, N)+|B|^{2}\right) d v o\right|_{\Sigma}
$$

where ∇^{Σ} and $d v o l_{\Sigma}$ are the gradient and the area element of Σ.

Proof of Theorem 1. By second variation of area for minimal hypersurface, we have

$$
0 \leq \int_{\Sigma}\left|\nabla^{\Sigma} \varphi\right|^{2}-\left.\varphi^{2}\left(\operatorname{Ric}^{M}(N, N)+|B|^{2}\right) d v o\right|_{\Sigma}
$$

where ∇^{Σ} and $d v o l_{\Sigma}$ are the gradient and the area element of Σ. Choosing $\varphi=1$ and using Gauss equation, we obtain

$$
\begin{aligned}
0 & \leq \int_{\Sigma}-\frac{R^{M}}{2}+K^{\Sigma}-\left.\frac{|B|^{2}}{2} d v o\right|_{\Sigma} \\
& \leq-\frac{R_{0}}{2} A(\Sigma)+\left.\int_{\Sigma} K^{\Sigma} d v o\right|_{\Sigma}
\end{aligned}
$$

Proof of Theorem 1. By second variation of area for minimal hypersurface, we have

$$
0 \leq \int_{\Sigma}\left|\nabla^{\Sigma} \varphi\right|^{2}-\left.\varphi^{2}\left(\operatorname{Ric}^{M}(N, N)+|B|^{2}\right) d v o\right|_{\Sigma}
$$

where ∇^{Σ} and $d v o l_{\Sigma}$ are the gradient and the area element of Σ. Choosing $\varphi=1$ and using Gauss equation, we obtain

$$
\begin{aligned}
0 & \leq \int_{\Sigma}-\frac{R^{M}}{2}+K^{\Sigma}-\left.\frac{|B|^{2}}{2} d v o\right|_{\Sigma} \\
& \leq-\frac{R_{0}}{2} A(\Sigma)+\left.\int_{\Sigma} K^{\Sigma} d v o\right|_{\Sigma}
\end{aligned}
$$

By Gauss-Bonnet theorem, we get

$$
R_{0} A(\Sigma) \leq 4 \pi \chi(\Sigma)=8 \pi(1-\beta)
$$

where $\chi(\Sigma)$ is the Euler characteristic of Σ.

If $R_{0} A(\Sigma)=8 \pi(1-\beta)$, then every inequality above is in fact an equality. So we have $\operatorname{Ric}(N, N)=0$ and $B=0$ on Σ.

If $R_{0} A(\Sigma)=8 \pi(1-\beta)$, then every inequality above is in fact an equality. So we have $\operatorname{Ric}(N, N)=0$ and $B=0$ on Σ. Then we can use Jacobi equation $L=\Delta_{\Sigma}+R i c^{M}+|B|^{2}$ to construct a constant mean curvature foliation in a neighborhood of Σ.

If $R_{0} A(\Sigma)=8 \pi(1-\beta)$, then every inequality above is in fact an equality. So we have $\operatorname{Ric}(N, N)=0$ and $B=0$ on Σ. Then we can use Jacobi equation $L=\Delta_{\Sigma}+R i c^{M}+|B|^{2}$ to construct a constant mean curvature foliation in a neighborhood of Σ.
(i) $R_{0}=2$ and $A(\Sigma)=4 \pi$,
(ii) $R_{0}=0$ and $\beta=1$,
(iii) $R_{0}=-2, \beta \geq 2$ and $A(\Sigma)=4 \pi(\beta-1)$.

Using the Jacobi equation, We can show that a constant mean curvature foliation is an area-minimizing surface in all cases.

n-manifolds

- Einstein-Hilbert functional

$$
Y(g):=\frac{\int_{M} R^{M} d v o l}{\operatorname{Vol}(M)^{(n-2) / n}}
$$

- Writting $\tilde{g}=u^{\frac{4}{n-2}} g$ for a positive function u on M , then

$$
Y_{g}(u)=\frac{\int_{M}\left(\frac{4(n-1)}{n-2}|\nabla u|^{2}+R^{M} u^{2}\right) d v o l}{\left(\int_{M} u^{2 n /(n-2)} d v o l\right)^{(n-2) / n}}
$$

- Yamabe invariant

$$
Q_{g}(M):=\inf _{u>0} Y_{g}(u)
$$

- σ-constant (or Yamabe constant)

$$
\sigma(M):=\sup _{[g] \in \mathcal{C}} Q_{g}(M)
$$

where \mathcal{C} is the space of conformal classes on M.

Remark 1

When $n=3$ and $R_{0}=-2$, then $\sigma(\Sigma)=4 \pi \chi(\Sigma)=8 \pi(1-\beta)$, where $\chi(\Sigma)$ and β are the Euler characteristic and genus of Σ. i.e., in some sense, the σ-constant can be view as a generalisation of the Euler characteristic to higher dimensions.

Remark 1

When $n=3$ and $R_{0}=-2$, then $\sigma(\Sigma)=4 \pi \chi(\Sigma)=8 \pi(1-\beta)$, where $\chi(\Sigma)$ and β are the Euler characteristic and genus of Σ. i.e., in some sense, the σ-constant can be view as a generalisation of the Euler characteristic to higher dimensions.

Theorem 2 (Moraru (2016))

Let M be an n-dimensional Riemannian manifold ($n \geq 4$) with $R^{M} \geq R_{0}$. Assume that Σ be a closed, two-sided, embedded, area-minimizing hypersurface.
(1) If $R_{0}<0$ and $\sigma(\Sigma)<0$, then $R_{0} A(\Sigma)^{\frac{2}{n-1}} \leq \sigma(\Sigma)$. Moreover, if equality holds, then M is isometric to $\Sigma \times(-\epsilon, \epsilon)$ in a neighborhood of Σ.
(2) If $R_{0}=0$ and $\sigma(\Sigma) \leq 0$, then $\sigma(\Sigma)=0$ and M is isometric to $\Sigma \times(-\epsilon, \epsilon)$ in a neighborhood of Σ.

Proof of Theorem 2. By second variation of area for minimal hypersurface, we have

$$
0 \leq \int_{\Sigma}\left|\nabla^{\Sigma} \varphi\right|^{2}-\left.\varphi^{2}\left(\operatorname{Ric}^{M}(N, N)+|B|^{2}\right) d v o\right|_{\Sigma}
$$

where ∇^{Σ} and $d v o l_{\Sigma}$ are the gradient and the area element of Σ.

Proof of Theorem 2. By second variation of area for minimal hypersurface, we have

$$
0 \leq \int_{\Sigma}\left|\nabla^{\Sigma} \varphi\right|^{2}-\left.\varphi^{2}\left(\operatorname{Ric}^{M}(N, N)+|B|^{2}\right) d v o\right|_{\Sigma}
$$

where ∇^{Σ} and $d v o l_{\Sigma}$ are the gradient and the area element of Σ. From the Gauss equation, we obtain

$$
\begin{aligned}
0 & \leq \int_{\Sigma} 2\left|\nabla^{\Sigma} \varphi\right|^{2}+\left.\left(R^{\Sigma}-R^{M}-|B|^{2}\right) \varphi^{2} d v o\right|_{\Sigma} \\
& \leq\left.\int_{\Sigma}\left(\frac{4(n-2)}{n-3}\left|\nabla^{\Sigma} \varphi\right|^{2}+R^{\Sigma} \varphi^{2}\right) d v o\right|_{\Sigma}-\int_{\Sigma} R^{M} \varphi^{2} d v o l_{\Sigma}
\end{aligned}
$$

where in the last inequality we have used that $2<\frac{4(n-2)}{n-3}$ for all $n \geq 4$.

Proof of Theorem 2. By second variation of area for minimal hypersurface, we have

$$
0 \leq \int_{\Sigma}\left|\nabla^{\Sigma} \varphi\right|^{2}-\left.\varphi^{2}\left(\operatorname{Ric}^{M}(N, N)+|B|^{2}\right) d v o\right|_{\Sigma}
$$

where ∇^{Σ} and $d v o l_{\Sigma}$ are the gradient and the area element of Σ. From the Gauss equation, we obtain

$$
\begin{aligned}
0 & \leq \int_{\Sigma} 2\left|\nabla^{\Sigma} \varphi\right|^{2}+\left(R^{\Sigma}-R^{M}-|B|^{2}\right) \varphi^{2} d v o l_{\Sigma} \\
& \leq\left.\int_{\Sigma}\left(\frac{4(n-2)}{n-3}\left|\nabla^{\Sigma} \varphi\right|^{2}+R^{\Sigma} \varphi^{2}\right) d v o\right|_{\Sigma}-\int_{\Sigma} R^{M} \varphi^{2} d v o l_{\Sigma}
\end{aligned}
$$

where in the last inequality we have used that $2<\frac{4(n-2)}{n-3}$ for all $n \geq 4$. By the assumption $R^{M} \geq R_{0}$ and hence, by Holder inequality, the above inequality gives

$$
\begin{aligned}
0 \leq & \int_{\Sigma}\left(\frac{4(n-2)}{n-3}\left|\nabla^{\Sigma} \varphi\right|^{2}+R^{\Sigma} \varphi^{2}\right) d v o I_{\Sigma} \\
& -R_{0} A(\Sigma)^{\frac{2}{n-1}}\left(\int_{\Sigma} \varphi^{\frac{2(n-1)}{n-3}} d v o l_{\Sigma}\right)^{\frac{n-3}{n-1}}
\end{aligned}
$$

$$
\begin{aligned}
0 \leq & \int_{\Sigma}\left(\frac{4(n-2)}{n-3}\left|\nabla^{\Sigma} \varphi\right|^{2}+R^{\Sigma} \varphi^{2}\right) d v o l_{\Sigma} \\
& -R_{0} A(\Sigma)^{\frac{2}{n-1}}\left(\int_{\Sigma} \varphi^{\frac{2(n-1)}{n-3}} d v o l_{\Sigma}\right)^{\frac{n-3}{n-1}}
\end{aligned}
$$

Dividing the last inequality by $\left.\left(\int_{\Sigma} \varphi^{\frac{2(n-1)}{n-3}} d v o\right)_{\Sigma}\right)^{\frac{n-3}{n-1}}>0$, we get

$$
R_{0} A(\Sigma)^{\frac{2}{n-1}} \leq \frac{\int_{\Sigma}\left(\frac{4(n-2)}{n-3}\left|\nabla^{\Sigma} \varphi\right|^{2}+R^{\Sigma} \varphi^{2}\right) d v o l_{\Sigma}}{\left(\int_{\Sigma} \varphi^{\frac{2(n-1)}{n-3}} d v o l_{\Sigma}\right)^{\frac{n-3}{n-1}}}
$$

$$
\begin{aligned}
0 \leq & \int_{\Sigma}\left(\frac{4(n-2)}{n-3}\left|\nabla^{\Sigma} \varphi\right|^{2}+R^{\Sigma} \varphi^{2}\right) d v o I_{\Sigma} \\
& -R_{0} A(\Sigma)^{\frac{2}{n-1}}\left(\int_{\Sigma} \varphi^{\frac{2(n-1)}{n-3}} d v o I_{\Sigma}\right)^{\frac{n-3}{n-1}}
\end{aligned}
$$

Dividing the last inequality by $\left(\int_{\Sigma} \varphi^{\frac{2(n-1)}{n-3}} d v o l_{\Sigma}\right)^{\frac{n-3}{n-1}}>0$, we get

$$
R_{0} A(\Sigma)^{\frac{2}{n-1}} \leq \frac{\int_{\Sigma}\left(\frac{4(n-2)}{n-3}\left|\nabla^{\Sigma} \varphi\right|^{2}+R^{\Sigma} \varphi^{2}\right) d v o l_{\Sigma}}{\left(\int_{\Sigma} \varphi^{\frac{2(n-1)}{n-3}} d v o I_{\Sigma}\right)^{\frac{n-3}{n-1}}}
$$

Therefore,

$$
R_{0} A(\Sigma)^{\frac{2}{n-1}} \leq \sigma(\Sigma)
$$

Remark 2

Let $\Sigma:=\mathbb{S}^{n-2} \times \mathbb{S}^{1}(\ell)$, where \mathbb{S}^{n-2} is the $(n-2)$-dimensional unit sphere and $S^{1}(\ell)$ is the circle of radius ℓ. Let $M:=\Sigma \times \mathbb{S}^{1}$ with the product metric. Then $R^{M}=(n-2)(n-3):=R_{0}^{+}>0$ and $\sigma(\Sigma)=\sigma\left(\mathbb{S}^{n-1}\right)$. That is, $\sigma(\Sigma)$ is independent of both R_{0}^{+}and ℓ. Therefore, the area of Σ is arbitrarily large when ℓ increases.

Remark 2

Let $\Sigma:=\mathbb{S}^{n-2} \times \mathbb{S}^{1}(\ell)$, where \mathbb{S}^{n-2} is the $(n-2)$-dimensional unit sphere and $S^{1}(\ell)$ is the circle of radius ℓ. Let $M:=\Sigma \times \mathbb{S}^{1}$ with the product metric. Then $R^{M}=(n-2)(n-3):=R_{0}^{+}>0$ and $\sigma(\Sigma)=\sigma\left(\mathbb{S}^{n-1}\right)$. That is, $\sigma(\Sigma)$ is independent of both R_{0}^{+}and ℓ. Therefore, the area of Σ is arbitrarily large when ℓ increases.

- (Mendes (2019)) Let M^{5} be a Riemannian manifold with $R^{M} \geq R_{0}>0$ and $R i c^{M} \geq 0$. If Σ^{4} is a two-sided, closed, embedded, area-minimizing hypersurface, then

$$
A(\Sigma)\left(\frac{R_{0}}{12}\right)^{2} \leq A\left(\mathbb{S}^{4}\right)+\left.\frac{1}{12} \int_{\Sigma}\left|R_{i c}\right|^{2} d v o\right|_{\Sigma}
$$

where Ric is the traceless Ricci curvature. If equality holds, then M is isometric to $\mathbb{S}^{4} \times(-\epsilon, \epsilon)$ in a neighborhood of Σ.

- Gauss-Bonnet-Chern formula: When $n=5$

$$
8 \pi \chi(\Sigma)=\int_{\Sigma}\left(\frac{1}{4}\left|W^{\Sigma}\right|^{2}+\frac{1}{24}\left|R^{\Sigma}\right|^{2}-\frac{1}{2}\left|R i c^{\Sigma}\right|^{2}\right) d v o l \Sigma
$$

where W^{Σ} and Ric are the Weyl and the traceless Ricci tensor of Σ.

- Gauss-Bonnet-Chern formula: When $n=5$

$$
8 \pi \chi(\Sigma)=\int_{\Sigma}\left(\frac{1}{4}\left|W^{\Sigma}\right|^{2}+\frac{1}{24}\left|R^{\Sigma}\right|^{2}-\frac{1}{2}\left|R i c^{\Sigma}\right|^{2}\right) d v o I_{\Sigma}
$$

where W^{Σ} and Ric are the Weyl and the traceless Ricci tensor of Σ.

- (Deng (2021)) Let M be an n-dimensional Riemannian manifold ($n \geq 4$) with $R^{M} \geq R_{0}>0$ and $R i c^{M} \geq 0$. If Σ^{n-1} is a two-sided, closed, embedded, area-minimizing hypersurface with $\mathrm{Ric}^{\Sigma}=\frac{R^{\Sigma}}{n} g_{\Sigma}$, then

$$
A(\Sigma)^{\frac{2}{n}} R_{0} \leq n(n-1) A\left(\mathbb{S}^{n-1}\right)^{\frac{2}{n}} .
$$

If the equality holds, then M is isometric to $\mathbb{S}^{n-1} \times(-\epsilon, \epsilon)$ in a neighborhood of Σ.

- Gauss-Bonnet-Chern formula: When $n=5$

$$
8 \pi \chi(\Sigma)=\int_{\Sigma}\left(\frac{1}{4}\left|W^{\Sigma}\right|^{2}+\frac{1}{24}\left|R^{\Sigma}\right|^{2}-\frac{1}{2}\left|R i c^{\Sigma}\right|^{2}\right) d v o l \Sigma
$$

where W^{Σ} and Ric are the Weyl and the traceless Ricci tensor of Σ.

- (Deng (2021)) Let M be an n-dimensional Riemannian manifold ($n \geq 4$) with $R^{M} \geq R_{0}>0$ and $R i c^{M} \geq 0$. If Σ^{n-1} is a two-sided, closed, embedded, area-minimizing hypersurface with $\mathrm{Ric}^{\Sigma}=\frac{R^{\Sigma}}{n} g_{\Sigma}$, then

$$
A(\Sigma)^{\frac{2}{n}} R_{0} \leq n(n-1) A\left(\mathbb{S}^{n-1}\right)^{\frac{2}{n}}
$$

If the equality holds, then M is isometric to $\mathbb{S}^{n-1} \times(-\epsilon, \epsilon)$ in a neighborhood of Σ.

- The author assumed that the Σ is Einstein.

Weighted manifolds

- Weighted manifolds

$$
\left(M, g, e^{-f} d v_{g}\right), \text { where } f \in C^{\infty}(M)
$$

Weighted manifolds

- Weighted manifolds

$$
\left(M, g, e^{-f} d v_{g}\right), \text { where } f \in C^{\infty}(M)
$$

- Example of a weighted manifolds (Gaussian soliton)

$$
\left(\mathbb{R}^{n}, g_{0}, e^{-\frac{1}{4}|x|^{2}} d v_{g_{0}}\right)
$$

where g_{0} is the standard Euclidean metric on \mathbb{R}^{n}.

Weighted manifolds

- Weighted manifolds

$$
\left(M, g, e^{-f} d v_{g}\right), \text { where } f \in C^{\infty}(M)
$$

- Example of a weighted manifolds (Gaussian soliton)

$$
\left(\mathbb{R}^{n}, g_{0}, e^{-\frac{1}{4}|x|^{2}} d v_{g_{0}}\right)
$$

where g_{0} is the standard Euclidean metric on \mathbb{R}^{n}.

- Bakry-Emery Ricci tensor

$$
\left\{\begin{array}{l}
\operatorname{Ric}_{f}^{m}:=\operatorname{Ric}+\operatorname{Hess} f-\frac{1}{m} d f \otimes d f \\
\operatorname{Ric}_{f}:=\text { Ric }+\operatorname{Hess} f
\end{array}\right.
$$

Weighted manifolds

- Weighted manifolds

$$
\left(M, g, e^{-f} d v_{g}\right), \text { where } f \in C^{\infty}(M)
$$

- Example of a weighted manifolds (Gaussian soliton)

$$
\left(\mathbb{R}^{n}, g_{0}, e^{-\frac{1}{4}|x|^{2}} d v_{g_{0}}\right)
$$

where g_{0} is the standard Euclidean metric on \mathbb{R}^{n}.

- Bakry-Emery Ricci tensor

$$
\left\{\begin{array}{l}
\operatorname{Ric}_{f}^{m}:=\operatorname{Ric}+\operatorname{Hess} f-\frac{1}{m} d f \otimes d f \\
\operatorname{Ric}_{f}:=\text { Ric }+ \text { Hess } f
\end{array}\right.
$$

- Weighted scalar curvature

$$
\left\{\begin{array}{l}
R_{f}^{m}:=R^{M}+2 \Delta f-\frac{m+1}{m}|\nabla f|^{2} \\
R_{f}:=R^{M}+2 \Delta f-|\nabla f|^{2}
\end{array}\right.
$$

- Weighted mean curvature

$$
H_{f}:=H-\langle\nabla f, N\rangle .
$$

- Weighted Laplacian

$$
\Delta_{f}:=\Delta-\langle\nabla f, \nabla\rangle
$$

- Weighted area

$$
A_{f}(\Sigma):=\int_{\Sigma} e^{-f} d v o l
$$

- First variation for weighted area

$$
\left.\frac{d}{d s}\right|_{s=0} A_{f}\left(\Sigma_{s}\right)=\int_{\Sigma} \varphi H_{f} e^{-f} d v o l
$$

- Second variation for weighted area

$$
\begin{aligned}
\left.\frac{d^{2}}{d s^{2}}\right|_{s=0} A_{f}\left(\Sigma_{s}\right)= & \int_{\Sigma}\left|\nabla^{\Sigma} \varphi\right|^{2} \\
& -\varphi^{2}\left(\operatorname{Ric}_{f}(N, N)+|B|^{2}\right) e^{-f} d v o l
\end{aligned}
$$

- Weighted stable minimal hypersurface (or f-stable minimal hypersurface)

$$
\left.\frac{d^{2}}{d s^{2}}\right|_{s=0} A_{f}\left(\Sigma_{s}\right) \geq 0
$$

Theorem 3 (M. Fan (2008))

Let M be a complete 3-dimensional weighted Riemannian manifold with $R_{f} \geq C_{0}$ for some positive constant C_{0}. If M contains closed, two-sided, immersed, f-stable minimal hypersurfaces Σ, then the genus of Σ is zero.

Theorem 4 (Castro and Rosales (2014))

Let M be a complete 3-dimensional weighted Riemannian manifold with $R_{f} \geq C_{0} e^{-f}$. Consider a closed, two-sided, embedded, f-area minimizing hypersurface Σ.
(1) If $C_{0}<0$ and $A_{f}(\Sigma)=\frac{8 \pi(1-\beta)}{C_{0}}$ for $\beta \geq 2$, then there is a neighborhood of Σ in M which is isometric to a Riemannian product $\Sigma \times(-\epsilon, \epsilon)$.
(2) If $C_{0}=0$ and $\beta=1$, then Σ is a flat torus and there is a neighborhood of Σ in M which is isometric to a Riemannian product $\Sigma \times(-\epsilon, \epsilon)$.
(3) If $C_{0}>0$ and $A_{f}(\Sigma)=\frac{8 \pi}{C_{0}}$, then $\beta=0$ and there is a neighborhood of Σ in M isometric to a Riemannian product $\Sigma \times(-\epsilon, \epsilon)$.

Theorem 4 (Castro and Rosales (2014))

Let M be a complete 3-dimensional weighted Riemannian manifold with $R_{f} \geq C_{0} e^{-f}$. Consider a closed, two-sided, embedded, f-area minimizing hypersurface Σ.
(1) If $C_{0}<0$ and $A_{f}(\Sigma)=\frac{8 \pi(1-\beta)}{C_{0}}$ for $\beta \geq 2$, then there is a neighborhood of Σ in M which is isometric to a Riemannian product $\Sigma \times(-\epsilon, \epsilon)$.
(2) If $C_{0}=0$ and $\beta=1$, then Σ is a flat torus and there is a neighborhood of Σ in M which is isometric to a Riemannian product $\Sigma \times(-\epsilon, \epsilon)$.
(3) If $C_{0}>0$ and $A_{f}(\Sigma)=\frac{8 \pi}{C_{0}}$, then $\beta=0$ and there is a neighborhood of Σ in M isometric to a Riemannian product $\Sigma \times(-\epsilon, \epsilon)$.

Remark 3

If we replace R_{f} to R_{f}^{m}, then we can get similar results.

Theorem 5 (Lee, Park, and Pyo (2022))

Let M be a complete n-dimensional weighted Riemannian manifold ($n \geq 4$) with $R_{f}^{m} \geq C_{0} e^{-\frac{2 f}{n-1}}$ for $m \in\left(0, \frac{1}{n-3}\right]$. Assume that M contains an ($n-1$)-dimensional, closed, two-sided, embedded, f-area minimizing hypersurface Σ.
(1) If $C_{0}<0$ and $\sigma(\Sigma)<0$, then we have

$$
C_{0} A_{f}(\Sigma)^{\frac{2}{n-1}} \leq \sigma(\Sigma)
$$

Moreover, if equality holds, then M splits isometrically as a product in a neighborhood of Σ.
(2) If $C_{0}=0$ and $\sigma(\Sigma) \leq 0$, then $\sigma(\Sigma)=0$ and M splits isometrically as a product in a neighborhood of Σ.

Theorem 6 (Lee, Park, and Pyo (2022))

Let M be a complete n-dimensional weighted Riemannian manifold ($n \geq 4$). If $R_{f}^{m} \geq C_{0}^{+}$for some positive constant C_{0}^{+}, then there is no ($n-1$)-dimensional, closed, two-sided, immersed, f-stable hypersurface Σ with $\sigma(\Sigma) \leq 0$.

Theorem 6 (Lee, Park, and Pyo (2022))

Let M be a complete n-dimensional weighted Riemannian manifold ($n \geq 4$). If $R_{f}^{m} \geq C_{0}^{+}$for some positive constant C_{0}^{+}, then there is no ($n-1$)-dimensional, closed, two-sided, immersed, f-stable hypersurface Σ with $\sigma(\Sigma) \leq 0$.

Remark 4

If we change R_{f}^{m} to R_{f}, then we can get same result.

Thank you!

-References
[1] H. Bray, S. Brendle, and A. Neves, Rigidity of area-minimizing two-spheres in three-manifolds, Commun. Anal. Geom., 30 (2020), 3542-3562.
[2] K. Castro and C. Rosales, Free boundary stable hypersurfaces in manifolds with densityy and rigidity results, J. Geom. Phys., 79 (2014), 14-28.
[3] S.-Y. A. Chang, M. J. Gursky, and P. Yang, Conformal invariants associated to a measure, Proc. Natl. Acad. Sci., 103 (2006), 2535-2540.
[4] H. Deng, A Bray-Brendle-Neves type inequality for a Riemannian manifold, Acta Math. Sci., 41 (2021), 487-492. [5]E. M. Fan, Topology of three-manifolds with positive p-scalar curvature, Proc. Amer. Math. Soc., 136 (2008), 3255-3261. [6] D. Fisher-Colbire and R. Schoen, The structure of complete stable minimal surfaces in 3 -manifolds of nonnegative scalar curvature, Commun. Pure Appl. Math., 33 (1980), 199-211.
[7] S. Lee, S. Park, and J. Pyo, Rigidity results of weighted area-minimizing hypersurfaces, Preprint.
[8] A. Mendes, Rigidity of volume-minimizing hypersurfaces in Riemannian 5-manifolds, Math. Proc. Camb. Philos. Soc., 167 (2019), 345-353.
[9] M. Micallef and V. Moraru, Splitting of 3-manifolds and rigidity of area-minimizing surfaces, Proc. Amer. Math. Soc., 143 (2015), 2865-2872.
[10] V. Moraru, On area comparison and rigidity involving the scalar curvature, Ph. D. Thesis, University of Warwick (2013), [11] V. Moraru, On area comparison and rigidity involving the scalar curvature, J. Geom. Anal., 26 (2016), 294-312.
[12] I. Nunes, Rigidity of area-minimizing hyperbolic surfaces in three-manifolds, J. Geom. Anal., 23 (2013), 1290-1302.
[13] R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differ. Geom., 20 (1984), 479-495. [14] R. Schoen, Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, vol. Topics in calculus of variations (Montecatini Terme, 1987), edited by M. Giaquinta, Springer Verlag, 1989.
[15] R. Schoen and S. T. Yau, Existence of incompressible minimal surfaces and the topology of three dimensional manifolds with non-negative scalar curvature, Ann. Math., 110 (1979), 127-142.
[16] Y. Shen and S. Zhu, Rigidity of stable minimal hypersurfaces, Math. Ann., 209 (1997), 107-116.

