(PRE-)PRE-STUDY FOR KOREAN LARGE SPECTROSCOPY TELESCOPE

SUNGWOOK E. HONG, ARMAN SHAFIELOO, JAE-WOO KIM (KASI), HO SEONG HWANG (SNU) & CHANGBOM PARK (KIAS) SURVEY SCIENCE GROUP WORKSHOP 2023, JANUARY 18^{TH,} 2023

ASTRONOMY & ASTROPHYSICS IN 2020S

Arrival of 4th generation of telescopes and surveys including large telescopes (DESI, LSST, GMT, WFIRST, TMT, etc.)

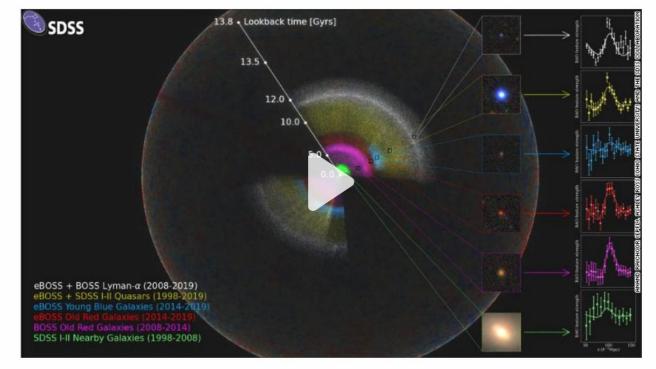
Going high resolution: Shifting from imaging to spectroscopy

Seeking an opportunity to lead in wide-deep field multi-object spectroscopy (5th generation)

CURRENT AND NEAR-FUTURE STATUS

► 2000s-2010s

- Multi-object spectroscopy on the 2m-class telescopes
- Example: SDSS with a 2.5 meter size telescope


► 2020s

- ► Large-scale spectral surveys with the 3~4m-level telescopes
- Example: DESI with a 4 meter telescope and 5000 fibers

11 billion years of history in one map: Astrophysicists reveal largest 3D model of the universe ever created

By Joshua Berlinger and Jessie Yeung, CNN () Updated 1748 GMT (0148 HKT) July 22, 2020

News & buzz

'Black Is King': Beyoncé's visual album is a feast of fashion...

Q

Edition 🗸

Q

 \equiv

What you need to know about coronavirus on Friday, July 31

Ad closed by Google

See a 3D model of the universe 01:17

(CNN) — A global consortium of astrophysicists have created the world's largest threedimensional map of the universe, a project 20 years in the making that researchers say helps better explain the history of the cosmos.

CURRENT AND NEAR-FUTURE STATUS

- Korean community has participated in several international spectroscopy programs (SDSS & DESI).
- We also have access to spectrographs in current and future large & extremely large telescopes such as Gemini (8.1m) and GMT (24.5m).
- We have been involved with various large programs, maybe its time to lead!

In 2006/2007...

RevMexAA (Serie de Conferencias), 28, 39–48 (2007)

SPM-TWIN TELESCOPES: PROJECT OVERVIEW

J. Jesús González¹ and The SPM-Twin Project Team

	GENERAL SPM-TWIN INSTRUMEN	NT CONCEPT
	Wide-Field Telescope (WFT) (Modified Magellan/MMT)	Standard Field Telescope (SFT) (Updated Magellan/MMT)
Optimized for:	Wide-Integral-Field Spectroscopy	Multi-purpose Seeing-limited Visible-IR Astronomy and AO prepared
Field of view:	$\Phi \geq ~\sim~ 1.5^\circ$	$\Phi \sim 1.5^{'}$ (seeing limited) $\Phi \sim 1^{'}$ (with AO)
Operation Range:	Visible to NIR (0.32–1.8 μ m)	Visible to Mid-IR ($\sim 0.4-28 \mu {\rm m})$
Spatial Resolutions	Seeing-limited (Narrow-Band imaging) $\sim 1'' - 3''$ Spaxel-limited sampling	Seeing-limited (normal mode) Diffraction limited (AO mode)
Spectral Resolutions	(Integral-Field Spectroscopy) ~ 4000 (IF Spectroscopy) $\leq \sim 1000$ (Tunable N-B imaging)	Wide range (science instrument suite)
1 st Generation Instrumentation	 a) Wide-Field & Atmospheric Dispersion Corrector system b) Deployable single-spaxel and Integral- Field units, coupled to a suit of spectro- graphs, for simultaneous full-range spectra spectra of thousands of objects c) Wide-Field Imager (Tunable Narrow-Band) 	 a) Secondary set (Nass/Cass/AO) b) High-Resolution Visible & Near-Infrared Spectrographs c) NIR/AO Science Instrument d) Mid-IR New-Generation Instrument Ready to accommodate: (i) Artificial-Star System & Adaptive secondary miror (ii) Guest & Replicated Instruments

TABLE 1

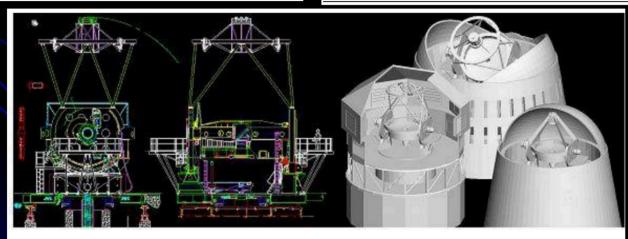
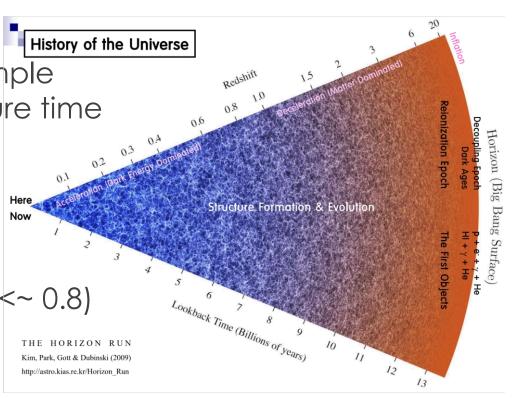


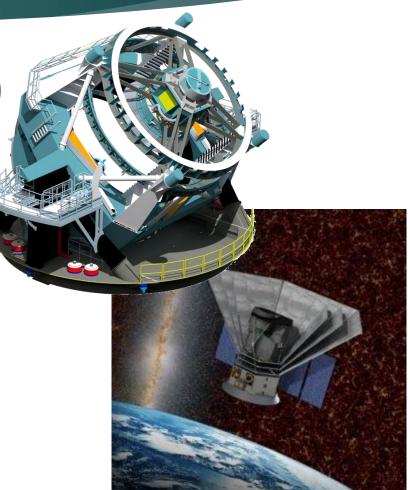
Fig. 6. Examples of detailed Magellan proprietary drawings and design updates. Some potential upgrades and optimizations are also shown: a higher building (for better seeing at SPM), wind-flow optimized dome, top-end of telescope optimizations for a wide-field secondary of WFT and low-emissivity SFT.


6.5M-CLASS SPECTROSCOPIC SURVEY?

Why 6.5m-class?

To get scientifically meaningful spectrum sample at Hubble distance (z ~ 1) with 1-hour exposure time

Why Flux-limited Survey?


- To maximize the sample density at the limited dark energy-dominated era (z <~ 0.8)</p>
- To study various astrophysical phenomena other than just dark energy

6.5M-CLASS SPECTROSCOPIC SURVEY?

Synergy with other surveys (example)

- Full follow-up spectroscopic observations of LSST
- Complementary of SPHEREx with higher spatial/spectral resolutions & different wavelength

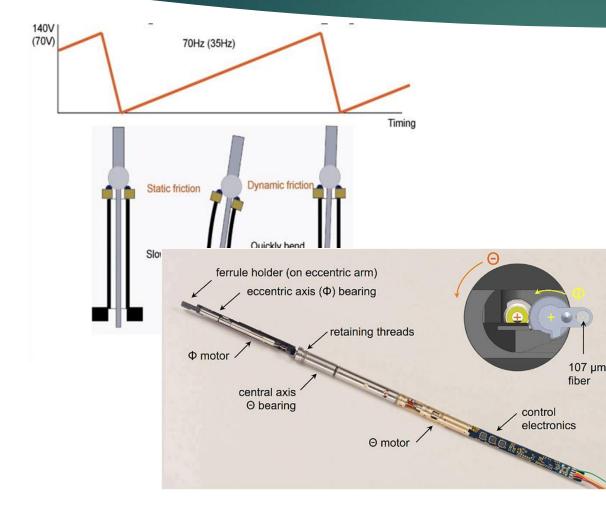
SURVEY SPECIFICATION (TENTATIVE)

					Cue a alwayl	10	(1h e	exp., S/N Å ⁻	¹ =3)
Name	Limiting mag.	Exposure	Goal (S/N)	Fiber Size	Spectral Resolution	16 · آھ			 Newmoon (21.5) Halfmoon (20.5)
SDSS/Main SDSS/BOSS (2.5m)	r_Pet=17.77 r_cModel<19.5 (LOWZ) i_cModel<19.9 (CMAS S)	45 min 90 min	10 per Ang. S/N_i^2>20	3" 2"	~1800 ~1500-2200	e (1.5" fiber mag)			— Fullmoon (18.5)
DESI/BGS (4m)	r_(Mod)=19.5	10 min	- minimum S/ N(~3?)	1.5"	2000-5000	Magnitude 55			GMT %
MSE (10m)	i<23 (where r-i=0-1)	60 min	Not yet?	1"	2000-3500, 6000, 40000	iting	LOAO KMTN	et CTIO	
This Study (6.5m)	r_Petro~21.5 => ~22 (if S/N~3 per spectral r esolution) Fully flux-limited data	60 min	S/N~3 per An g.	1.5"	1000-2000?	24 · ت	10 ⁰	Gei Gei 10 cope Diamete	

r-hand Limiting Magnitude

SURVEY SPECIFICATION (TENTATIVE)

Telescope (Project name)	Primary Mirror Diameter	Maximum Instrumental FoV	Etendue (AΩ [m^2 deg^2])
Mayall (DESI)	4m	3.2 deg.	101
Blanco	4m	2.2 deg.	47.8
VISTA (4MOST)	4.1m	2.6 deg.	70.1
WHT (WEAVE)	4.2m	2 deg.	43.5
MMT	6.5m	1 deg.	26.1
MegaMapper	6.5m	3 deg.	235
Subaru (HSC)	8.2m	1.5 deg.	93.3
Rubin Obs. (LSST)	8.4m	3.5 deg.	533
MSE	11.3m	1.5 deg.	177

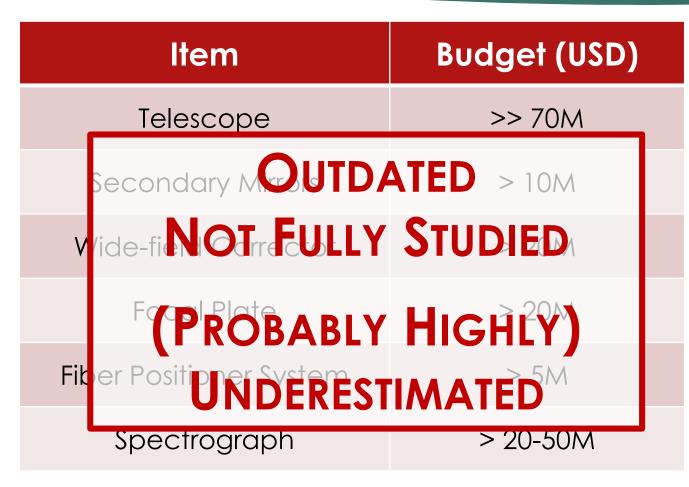

Survey Coverage (deg^2) 3,000 (shallow) + 300 (deep)

FoV Diameter (deg.) ~2 (min.) / ~3 (goal)

Max. Multiplex ~10,000 (min.) / ~70,000 (goal)

Spectral Resolution $R \sim 2,000 \ (\Delta v \sim 30-40 \text{ km/s})$

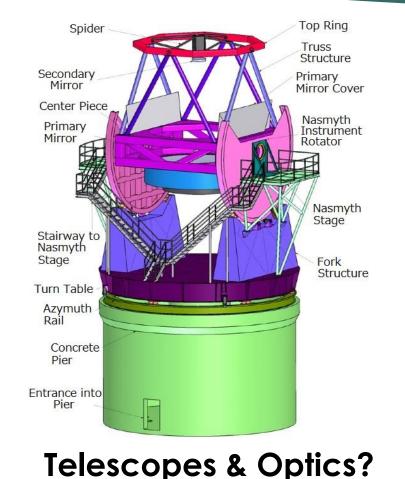
MULTIPLEX SPECIFICATION (TENTATIVE)

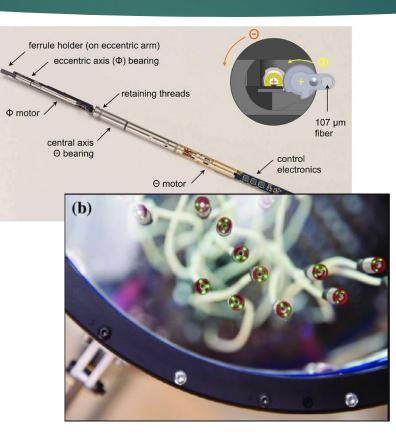


Robotic Fiber Positioner

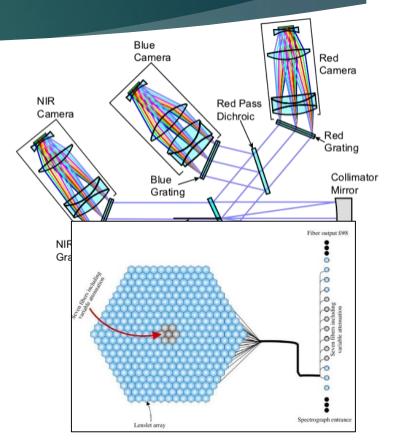
- Mean separation: ~4.6 mm
- Positional accuracy: <~ 10 um
- Possible options
 - Echidna (FMOS)
 - Theta-phi (DESI, A-SPEC)

Fiber Core Diameter: 75 um


BUDGET (INITIAL GUESS)



No single ordinary project can afford this!


- Need to convince
 government
- Need community input & support

WHAT TO DETERMINE?

Robotic Positioner?

Spectroscopy Mode? (Visiting Instruments?)

PAST, PRESENT, AND NEAR-FUTURE

Dec 2019	 Initial discussion started 	
Jan-Sep 2020	Discuss on main surveyStart writing a brief white paper	
Aug-Oct 2020	 KASI preliminary study proposal: Pre-Study for a Large Korean Spectroscopic Telescope (PI: Arman Shafieloo) 	분광탐사의 시대 도데 광학 및 적의선 천문학은 현대 천문학의 핵심 분야 전 우주 관측방법이 측광에서 분광으로 전환되고, 2030 것으로 예상된다. 세계 천문학계는 2020년 대에 진행 20여년 간에 걸친 오랜 준비를 해 왔다. 대표적으 Observatory LSST 망원경을 사용할 탐사와 일본의 Su 탐사가 있다. 최첨단 검출기를 세계 최대급 망원경여 것은 바로 그 다음 단계가 대규모 분광 탐사의 시대가 : 천문학에서 분광 관측의 역사는 다른 어느 과학 분야 발견이 뉴턴의 태양빛의 분광에서부터 시작된 것이다
Jul 2022 - Now	 Discussion resumed 	분광 스펙트럼을 얻는 다천제 분광 탐사가 2m 급 망 지금 3-4m 급 망원정에서 대규모 분광탐사가 수행될 탐사도 계획되고 있다. 그러나 현재 계획된 3-4m 급 탐사들은 우주의 아주 일부분 만을 또는 특정 부류의 그리고 우주 멀리까지 모든 천체들을 분광 관측하기에서 이는 곧 4m급 이상의 망원경을 사용한 다천체 분광관

중 하나이디 0년 대에는 분광탐사의 시대가 본격적으로 열릴 행할 대-으로 Subaru 형에 장초

야에서브 다. 지난 망원경이 성될 예정 급 또는 의 천체 에는 가-관측이 부분일 것임을 뜻한다. 한국 천문학계가 세계 학계를 선도 ocean이 바로 지금 우리 앞에 놓여 있는 것이다.

📲 Large Korean Spectroscopic Telescope

Arman Shafieloo & Ho Seong Hwang KASI, 4th August 2020

PAST, PRESENT, AND NEAR-FUTURE

Mar-May 2023	Apply for KASI Qrontier
Jul-Dec 2023 (If Qrontier selected)	 Write Qrontier Preliminary Report Form domestic/international committee
2024-2026 (If Qrontier selected)	 Detailed study with committee Surveys to collect community requests from KAS (& KSSS) Write the Qrontier Final Report as an input for the next step Consider joining other next-gen international survey projects