
KPQC 공모전 1 라운드 격자기반 알고리즘 안전성 분석
(2023-080) KPQC 공모전 격자기반 알고리즘 기반문제 안전성 분석 기술연구

2023.10.20.

Sungshin Women’s University

Joohee Lee

1

CONTENTS

 KpqC Round 1 – Lattice-based Schemes (Summary)

 CCA Attack for NTRU+

 May’s Meet-LWE Attack Costs for Lattice-based KEMs

 Security Evaluation of {LWE, LWR}-based schemes Using Lattice Estimator

2

KPQC COMPETITION

 16 algorithms in Round 1

 7 KEMs & 9 Signatures

 KpqC Bulletin : https://groups.google.com/g/kpqc-bulletin

 Analysis reports

 Benchmarks

 Scheme Updates

 Etc.

2022.2. 2022.11.

Proposal

Deadline
(개발계획서)

2023.12. 2024.3. 2024.9.

Round 1 Round 2

Round 1

Announcement

Round 2 (Final)

Announcement
Submission

Deadline

2022.10.

3

https://groups.google.com/g/kpqc-bulletin

KPQC ROUND 1 –LATTICE-BASED SCHEMES

 Among Round 1 candidates, 3 KEMs and 5 signatures are lattice-based schemes.

Category Name Base problem Note

KEM NTRU+ NTRU/RLWE • RLWE with binary secrets/ternary errors

• Analysis Reported (6/14/23)

SMAUG MLWE/MLWR • MLWE/MLWR with sparse secrets

TiGER RLWR/RLWE • RLWR/RLWE with sparse secrets

• Analysis Reported (7/9/23)

Signature GCKSign GCK • Analysis Reported (1/14/23)

HAETAE MLWE/MSIS

NCC-Sign RLWE/RSIS

Peregrine NTRU/SIS • Analysis Reported (1/6/23)

SOLMAE NTRU/SIS

4

CCA ATTACK FOR NTRU+

5

RESULTS

 Reported on 6/14/23, in the KpqC Bulletin

 Analysis of NTRU+ (google.com), eprint: A Novel CCA Attack for NTRU+ KEM (iacr.org)

 For NTRU+ (CCA ver.), we can achieve the challenge encapsulated key 𝐾∗, and win the CCA game with 4
decapsulation queries in average.

 It breaks the OW-CCA security and hence NTRU+ is *not* IND-CCA secure.

 It can be fixed by adding a verification process in the decoding algorithm(“Inv”) to check if the intermediate value 𝑀 + 𝑢2
(or the output) is binary and abort otherwise.

 We summarize some comments for the security proof, some of which introduced our attack.

*OW-CCA SECURITY GAME

6

https://groups.google.com/g/kpqc-bulletin/c/cxnTcy1oJK8
https://eprint.iacr.org/2023/1188

NTRU

 Firstly suggested by Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman in 1998.

 refered as “grandfather of lattice-based encryption schemes”

 Simple and efficient

 ℎ : public key in R𝑞 (ℎ is typically set as a ratio of small polynomials 𝑔/𝑓 which are the secret keys)

 Computes the ciphertext

𝑐 = 𝑚 + ℎ ⋅ 𝑟 𝑚𝑜𝑑 𝑞

for small 𝑚, 𝑟

 Use the rings of the form R𝑞 = 𝑍𝑞 𝑥 /(𝑥𝑝 − 1), where 𝑝 is a prime and 𝑞 is a power of 2

 Not NTT-friendly

Many variants exist such as NTRU-Prime, NTRU-HRSS, ...
7

NTRUENCRYPTVS. RLWE-BASED ENCRYPTION

RLWE-based Enc NTRUEncrypt

𝑝𝑘 = (𝑎, 𝑏),
• the uniform random 𝑎 can be compressed with a random seed

𝑝𝑘 = ℎ

𝑐𝑡 = (𝑐1, 𝑐2),
• 𝑐2 can be compressed so that only 2~3 bits for each component

need to be output

𝑐𝑡 = 𝑐

For flexible parameters, Module structure

can be used for LWE (e.g., Kyber)
• Can use smaller-degree power-of-2 rings e.g. 𝑍𝑞 𝑥 /(𝑥256 + 1)

• It does not increase pk sizes

Module approach doesn’t work well

• avoids power-of-2 rings because they are sparse (512, 1024, …)

Can use NTT

• Highly parallelizable (with AVX implementation)

Cannot use NTT
• Slow KeyGen

• Other divide-and-conquer approaches such as Toom-cook,

Karatsuba can be used

Decryption failure rates are dealt in the

average cases
• Message is an additive term in the decryption procedure

For correctness,p(𝑔𝑟 + 𝑚𝑓) < 𝑞/2 where

𝑚 is a message, and 𝑔, 𝑟, 𝑓 are small
• Considers decryption error for worst-case messages, since an

attacker might use “bad” messages to recover the secret key
8

NTTRU

 Vadim Lyubashevsky and Gregor Seiler. NTTRU: Truly fast NTRU using NTT. IACR Transactions on Cryptographic

Hardware and Embedded Systems, 2019 (https://tches. iacr.org/index.php/TCHES/article/view/8293).

 In lattice-based schemes, typically the LWE dimension (ring dimension) 𝑛 = 7~800 would be enough for 128-bit

security.

 They show that NTT over the ring 𝑍7681[𝑥]/(𝑥
768 − 𝑥384 + 1) is as efficient as NTT over power-of-2 rings

 Can be generalized for dimensions 2𝑘3ℓ (𝑛 can be 576, 648, 768, 864, …)

 𝑞 is larger than that in LWE-based enc (e.g. In Kyber, they used 𝑞 = 3329)

Schemes pk size ct size KG (cycles) Enc (cycles) Dec (cycles)

Kyber 512* 800 768 13K 17K 18K

Kyber 768* 1184 1088 25K 28K 30K

NTTRU** 1248 1248 6K 6K 8K

* Kyber Performance; taken

from “Faster Lattice-Based

KEMs via a Generic Fujisaki-

Okamoto Transform Using

Prefix Hashing (CCS’21)”

** Performance Taken from

the NTTRU Paper
9

https://eprint.iacr.org/2021/1351.pdf
https://eprint.iacr.org/2021/1351.pdf
https://eprint.iacr.org/2021/1351.pdf
https://eprint.iacr.org/2021/1351.pdf

NTRU-A,B,C

 Julien Duman, Kathrin Hövelmanns, Eike Kiltz, Vadim Lyubashevsky, Gregor Seiler, and Dominique Unruh. A thorough treatment of highly-efficient
NTRU instantiations. Public-Key Cryptography – PKC 2023 (https://eprint.iacr.org/2021/1352).

 They also use the NTT-friendly rings of the form 𝑍𝑞[𝑥]/(𝑥
𝑛 − 𝑥𝑛/2 + 1)

 They suggest transforms from PKE with small average-case correctness error into PKE’ with small worst-case correctness error : NTRU-A,

NTRU-B, NTRU-C

 Smaller modulus such as 𝑞 = 3457 for 𝑛 = 768 are available

 E.g.

For 𝑥, 𝑢 ∈ 0,1 𝑛, 𝐺𝑂𝑇𝑃 𝑥, 𝑢 := 𝑥 ⊕ 𝑢

𝐸𝑛𝑐’(𝑝𝑘,𝑚):

𝑀1 ← 𝜓𝑀1

𝑀2 = 𝐺𝑂𝑇𝑃(𝑚, 𝐹(𝑀1))

Return 𝐸𝑛𝑐(𝑝𝑘,𝑀1||𝑀2)

pk size ct size

Kyber 512 800 768

Kyber 768 1184 1088

NTTRU 1248 1248

NTRU-A* 1152 1152
Correctness error does not have the term ‘m’

* Numbers Taken from the NTRU-A,B,C paper, when 𝑛 = 768 10

https://eprint.iacr.org/2021/1352

SUMMARY ON NTRU+ KEM

 Security based on the NTRU, RLWE assumptions

 RLWE here uses (random) binary secrets and ternary errors

 Uses NTT-friendly rings

 𝑅𝑞 = 𝑍𝑞[𝑥]/(𝑓(𝑥)), where 𝑓(𝑥) = 𝑥𝑛 − 𝑥𝑛/2 + 1 and 𝑛 = 2𝑖3𝑗 [1,2]

 Uses a new encoding named SOTP (Semi-generalized One Time Pad)

 In the CCA-secure KEM, they remove re-encryption in decapsulation by adjusting Fujisaki-Okamoto transform

Parameters Securit

y level
n q Sizes (Bytes) Cycles(ref) Cycles(AVX2)

pk ct sk Keygen Encaps Decaps Keygen Encaps Decaps

NTRU+576 1 576 3,457 864 864 1,728 321,405 110,754 163,277 17,440 14,307 12,445

NTRU+768 1 768 3,457 1,152 1,152 2,304 313,669 145,658 227,028 16,032 17,514 15,848

NTRU+864 3 864 3,457 1,296 1,296 2,592 339,912 169,634 262,017 14,068 19,293 17,671

NTRU+1152 5 1,152 3,457 1,728 1,728 3,456 905,131 230,448 348,076 42,993 25,592 24,063

• [1] Vadim Lyubashevsky and Gregor Seiler. NTTRU: Truly fast NTRU using NTT. IACR Transactions on

Cryptographic Hardware and Embedded Systems, 2019 (https://tches. iacr.org/index.php/TCHES/article/view/8293).

• [2] Julien Duman, Kathrin Hövelmanns, Eike Kiltz, Vadim Lyubashevsky, Gregor Seiler, and Dominique Unruh. A

thorough treatment of highly-efficient NTRU instantiations. Public-Key Cryptography – PKC
2023 (https://eprint.iacr.org/2021/1352).

Claimed Security

(bits)

Classical Quantum

115 104

164 148

188 171

264 240
11

CCA-NTRU+

 Use a new encoding SOTP defined by :

 𝑚 ∈ 0,1 𝑛, 𝑢 = (𝑢1, 𝑢2) ∈ 0,1 2𝑛

 𝑆𝑂𝑇𝑃 𝑚, 𝑢 = 𝑢1, 𝑢2 ≔ 𝑚⊕𝑢1 − 𝑢2 ∈ −1,0,1 𝑛

 𝐼𝑛𝑣 𝑀 ∈ −1,0,1 𝑛, 𝑢 = 𝑢1, 𝑢2 ≔ 𝑀+ 𝑢2 ⊕𝑢1 ∈ 0,1 𝑛

12

CCA-NTRU+

 Use a new encoding SOTP defined by :

 𝑚 ∈ 0,1 𝑛, 𝑢 = (𝑢1, 𝑢2) ∈ 0,1 2𝑛

 𝑆𝑂𝑇𝑃 𝑚, 𝑢 = 𝑢1, 𝑢2 ≔ 𝑚⊕𝑢1 − 𝑢2 ∈ −1,0,1 𝑛

 𝐼𝑛𝑣 𝑀 ∈ −1,0,1 𝑛, 𝑢 = 𝑢1, 𝑢2 ≔ 𝑀+ 𝑢2 ⊕𝑢1 ∈ 0,1 𝑛

Caution! 𝑀 + 𝑢2 has to be binary (if not, they make the result binary by computing &0x1)

13

CCA-NTRU+

 Use a new encoding SOTP defined by :

 𝑚 ∈ 0,1 𝑛, 𝑢 = (𝑢1, 𝑢2) ∈ 0,1 2𝑛

 𝑆𝑂𝑇𝑃 𝑚, 𝑢 = 𝑢1, 𝑢2 ≔ 𝑚⊕𝑢1 − 𝑢2 ∈ −1,0,1 𝑛

 𝐼𝑛𝑣 𝑀 ∈ −1,0,1 𝑛, 𝑢 = 𝑢1, 𝑢2 ≔ 𝑀+ 𝑢2 ⊕𝑢1 ∈ 0,1 𝑛

Caution! 𝑀 + 𝑢2 has to be binary (if not, they make the result binary by computing &0x1)

14

ATTACK FOR CCA-NTRU+

 Step 1. find an example of malicious 𝑀′ ∈ {−1,0,1}𝑛 such that an intermediate value 𝑀′ + 𝑢2 in 𝐼𝑛𝑣(𝑀′, 𝑢) is

non-binary ;

 Example (n=4): Suppose 𝑚=(1,0,1,1), G 𝑟 = 𝑢 =(1,1,0,1,1,0,1,0)

𝑆𝑂𝑇𝑃(𝑚, 𝐺(𝑟)) = 𝑚⊕ 𝑢1 − 𝑢2
= ((1,0,1,1)⊕(1,1,0,1)) − (1,0,1,0)

= (0,1,1,0) − (1,0,1,0)

= (-1,1,0,0) ∶= 𝑀

Let 𝑀′ ≔ 𝑀 + 𝟐, 0,0,0 = 𝟏, 1,0,0 . Then,

𝐼𝑛𝑣 𝑀′, 𝐺 𝑟 = 𝑀′ + 𝑢2 ⊕𝑢1
= ((1,1,0,0)+(1,0,1,0)) ⊕ (1,1,0,1)

=(2,1,1,0) ⊕ (1,1,0,1)

=(3,0,1,1) → (1,0,1,1) = 𝑚

&0x1

15

ATTACK FOR CCA-NTRU+

 Step 2. use Step 1 to construct a malicious ciphertext 𝑐′ from a challenge ciphertext 𝑐∗ = ℎ ⋅ 𝑟∗ +𝑀∗ in the CCA
security game ;

 Assume 𝑐∗ = ℎ ⋅ 𝑟∗ +𝑀∗

where 𝑚∗=(1,0,1,1), G 𝑟∗ = 𝑢 =(1,1,0,1,1,0,1,0), 𝑀∗= 𝑆𝑂𝑇𝑃(𝑚∗, 𝐺(𝑟∗))

 We set 𝑐′ ≔ 𝑐∗ + 2,0,0,0 = ℎ ⋅ 𝑟∗ +𝑀′

then 𝐷𝑒𝑐𝑎𝑝𝑠 𝑠𝑘, 𝑐′ successfully produces the secret key 𝐾∗ which is a decapsulation result of 𝑐∗ (∵
𝐼𝑛𝑣 𝑀′, 𝐺 𝑟∗ = 𝑚∗).

 i.e., we can ask decapsulation oracle to achieve 𝐾∗

 But, in the CCA security game, since we don’t know both 𝑀∗ and G(𝑟∗) used in the challenge ciphertext, we
need to guess :

 the 0-th bits of 𝑀∗ and G(𝑟∗) should be one of the four cases.
𝑀∗ [0] G 𝑟∗ [0] 𝑀∗ + G 𝑟∗ [0]

1 0 1

0 1 1

0 0 0

-1 1 0

i)

ii)

• When i) happens and we add (2,0,0,0) to 𝑐∗,
decapsulation fails (since it produces different 𝑟)

• ii) happens with probability ¼

16

ATTACK FOR CCA-NTRU+

 Step 2. use Step 1 to construct a malicious ciphertext 𝑐′ from a challenge ciphertext 𝑐∗ = ℎ ⋅ 𝑟∗ +𝑀∗ in the CCA
security game ;

 Assume 𝑐∗ = ℎ ⋅ 𝑟∗ +𝑀∗

where 𝑚∗=(1,0,1,1), G 𝑟∗ = 𝑢 =(1,1,0,1,1,0,1,0), 𝑀∗= 𝑆𝑂𝑇𝑃(𝑚∗, 𝐺(𝑟∗))

 We set 𝑐′ ≔ 𝑐∗ + 2,0,0,0 = ℎ ⋅ 𝑟∗ +𝑀′

then 𝐷𝑒𝑐𝑎𝑝𝑠 𝑠𝑘, 𝑐′ successfully produces the secret key 𝐾∗ which is a decapsulation result of 𝑐∗ (∵
𝐼𝑛𝑣 𝑀′, 𝐺 𝑟∗ = 𝑚∗).

 i.e., we can ask decapsulation oracle to achieve 𝐾∗

 But, in the CCA security game, since we don’t know both 𝑀∗ and G(𝑟∗) used in the challenge ciphertext, we
need to guess with probability 1/4 for each component

 With 4 decapsulation queries in average, we can achieve 𝐾∗, and win the CCA game 17

OW-CCA SECURITY GAME & ATTACK ALGORITHM

*OW-CCA SECURITY GAME

*ATTACK ALGORITHM

18

COMMENTS FOR THE SECURITY PROOF

[FO transform without Re-Encryption (Lemma 5 in NTRU+ paper)]

19

COMMENTS FOR THE SECURITY PROOF

[FO transform without Re-Encryption (Lemma 5 in NTRU+ paper)]

 To show: For input ciphertext 𝑐,

𝑐 = 𝐸𝑛𝑐’(𝑝𝑘,𝑚’; 𝑟’’) if and only if 𝑟’ = 𝑟’’

20

COMMENTS FOR THE SECURITY PROOF

[FO transform without Re-Encryption (Lemma 5 in NTRU+ paper)]

 To show: For input ciphertext 𝑐,

𝑐 = 𝐸𝑛𝑐’(𝑝𝑘,𝑚’; 𝑟’’) if and only if 𝑟’ = 𝑟’’

 (→) Assume 𝑐 = 𝐸𝑛𝑐’(𝑝𝑘,𝑚’; 𝑟’’) in Decaps.

Because PKE’ is injective, the pair (𝑚, 𝑟) used in Encaps is the same as (𝑚’, 𝑟’’)

⋮

21

COMMENTS FOR THE SECURITY PROOF

[FO transform without Re-Encryption (Lemma 5 in NTRU+ paper)]

 To show: For input ciphertext 𝑐,

𝑐 = 𝐸𝑛𝑐’(𝑝𝑘,𝑚’; 𝑟’’) if and only if 𝑟’ = 𝑟’’

 (→) Assume 𝑐 = 𝐸𝑛𝑐’(𝑝𝑘,𝑚’; 𝑟’’) in Decaps.

Because PKE’ is injective, the pair (𝑚, 𝑟) used in Encaps is the same as 𝑚’, 𝑟’’

⋮

They assumed that c (input of Decaps) is an output of Encaps,

i.e., 𝑐 = 𝐸𝑛𝑐𝑎𝑝𝑠(𝑚, 𝑟) for some (𝑚, 𝑟).
But, there is no guarantee that 𝒄 = 𝑬𝒏𝒄𝒂𝒑𝒔(𝒎, 𝒓) for some 𝒎 ∈ 𝑴, 𝒓 ∈ 𝑹

22

COMMENTS FOR THE SECURITY PROOF

[FO transform without Re-Encryption (Lemma 5 in NTRU+ paper)]

 To show: For input ciphertext 𝑐,

𝑐 = 𝐸𝑛𝑐’(𝑝𝑘,𝑚’; 𝑟’’) if and only if 𝑟’ = 𝑟’’

 (←) Assume 𝑟′ = 𝑟′′ in Decaps.

Because SOTP is rigid, 𝑚′ = 𝐼𝑛𝑣(𝑀′, 𝐺 𝑟′) implies 𝑀′ = 𝑆𝑂𝑇𝑃 𝑚′, 𝐺(𝑟′) , and thus

𝑀′ = 𝑆𝑂𝑇𝑃 𝑚′, 𝐺(𝑟′′)

⋮

23

COMMENTS FOR THE SECURITY PROOF

[FO transform without Re-Encryption (Lemma 5 in NTRU+ paper)]

 To show: For input ciphertext 𝑐,

𝑐 = 𝐸𝑛𝑐′(𝑝𝑘,𝑚′; 𝑟′′) if and only if 𝑟′ = 𝑟′′

 (←) Assume 𝑟′ = 𝑟′′ in Decaps.

Because SOTP is rigid, 𝑚′ = 𝐼𝑛𝑣(𝑀′, 𝐺 𝑟′) implies 𝑀′ = 𝑆𝑂𝑇𝑃 𝑚′, 𝐺(𝑟′) , and thus

𝑀′ = 𝑆𝑂𝑇𝑃 𝑚′, 𝐺(𝑟′′)

⋮

They assumed that 𝑀′ = 𝐷𝑒𝑐(𝑠𝑘, 𝑐) is an output of SOTP w.r.t. u = 𝐺(𝑟′),
i.e., 𝑀′ = 𝑆𝑂𝑇𝑃(𝑚, 𝐺 𝑟′) for some 𝑚.

But, there is no guarantee that 𝑴′ ∈ {𝑺𝑶𝑻𝑷 𝒎,𝑮 𝒓′) 𝒎 ∈ 𝑴 as

shown in our attack.

(Recall) Rigidity of SOTP ;

For all 𝑢 ∈ 𝑈, and 𝑦 ∈ 𝑌 encoded with respect to 𝑢, it holds that 𝑆𝑂𝑇𝑃(𝐼𝑛𝑣(𝑦, 𝑢), 𝑢) = 𝑦 24

ABOUT NTRU+ VERSION 1.1

 On 9/16/23, NTRU+ ver. 1.1 has been released

 We checked that the attack strategy does not work for the updated algorithm.

 Security proofs should be revised also, as pointed in this presentation

25

MEET-LWE ATTACK COSTS FOR

LATTICE-BASED KEMS

• [May21] May, Alexander. "How to meet ternary LWE keys." Advances in Cryptology–CRYPTO 2021: 41st Annual International Cryptology Conference, CRYPTO 2021,

Virtual Event, August 16–20, 2021, Proceedings, Part II 41. Springer International Publishing, 2021.

• Some parts of the slides introducing Meet LWE idea are taken from May’s slide in Crypto 2021 ((40) How to Meet Ternary LWE Keys – YouTube) 26

https://www.youtube.com/watch?v=Fa6PxC5ufvU

TERNARY LWE PROBLEM

 Asymptotically, Brute Force < Odlyzko’s MitM < Meet LWE

 Meet LWE can be extended to (fixed size of) small errors, so it is applicable to all 3 Lattice-based KEMs

 SMAUG, TiGER use sparse secrets

 NTRU+ uses the ternary LWE problem (they use sparse ternary or binary secrets)

[Ternary LWE problem]

Given; 𝐴 ∈ 𝑍𝑞
𝑛×𝑛, 𝑏 ∈ 𝑍𝑞

𝑛 such that 𝐴 ⋅ 𝑠 = 𝑏 + 𝑒 for 𝒔, 𝒆 ∈ 𝟎,±𝟏 𝒏,

Find; 𝑠 ∈ 0,±1 𝑛

A s eb

+=

27

BRUTE FORCE ATTACK FOR TERNARY LWE

 Equation : 𝐴 ⋅ 𝑠 = 𝑏 + 𝑒 𝑚𝑜𝑑 𝑞

 𝑆 = 3𝑛; search space size for ternary keys

 Running time is 𝑇 = 𝑆

[Brute Force]

• Input : 𝐴 ∈ 𝑍𝑞
𝑛×𝑛, 𝑏 ∈ 𝑍𝑞

𝑛

• For all 𝑠 ∈ 0,±1 𝑛:

• If 𝐴 ⋅ 𝑠 − 𝑏 ∈ 0, ±1 𝑛 then output 𝑠

A s eb

+=

28

ODLYZKO’S MITM

 Equation : 𝐴1 ⋅ 𝑠1 = −𝐴2 ⋅ 𝑠2 + 𝑏 + 𝑒 𝑚𝑜𝑑 𝑞

i.e. 𝐴1 ⋅ 𝑠1 ≈ −𝐴2 ⋅ 𝑠2 + 𝑏 𝑚𝑜𝑑 𝑞

 𝑆 = 3𝑛; search space size for ternary keys

 Running time is 𝑇 = 3𝑛/2 = 𝑆1/2 with same memory

[Odlyzko’s MitM]

• Input : 𝐴 = (𝐴1|𝐴2) ∈ 𝑍𝑞
𝑛×𝑛, 𝑏 ∈ 𝑍𝑞

𝑛

• For all 𝑠1 ∈ 0,±1 𝑛/2:

• Construct L1 with entries (𝑠1, ℎ 𝐴1𝑠1)
• For all 𝑠2 ∈ 0,±1 𝑛/2:

• Construct L2 with entries (𝑠2, ℎ −𝐴2𝑠2 + 𝑏)
• Output 𝑠1 𝑠2 with ℎ 𝐴1𝑠1 = ℎ −𝐴2𝑠2 + 𝑏

𝑠1
eb

+=

𝐴1 𝐴2
𝑠2

+

A

=

𝐴1 𝐴2

* ℎ: locality sensitive hash

29

REPRESENTATIONS (HOWGRAVE-GRAHAM, JOUX ‘10)

 Idea ; 𝑠 ≔ 𝑠1 + 𝑠2 for 𝑠1, 𝑠2 ∈ 0,±1 𝑛

 Allows redundancy

 (1,0,1,-1,0) = (1,0,0,-1,0) + (0,0,1,0,0)

 = (1,0,1,0,0) + (0,0,0,-1,0)

= (0,0,1,0,0) + (1,0,0,-1,0)

= (0,0,1,-1,0) + (1,0,0,0,0)

𝑠1 eb

+=

𝑠2

+

AA

1 0 -1

REP-0 • 1+0

• 0+1

- • (-1)+0

• 0+(-1)

REP-1 • 1+0

• 0+1

• 1+(-1)

• (-1)+1

• (-1)+0

• 0+(-1)

REP-2 • 1+0

• 0+1

• 2+(-1)

• (-1)+2

• 1+(-1)

• (-1)+1

• 2+(-2)

• (-2)+2

• (-1)+0

• 0+(-1)

• 1+(-2)

• (-2)+1

30

MEET LWE ATTACK [MAY21]

 Equation : 𝐴 ⋅ 𝑠1 = −𝐴 ⋅ 𝑠2 + 𝑏 + 𝑒 𝑚𝑜𝑑 𝑞

i.e. 𝐴 ⋅ 𝑠1 ≈ −𝐴 ⋅ 𝑠2 + 𝑏 𝑚𝑜𝑑 𝑞

 By using representations s = 𝑠1 + 𝑠2, the number of solutions (≔ 𝑹) increases

 We can reduce the list (L1, 𝐿2) sizes with a factor of 𝑅 (by guessing 𝑟 coordinates of 𝑒), expecting at least one solution exists

 This strategy can be recursively applied to 𝑠1, 𝑠2, respectively (lists can be obtained by tree-based construction)

 Run-time 𝑇 = 𝑇𝑔 ⋅ 𝑇ℓ where 𝑇𝑔; guessing complexity, 𝑇ℓ; list construction complexity

[Meet LWE (high-level idea)]

• Input : 𝐴 ∈ 𝑍𝑞
𝑛×𝑛, 𝑏 ∈ 𝑍𝑞

𝑛

• Choose representation REP-0, REP-1, REP-2

• Guess 𝑟 coordinates of 𝑒 (say 𝑒𝑟)
• For 𝑠1, construct L1 with entries (𝑠1, 𝐴𝑠1)
• For 𝑠2, construct L2 with entries (𝑠2, −𝐴𝑠2 + 𝑏)
• Output s1 + s2 s.t.

• 𝜋𝑟 𝐴𝑠1 = 𝜋𝑟 −𝐴𝑠2 + 𝑏 + 𝑒𝑟
• ℎ 𝐴𝑠1 = ℎ −𝐴𝑠2 + 𝑏 for n − 𝑟 coordinates

𝑠1 eb

+=

𝑠2

+

AA

31

ATTACK COMPLEXITIES OF MEET LWE

 We slightly modified Meet-LWE algorithm for non-ternary errors

 TiGER192 parameter is vulnerable to Meet-LWE attack

 In their analysis, the claimed log complexity against best (quantum) attack was 192, but it is dropped to 170.1 (Note. it is a classical attack)

 (Recommendation) They need to increase ℎ𝑠, ℎ𝑟 to fix it

 The other parameter sets of 3 lattice-based KEMs are fine

32

OUR EXPERIMENT

 Use Python code to compute the Meet LWE attack

costs for Rep-0, Rep-1, and Rep-2, respectively

 We utilized the python code modified from an open

source “Meet_LWE.py” in SMAUG v1.0 helper scripts, by

extending it into the non-ternary error cases

 B: error parameter for LWE

33

ATTACK COMPLEXITIES FOR VARIOUS PARAMETERS

▪ Meet LWE Complexity for the LWR instance in

TiGER when increasing ℎ𝑠 (hamming weight of

LWR’s secret key 𝑠𝑘.)

▪ (Recommendation) They need to increase ℎ𝑠 to be

over 104 to achieve 200-bit classical security as

claimed in TiGER against the Meet-LWE attack.

(104 ≤ ℎ𝑠)

𝑋 = ℎ𝑠(Hamming weight parameter

of LWR’s secret key 𝑠𝑘.)

𝑌 =
Meet-LWE

Time

Complexity

34

SECURITY EVALUATION OF {LWE, LWR}-BASED SCHEMES

USING LATTICE ESTIMATOR

▪ Lattice Estimator — Lattice Estimator 0.1 documentation (lattice-estimator.readthedocs.io)

▪ Albrecht, Martin R., Rachel Player, and Sam Scott. "On the concrete hardness of learning with errors." Journal of

Mathematical Cryptology 9.3 (2015): 169-203.

35

https://lattice-estimator.readthedocs.io/en/latest/

GOAL

 Better understanding for the security estimation of KpqC Round 1 candidates

 Analysis reports for the respective attacks

 Estimate the security for all the LWE/LWR based schemes {NTRU+, SMAUG, TiGER, HAETAE, NCC-Sign}

36

METHODS

▪ Lattice estimator
 For LWE/LWR security analysis, M. Albrecht's Lattice Estimator (Lattice Estimator — Lattice Estimator 0.1 documentation

(lattice-estimator.readthedocs.io)) is used. Lattice Estimator is a Sage open source that calculates the attack complexities

and additional parameters required for attack by taking LWE/LWR parameters as input values.

▪ The BKZ Algorithm Complexity – Core-SVP model
 The principle of the BKZ algorithm is to repeatedly apply the SVP solver, an algorithm that finds the shortest vector, for a

sub-lattice of dimension (𝛽) smaller than that of a given lattice.

 The Core-SVP model from the NewHope paper (USENIX’16) is a model for estimating the time complexity of the BKZ

algorithm. The classical security in bits is estimated as 2𝑐⋅𝛽 using 𝑐 = 0.292, and the quantum security (bit) can be also

estimated by calculating the classical security (bit) × 𝑐𝑞/0.292 in the Core-SVP model.

Classical Quantum[1]

𝑐 0.292 0.257

𝑇 20.292𝛽 20.257𝛽

[1] Chailloux, A., Loyer, J. Lattice Sieving via
Quantum Random Walks. ASIACRYPT 2021

37

https://lattice-estimator.readthedocs.io/en/latest/
https://lattice-estimator.readthedocs.io/en/latest/

RESULTS - KEMS

Notes.

• NTRU+ in its specification uses the binary secrets for LWE (Algorithm 6, 9 in the specification), while it uses the

centered binomial distribution for the LWE secrets in the implementation. So, we present evaluations for both.

• Estimated security for SMAUG-256, TiGER-256 ; 1-bit lower than the proposed security
38

RESULTS - SIGNATURES

Notes.

• NCC-Sign proposed the security without core-SVP model, so we presented the

security evaluation with and without the Core-SVP model.
39

SUMMARY

 CCA-NTRU+ can be attacked since their decoding method(the 𝐼𝑛𝑣 algorithm) does not check if the

intermediate value is binary

 Can be fixed if they check if the intermediate value is binary, and abort otherwise.

 We evaluate the concrete security of 3 lattice-based KEMs against Meet LWE attack

 TiGER needs to take into account Meet LWE attack for their TiGER192 parameter set

 Can be fixed by increasing ℎ𝑠, ℎ𝑟

 TiGER updated the parameter sets : now secure against Meet-LWE attack

 We estimated the security of all the {LWE, LWR}-based schemes using Lattice estimator and verified the

(most of) claims in the proposals of {NTRU+, SMAUG, TiGER, HAETAE, NCC-Sign}

40

THANK YOU!
ANY QUESTIONS OR COMMENTS?

JOOHEELEE@SUNGSHIN.AC.KR

	슬라이드 1: KpqC 공모전 1 라운드 격자기반 알고리즘 안전성 분석
	슬라이드 2: Contents
	슬라이드 3: KpqC competition
	슬라이드 4: KpqC round 1 –lattice-based schemes
	슬라이드 5: CCA Attack for NTRU+
	슬라이드 6: Results
	슬라이드 7: NTRU
	슬라이드 8: NTRUencrypt vs. Rlwe-based encryption
	슬라이드 9: NTTRU
	슬라이드 10: NTRU-A,B,C
	슬라이드 11: Summary on ntru+ KEM
	슬라이드 12: Cca-NTRU+
	슬라이드 13: Cca-NTRU+
	슬라이드 14: Cca-NTRU+
	슬라이드 15: Attack for cca-NTRU+
	슬라이드 16: Attack for cca-NTRU+
	슬라이드 17: Attack for cca-NTRU+
	슬라이드 18: OW-CCA Security game & attack algorithm
	슬라이드 19: Comments for the security proof
	슬라이드 20: Comments for the security proof
	슬라이드 21: Comments for the security proof
	슬라이드 22: Comments for the security proof
	슬라이드 23: Comments for the security proof
	슬라이드 24: Comments for the security proof
	슬라이드 25: About NTRU+ version 1.1
	슬라이드 26: Meet-LWE Attack Costs for lattice-based kems
	슬라이드 27: Ternary LWE problem
	슬라이드 28: Brute Force Attack for Ternary LWE
	슬라이드 29: Odlyzko’s MitM
	슬라이드 30: Representations (Howgrave-Graham, Joux ‘10)
	슬라이드 31: Meet LWE Attack [May21]
	슬라이드 32: Attack complexities of Meet LWE
	슬라이드 33: Our Experiment
	슬라이드 34: Attack Complexities for various Parameters
	슬라이드 35: Security Evaluation of {LWE, LWR}-based schemes Using Lattice Estimator
	슬라이드 36: goal
	슬라이드 37: methods
	슬라이드 38: Results - KEMs
	슬라이드 39: Results - signatures
	슬라이드 40: Summary
	슬라이드 41

