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A Living Review of Machine Learning for Particle Physics

Maodern machine learning techniques, including deep learming, is rapidly being applied, adapted, and developed for high energy

chysics. The goa! of this document is to providz a nearly comprehensive list of citations for those developing and applying these
approaches to experimental, phenomenological, or theoreticel analyses. As a living document, it will be updéeted as often as
possible to incorporate the latest developments. A list of proper (unchanging, reviews can be found within. Papers arc qroupced
into a small cet of topics to be as useful as possible. Suggestions are most welcome.
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Plan of attack

1. Bayesian Neural Networks
2. Generative Models | — GAN and VAE
3. Generative Models I| — Normalizing Flows

4. Anomaly Detection



Bayesian Neural Networks
Errors and regularization
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Bayesian Networks — Overview

Ensemble of networks
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Generative Models |
GANs and VAEs
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GAN Loss
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GAN Event Generation
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GAN Unfolding
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GAN Unfolding

Cut I:
30GeV < pr; < 100GeV

Cut II:
30GeV < pp; <50GeV

30GeV < pp; <60GeV
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FCGAN Unfolding
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Generative Models |l
Normalizing Flows



Blackboard — Session lli



cINN Event Generation

exclusive

Z + 1 jet

N —
S
POZI[eUWLIOU

¥
2
N
=
O
P
>
+
)
r
i
I_I
N




cINN Event Generation
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cINN Unfolding

single detector event
3200 unfoldings
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Anomaly Detection
Unveiling new physics at the LHC?
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Anomaly detection — Comparison

Signal Region Signal Region

Supervised Supervised
|dealized AD |dealized AD
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