SSG 2023

Characterizing the Spatial Extent of Protoclusters

Formation of a cluster in HR5

Jaehyun Lee, Juhan Kim, Changbom Park & HR5 collaboration

- What is a protocluster?
 - In theory- the group of structures that will collapse into a galaxy cluster
 - In observation the region sufficiently overdense compared to surroundings
 - But, cluster progenitors are distributed over ~20-50 cMpc (e.g., Chiang+13, Muldrew+15)
 - Most progenitors are inevitably missing in the cores
- Main goal of this study
 - Finding a characteristic extent of protoclusters
 - Investigating the destination of protocluster galaxies

- Horizon Run 5 (HR5)
 - Adaptive Mesh Refinement code, **RAMSES** (Teyssier02, Dubois+14),
 - Optimized for MPI+OMP hybrid computing for Nurion at KISTI
 - Simulation box
 - Volume (1049 cMpc)³
 - Zoomed region 1049×119×127 cMpc³ (~1/80 of the entire volume), effectively ~ (250cMpc)³
 - Resolution down to 1pkpc in the zoomed region
 - Final snapshot z=0.625
 - Cosmology h=0.684, Ω_m =0.3, Ω_{Λ} =0.7 (compatible with the Planck data)

HR5 zoomed region in the initial condition (z=200)

- Identification of cluster candidates in HR5

• Cluster candidates in HR5-Low and HR5 (3)

- Enclosed mass inside the grids of cluster DM particles
 - Low

Total mass inside the grids in HR5 well agrees with the total mass of final clusters found in HR5-

Distribution of protocluster galaxies

x (cMpc)

 $\log M_{\star}/M_{\odot} = 9-10$ $\log M_{\star}/M_{\odot}=10-11$ log M★/M₀=11-12

- Distribution of the progenitors of clusters
 - Measured using 95% radius of galaxy stellar mass
 - Ranging from 10cMpc up to 30cMpc
 - Too large for the progenitors to be bound to each other.
 - Virial radius only encloses very central region of protoclusters. \bullet
 - New definition is required to characterize the extent of protoclusters

- Turnaround radius (R_{TA}) the characteristic extent of protoclusters
 - Distance to the surface on which gravitational collapse counterbalances the Hubble flow
 - Measured from the velocity and density fields of entire matter (DM, gas, star)

- Turnaround radius to M₂₀₀ relation
 - The turnaround radius is closely connected to R₂₀₀
 - increasing redshift

• $R_{TA}/R_{200} \sim 3-6$ at z=0 (Falco+14) and the range of the radius ratio weakly evolves with

- Matter overdensity inside RTA
 - Matter overdensity is almost constant within R_{TA}
 - Neighboring structures disturb R_{TA} , resulting in the scatter at low z

- Fate of Protocluster galaxies as a function of RTA

• Majority of protocluster galaxies ($\sim 60\%$ at z > 2.4) merge into others until z = 0.625

- Reliability and completeness of protocluster galaxies as a function of R_{TA}
 - $\sim 60\%$ of cluster progenitors are located within 5R_{TA} with > 90% reliability
 - ~80% of galaxies within $4R_{TA}$ and $3R_{TA}$ are actual protocluster galaxies at z~3.1 and 2.4 with ~80% completeness

- Summary & Future work
 - ~190 cluster-candidates are identified at z=0.625 in HR5 using HR5-Low
 - Protocluster galaxies are distributed over the spherical regions of r~10-30 cMpc
 - We suggest the turnaround radius as the characteristic radius of protoclusters
 - Matter overdensity stays almost constant within R_{TA}
 - 60% of protocluster galaxies at z>2.4 merge into others until z~0.625
 - Most (~80%) galaxies within R_{TA} merge into the progenitors of the BCGs
 - Galaxies within $3R_{TA}$ are actual protocluster galaxies with >80% reliability at z>2.4