

Cosmological applications of GWs

Survey Science Group Workshop 2023 Jan. 16-18, 2023 Hyung Mok Lee (SNU)

Identification of Host Galaxies of GW Events

Survey Science Group Workshop 2023 Jan. 16-18, 2023 Hyung Mok Lee (SNU)

Contents

- GW Observations: Past and Future
- Why do we need host identification?
- Dark Siren in Ground-based detectors
- Dark siren in Mid-band detectors
- Effects of Eccentricities in mid-band

Results of LIGO/Virgo/ KAGRA Observing Runs in the past

arXiv:2111.03606

- O1-O2: Gravitational Wave Transient Catalogue (GWTC-1)
 - 11 events (including 1 BNS)
- Up to O3a: GWTC-2.1
 - 55 events (including GWTC-1)
 - 2 BNS, 2 BH-NS
- Up to O3b: **GWTC-3**
 - Total 90 events (2 BNS, 3 BH-NS, 2 uncertain, 83 BBH)

Masses in the Stellar Graveyard

Future runs: O4 and O5

- O4: 1 year run, split into
 - O4a and O4b (6 months each) with 1 month commissioning break in between.
- Start of O4a: to be finalized on Jan. 19.
- Data will be released 18 months after the end of each run

- Expect ~1 event per day:
 - ~ 300 BBH
 - ~ 9 events containing a neutron star
 - ~ 1 multimessenger BNS
 - + Nature's surprises:

GW Astrophysics

- We can determine many parameters from GW Observations
 - Distances (d_L)
 - Mass (*m*₁, *m*₂)
 - Spin (although very uncertain)
- It is important to identify host galaxies in order to carry out astrophysical research using GWs
 - Formation mechanisms
 - Isolated evolution/dynamical formation
 - Hubble constant, and other cosmological parameters)
- However, host galaxy has been identified for only one event (GW170818, a BNS event), through multi-messenger studies.

Why host identification is so difficult?

- Most of the GW sources do not emit electromagnetic (EM) radiation (e.g., BBH)
 - BNS or NS-BH can emit EM radiation, but they are rare and generally rather faint.
- Sky localization is done by triangulation using differences in the arrival times to different detectors.
 - Accuracy depends on the signal-to-noise ratio

$$\sin\theta d\theta = \frac{\sqrt{\sigma_1^2 + \sigma_2^2}}{\Delta t} \qquad \sigma_t = \frac{1}{2\pi\rho\sigma_f}$$

 $d\theta$: width of the ring, Δt : baseline, ρ : signal-to-noise ratio, σ_{f} : effective

bandwidth of the source, (~100 Hz for NS binaries, smaller for BH binaries)

- $\Delta\Omega$ is very large (100 1000 sq. deg.)
- Localization accuracy improves with number and sensitivity of detectors

LIGO/Virgo Upgrades and near future detectors

- LIGO's upgrade plan
 - A+ (~50%)
 - Voyager (factor of 3)
 - Cosmic Explorer (order of magnitude)
- Additional Detectors
 - KAGRA (~2024), LIGO India (>2027)
 - Proposal for 8 km detectors in Australia (and possibly in China)
 - Einstein Telescope

Blair et al. 2015, Science China Physics, Mechanics, and Astronomy, 58, 5747

Can BBH hosts be identified with ground based detectors?

Howell, ... Lee, ... et al. 2018

Milky Way Galaxy at 0.4 Gpc

- With network of 5 advanced detectors and two additional detectors with better sensitivity, ~20% of the BBHs at 400 Mpc can be localized within 0.1 sq. deg.
- There could be 10-20 galaxies within the 0.1 sq. deg.
- BBH host identification by ground based detectors is very challenging!

Observations with mid-frequency detectors

- Detectors operating at lower frequencies can observe the merging binaries for a long time (days to years)
- The source position and inclination angle are encoded in the measured signal through
 - Relative amplitudes and phases of the two polarization components,
 - Periodic Doppler shift imposed on the signal by the detector's motion around the Sun,
 - Further modulation of the signal caused by the detector's time-varying orientation.
- Accuracies of $\,\Omega$ and d_L can be significantly improved

A case study: Simulation of BBH and BNS observations with AEDGE (Yang, Lee+, 2022, JCAP [arXiv:2110.9967v1])

Simulations of BBH with mid-freq. detector

Various cuts are assumed galaxy number densities: below these lines, we can uniquely identify host galaxies within 5 year observation

Hubble Constant Estimation from Dark Sirens

So far we assumed circular binaries, but dynamical processes produce eccentric binaries

Rodriguez et al., PRD 98. 123005 (2018)

Further improvements of estimated parameters for eccentric binaries

- In mid-frequency band, some binaries may have significant eccentricity (i.e., e > 0.1)
- The eccentric waveforms have more features than circular ones, and thus enable us to break some of the degeneracies during the inspiral phase → more accurate parameters can be inferred
- A case study with B-DECIGO:
 - $\Delta d_L/d_L$ can be improved near $\iota = 0$.
 - $(\Delta \Omega)_{e=0.1} \lesssim (\Delta \Omega)_{e=0}$
 - More improvement for larger *e*.

Accurate Waveforms for longer duration

- We developed accurate, easy to use waveforms in frequency domain covering 0.1~10 Hz for binaries with arbitrary eccentricity.
- Current status:
 - Time domain waveforms can be computed up to 4 PN. (Cho et al. 2022)
 - We need to transform the TD waveform into freq. domain.
- Spin:
 - Machinery for the inclusion of spin has been developed by Cho & Lee (2019), but has not been incorporated in the high order PN dynamics.
 - We are now improving the precessing waveforms

Summary

- Identification of the host galaxies is very important for the understanding of the the formation mechanisms and cosmological applications.
 - Followup observations in EM radiation is the obvious way, but such sources are very rare and limited to those containing neutrons stars
 - BBH do not emit EM radiation. The pointing accuracy of the groundbased detectors (including the future ones) is very poor for host identification.
 - However, some black hole binary host galaxies can be identified when mid-band detectors become available, through long duration observations.
 - If some binaries are eccentric, accuracies of directions and distances can be further improved.
 - Cosmological parameters could be precisely constrained with dark sirens alone with mid-band detectors.