
KPQC 공모전 1 라운드 격자기반 알고리즘 안전성 분석
(2023-080) KPQC 공모전 격자기반 알고리즘 기반문제 안전성 분석 기술연구

2023.10.20.

Sungshin Women’s University

Joohee Lee

1

CONTENTS

 KpqC Round 1 – Lattice-based Schemes (Summary)

 CCA Attack for NTRU+

 May’s Meet-LWE Attack Costs for Lattice-based KEMs

 Security Evaluation of {LWE, LWR}-based schemes Using Lattice Estimator

2

KPQC COMPETITION

 16 algorithms in Round 1

 7 KEMs & 9 Signatures

 KpqC Bulletin : https://groups.google.com/g/kpqc-bulletin

 Analysis reports

 Benchmarks

 Scheme Updates

 Etc.

2022.2. 2022.11.

Proposal

Deadline
(개발계획서)

2023.12. 2024.3. 2024.9.

Round 1 Round 2

Round 1

Announcement

Round 2 (Final)

Announcement
Submission

Deadline

2022.10.

3

https://groups.google.com/g/kpqc-bulletin

KPQC ROUND 1 –LATTICE-BASED SCHEMES

 Among Round 1 candidates, 3 KEMs and 5 signatures are lattice-based schemes.

Category Name Base problem Note

KEM NTRU+ NTRU/RLWE • RLWE with binary secrets/ternary errors

• Analysis Reported (6/14/23)

SMAUG MLWE/MLWR • MLWE/MLWR with sparse secrets

TiGER RLWR/RLWE • RLWR/RLWE with sparse secrets

• Analysis Reported (7/9/23)

Signature GCKSign GCK • Analysis Reported (1/14/23)

HAETAE MLWE/MSIS

NCC-Sign RLWE/RSIS

Peregrine NTRU/SIS • Analysis Reported (1/6/23)

SOLMAE NTRU/SIS

4

CCA ATTACK FOR NTRU+

5

RESULTS

 Reported on 6/14/23, in the KpqC Bulletin

 Analysis of NTRU+ (google.com), eprint: A Novel CCA Attack for NTRU+ KEM (iacr.org)

 For NTRU+ (CCA ver.), we can achieve the challenge encapsulated key 𝐾∗, and win the CCA game with 4
decapsulation queries in average.

 It breaks the OW-CCA security and hence NTRU+ is *not* IND-CCA secure.

 It can be fixed by adding a verification process in the decoding algorithm(“Inv”) to check if the intermediate value 𝑀 + 𝑢2
(or the output) is binary and abort otherwise.

 We summarize some comments for the security proof, some of which introduced our attack.

*OW-CCA SECURITY GAME

6

https://groups.google.com/g/kpqc-bulletin/c/cxnTcy1oJK8
https://eprint.iacr.org/2023/1188

NTRU

 Firstly suggested by Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman in 1998.

 refered as “grandfather of lattice-based encryption schemes”

 Simple and efficient

 ℎ : public key in R𝑞 (ℎ is typically set as a ratio of small polynomials 𝑔/𝑓 which are the secret keys)

 Computes the ciphertext

𝑐 = 𝑚 + ℎ ⋅ 𝑟 𝑚𝑜𝑑 𝑞

for small 𝑚, 𝑟

 Use the rings of the form R𝑞 = 𝑍𝑞 𝑥 /(𝑥𝑝 − 1), where 𝑝 is a prime and 𝑞 is a power of 2

 Not NTT-friendly

Many variants exist such as NTRU-Prime, NTRU-HRSS, ...
7

NTRUENCRYPTVS. RLWE-BASED ENCRYPTION

RLWE-based Enc NTRUEncrypt

𝑝𝑘 = (𝑎, 𝑏),
• the uniform random 𝑎 can be compressed with a random seed

𝑝𝑘 = ℎ

𝑐𝑡 = (𝑐1, 𝑐2),
• 𝑐2 can be compressed so that only 2~3 bits for each component

need to be output

𝑐𝑡 = 𝑐

For flexible parameters, Module structure

can be used for LWE (e.g., Kyber)
• Can use smaller-degree power-of-2 rings e.g. 𝑍𝑞 𝑥 /(𝑥256 + 1)

• It does not increase pk sizes

Module approach doesn’t work well

• avoids power-of-2 rings because they are sparse (512, 1024, …)

Can use NTT

• Highly parallelizable (with AVX implementation)

Cannot use NTT
• Slow KeyGen

• Other divide-and-conquer approaches such as Toom-cook,

Karatsuba can be used

Decryption failure rates are dealt in the

average cases
• Message is an additive term in the decryption procedure

For correctness,p(𝑔𝑟 + 𝑚𝑓) < 𝑞/2 where

𝑚 is a message, and 𝑔, 𝑟, 𝑓 are small
• Considers decryption error for worst-case messages, since an

attacker might use “bad” messages to recover the secret key
8

NTTRU

 Vadim Lyubashevsky and Gregor Seiler. NTTRU: Truly fast NTRU using NTT. IACR Transactions on Cryptographic

Hardware and Embedded Systems, 2019 (https://tches. iacr.org/index.php/TCHES/article/view/8293).

 In lattice-based schemes, typically the LWE dimension (ring dimension) 𝑛 = 7~800 would be enough for 128-bit

security.

 They show that NTT over the ring 𝑍7681[𝑥]/(𝑥
768 − 𝑥384 + 1) is as efficient as NTT over power-of-2 rings

 Can be generalized for dimensions 2𝑘3ℓ (𝑛 can be 576, 648, 768, 864, …)

 𝑞 is larger than that in LWE-based enc (e.g. In Kyber, they used 𝑞 = 3329)

Schemes pk size ct size KG (cycles) Enc (cycles) Dec (cycles)

Kyber 512* 800 768 13K 17K 18K

Kyber 768* 1184 1088 25K 28K 30K

NTTRU** 1248 1248 6K 6K 8K

* Kyber Performance; taken

from “Faster Lattice-Based

KEMs via a Generic Fujisaki-

Okamoto Transform Using

Prefix Hashing (CCS’21)”

** Performance Taken from

the NTTRU Paper
9

https://eprint.iacr.org/2021/1351.pdf
https://eprint.iacr.org/2021/1351.pdf
https://eprint.iacr.org/2021/1351.pdf
https://eprint.iacr.org/2021/1351.pdf

NTRU-A,B,C

 Julien Duman, Kathrin Hövelmanns, Eike Kiltz, Vadim Lyubashevsky, Gregor Seiler, and Dominique Unruh. A thorough treatment of highly-efficient
NTRU instantiations. Public-Key Cryptography – PKC 2023 (https://eprint.iacr.org/2021/1352).

 They also use the NTT-friendly rings of the form 𝑍𝑞[𝑥]/(𝑥
𝑛 − 𝑥𝑛/2 + 1)

 They suggest transforms from PKE with small average-case correctness error into PKE’ with small worst-case correctness error : NTRU-A,

NTRU-B, NTRU-C

 Smaller modulus such as 𝑞 = 3457 for 𝑛 = 768 are available

 E.g.

For 𝑥, 𝑢 ∈ 0,1 𝑛, 𝐺𝑂𝑇𝑃 𝑥, 𝑢 := 𝑥 ⊕ 𝑢

𝐸𝑛𝑐’(𝑝𝑘,𝑚):

𝑀1 ← 𝜓𝑀1

𝑀2 = 𝐺𝑂𝑇𝑃(𝑚, 𝐹(𝑀1))

Return 𝐸𝑛𝑐(𝑝𝑘,𝑀1||𝑀2)

pk size ct size

Kyber 512 800 768

Kyber 768 1184 1088

NTTRU 1248 1248

NTRU-A* 1152 1152
Correctness error does not have the term ‘m’

* Numbers Taken from the NTRU-A,B,C paper, when 𝑛 = 768 10

https://eprint.iacr.org/2021/1352

SUMMARY ON NTRU+ KEM

 Security based on the NTRU, RLWE assumptions

 RLWE here uses (random) binary secrets and ternary errors

 Uses NTT-friendly rings

 𝑅𝑞 = 𝑍𝑞[𝑥]/(𝑓(𝑥)), where 𝑓(𝑥) = 𝑥𝑛 − 𝑥𝑛/2 + 1 and 𝑛 = 2𝑖3𝑗 [1,2]

 Uses a new encoding named SOTP (Semi-generalized One Time Pad)

 In the CCA-secure KEM, they remove re-encryption in decapsulation by adjusting Fujisaki-Okamoto transform

Parameters Securit

y level
n q Sizes (Bytes) Cycles(ref) Cycles(AVX2)

pk ct sk Keygen Encaps Decaps Keygen Encaps Decaps

NTRU+576 1 576 3,457 864 864 1,728 321,405 110,754 163,277 17,440 14,307 12,445

NTRU+768 1 768 3,457 1,152 1,152 2,304 313,669 145,658 227,028 16,032 17,514 15,848

NTRU+864 3 864 3,457 1,296 1,296 2,592 339,912 169,634 262,017 14,068 19,293 17,671

NTRU+1152 5 1,152 3,457 1,728 1,728 3,456 905,131 230,448 348,076 42,993 25,592 24,063

• [1] Vadim Lyubashevsky and Gregor Seiler. NTTRU: Truly fast NTRU using NTT. IACR Transactions on

Cryptographic Hardware and Embedded Systems, 2019 (https://tches. iacr.org/index.php/TCHES/article/view/8293).

• [2] Julien Duman, Kathrin Hövelmanns, Eike Kiltz, Vadim Lyubashevsky, Gregor Seiler, and Dominique Unruh. A

thorough treatment of highly-efficient NTRU instantiations. Public-Key Cryptography – PKC
2023 (https://eprint.iacr.org/2021/1352).

Claimed Security

(bits)

Classical Quantum

115 104

164 148

188 171

264 240
11

CCA-NTRU+

 Use a new encoding SOTP defined by :

 𝑚 ∈ 0,1 𝑛, 𝑢 = (𝑢1, 𝑢2) ∈ 0,1 2𝑛

 𝑆𝑂𝑇𝑃 𝑚, 𝑢 = 𝑢1, 𝑢2 ≔ 𝑚⊕𝑢1 − 𝑢2 ∈ −1,0,1 𝑛

 𝐼𝑛𝑣 𝑀 ∈ −1,0,1 𝑛, 𝑢 = 𝑢1, 𝑢2 ≔ 𝑀+ 𝑢2 ⊕𝑢1 ∈ 0,1 𝑛

12

CCA-NTRU+

 Use a new encoding SOTP defined by :

 𝑚 ∈ 0,1 𝑛, 𝑢 = (𝑢1, 𝑢2) ∈ 0,1 2𝑛

 𝑆𝑂𝑇𝑃 𝑚, 𝑢 = 𝑢1, 𝑢2 ≔ 𝑚⊕𝑢1 − 𝑢2 ∈ −1,0,1 𝑛

 𝐼𝑛𝑣 𝑀 ∈ −1,0,1 𝑛, 𝑢 = 𝑢1, 𝑢2 ≔ 𝑀+ 𝑢2 ⊕𝑢1 ∈ 0,1 𝑛

Caution! 𝑀 + 𝑢2 has to be binary (if not, they make the result binary by computing &0x1)

13

CCA-NTRU+

 Use a new encoding SOTP defined by :

 𝑚 ∈ 0,1 𝑛, 𝑢 = (𝑢1, 𝑢2) ∈ 0,1 2𝑛

 𝑆𝑂𝑇𝑃 𝑚, 𝑢 = 𝑢1, 𝑢2 ≔ 𝑚⊕𝑢1 − 𝑢2 ∈ −1,0,1 𝑛

 𝐼𝑛𝑣 𝑀 ∈ −1,0,1 𝑛, 𝑢 = 𝑢1, 𝑢2 ≔ 𝑀+ 𝑢2 ⊕𝑢1 ∈ 0,1 𝑛

Caution! 𝑀 + 𝑢2 has to be binary (if not, they make the result binary by computing &0x1)

14

ATTACK FOR CCA-NTRU+

 Step 1. find an example of malicious 𝑀′ ∈ {−1,0,1}𝑛 such that an intermediate value 𝑀′ + 𝑢2 in 𝐼𝑛𝑣(𝑀′, 𝑢) is

non-binary ;

 Example (n=4): Suppose 𝑚=(1,0,1,1), G 𝑟 = 𝑢 =(1,1,0,1,1,0,1,0)

𝑆𝑂𝑇𝑃(𝑚, 𝐺(𝑟)) = 𝑚⊕ 𝑢1 − 𝑢2
= ((1,0,1,1)⊕(1,1,0,1)) − (1,0,1,0)

= (0,1,1,0) − (1,0,1,0)

= (-1,1,0,0) ∶= 𝑀

Let 𝑀′ ≔ 𝑀 + 𝟐, 0,0,0 = 𝟏, 1,0,0 . Then,

𝐼𝑛𝑣 𝑀′, 𝐺 𝑟 = 𝑀′ + 𝑢2 ⊕𝑢1
= ((1,1,0,0)+(1,0,1,0)) ⊕ (1,1,0,1)

=(2,1,1,0) ⊕ (1,1,0,1)

=(3,0,1,1) → (1,0,1,1) = 𝑚

&0x1

15

ATTACK FOR CCA-NTRU+

 Step 2. use Step 1 to construct a malicious ciphertext 𝑐′ from a challenge ciphertext 𝑐∗ = ℎ ⋅ 𝑟∗ +𝑀∗ in the CCA
security game ;

 Assume 𝑐∗ = ℎ ⋅ 𝑟∗ +𝑀∗

where 𝑚∗=(1,0,1,1), G 𝑟∗ = 𝑢 =(1,1,0,1,1,0,1,0), 𝑀∗= 𝑆𝑂𝑇𝑃(𝑚∗, 𝐺(𝑟∗))

 We set 𝑐′ ≔ 𝑐∗ + 2,0,0,0 = ℎ ⋅ 𝑟∗ +𝑀′

then 𝐷𝑒𝑐𝑎𝑝𝑠 𝑠𝑘, 𝑐′ successfully produces the secret key 𝐾∗ which is a decapsulation result of 𝑐∗ (∵
𝐼𝑛𝑣 𝑀′, 𝐺 𝑟∗ = 𝑚∗).

 i.e., we can ask decapsulation oracle to achieve 𝐾∗

 But, in the CCA security game, since we don’t know both 𝑀∗ and G(𝑟∗) used in the challenge ciphertext, we
need to guess :

 the 0-th bits of 𝑀∗ and G(𝑟∗) should be one of the four cases.
𝑀∗ [0] G 𝑟∗ [0] 𝑀∗ + G 𝑟∗ [0]

1 0 1

0 1 1

0 0 0

-1 1 0

i)

ii)

• When i) happens and we add (2,0,0,0) to 𝑐∗,
decapsulation fails (since it produces different 𝑟)

• ii) happens with probability ¼

16

ATTACK FOR CCA-NTRU+

 Step 2. use Step 1 to construct a malicious ciphertext 𝑐′ from a challenge ciphertext 𝑐∗ = ℎ ⋅ 𝑟∗ +𝑀∗ in the CCA
security game ;

 Assume 𝑐∗ = ℎ ⋅ 𝑟∗ +𝑀∗

where 𝑚∗=(1,0,1,1), G 𝑟∗ = 𝑢 =(1,1,0,1,1,0,1,0), 𝑀∗= 𝑆𝑂𝑇𝑃(𝑚∗, 𝐺(𝑟∗))

 We set 𝑐′ ≔ 𝑐∗ + 2,0,0,0 = ℎ ⋅ 𝑟∗ +𝑀′

then 𝐷𝑒𝑐𝑎𝑝𝑠 𝑠𝑘, 𝑐′ successfully produces the secret key 𝐾∗ which is a decapsulation result of 𝑐∗ (∵
𝐼𝑛𝑣 𝑀′, 𝐺 𝑟∗ = 𝑚∗).

 i.e., we can ask decapsulation oracle to achieve 𝐾∗

 But, in the CCA security game, since we don’t know both 𝑀∗ and G(𝑟∗) used in the challenge ciphertext, we
need to guess with probability 1/4 for each component

 With 4 decapsulation queries in average, we can achieve 𝐾∗, and win the CCA game 17

OW-CCA SECURITY GAME & ATTACK ALGORITHM

*OW-CCA SECURITY GAME

*ATTACK ALGORITHM

18

COMMENTS FOR THE SECURITY PROOF

[FO transform without Re-Encryption (Lemma 5 in NTRU+ paper)]

19

COMMENTS FOR THE SECURITY PROOF

[FO transform without Re-Encryption (Lemma 5 in NTRU+ paper)]

 To show: For input ciphertext 𝑐,

𝑐 = 𝐸𝑛𝑐’(𝑝𝑘,𝑚’; 𝑟’’) if and only if 𝑟’ = 𝑟’’

20

COMMENTS FOR THE SECURITY PROOF

[FO transform without Re-Encryption (Lemma 5 in NTRU+ paper)]

 To show: For input ciphertext 𝑐,

𝑐 = 𝐸𝑛𝑐’(𝑝𝑘,𝑚’; 𝑟’’) if and only if 𝑟’ = 𝑟’’

 (→) Assume 𝑐 = 𝐸𝑛𝑐’(𝑝𝑘,𝑚’; 𝑟’’) in Decaps.

Because PKE’ is injective, the pair (𝑚, 𝑟) used in Encaps is the same as (𝑚’, 𝑟’’)

⋮

21

COMMENTS FOR THE SECURITY PROOF

[FO transform without Re-Encryption (Lemma 5 in NTRU+ paper)]

 To show: For input ciphertext 𝑐,

𝑐 = 𝐸𝑛𝑐’(𝑝𝑘,𝑚’; 𝑟’’) if and only if 𝑟’ = 𝑟’’

 (→) Assume 𝑐 = 𝐸𝑛𝑐’(𝑝𝑘,𝑚’; 𝑟’’) in Decaps.

Because PKE’ is injective, the pair (𝑚, 𝑟) used in Encaps is the same as 𝑚’, 𝑟’’

⋮

They assumed that c (input of Decaps) is an output of Encaps,

i.e., 𝑐 = 𝐸𝑛𝑐𝑎𝑝𝑠(𝑚, 𝑟) for some (𝑚, 𝑟).
But, there is no guarantee that 𝒄 = 𝑬𝒏𝒄𝒂𝒑𝒔(𝒎, 𝒓) for some 𝒎 ∈ 𝑴, 𝒓 ∈ 𝑹

22

COMMENTS FOR THE SECURITY PROOF

[FO transform without Re-Encryption (Lemma 5 in NTRU+ paper)]

 To show: For input ciphertext 𝑐,

𝑐 = 𝐸𝑛𝑐’(𝑝𝑘,𝑚’; 𝑟’’) if and only if 𝑟’ = 𝑟’’

 (←) Assume 𝑟′ = 𝑟′′ in Decaps.

Because SOTP is rigid, 𝑚′ = 𝐼𝑛𝑣(𝑀′, 𝐺 𝑟′) implies 𝑀′ = 𝑆𝑂𝑇𝑃 𝑚′, 𝐺(𝑟′) , and thus

𝑀′ = 𝑆𝑂𝑇𝑃 𝑚′, 𝐺(𝑟′′)

⋮

23

COMMENTS FOR THE SECURITY PROOF

[FO transform without Re-Encryption (Lemma 5 in NTRU+ paper)]

 To show: For input ciphertext 𝑐,

𝑐 = 𝐸𝑛𝑐′(𝑝𝑘,𝑚′; 𝑟′′) if and only if 𝑟′ = 𝑟′′

 (←) Assume 𝑟′ = 𝑟′′ in Decaps.

Because SOTP is rigid, 𝑚′ = 𝐼𝑛𝑣(𝑀′, 𝐺 𝑟′) implies 𝑀′ = 𝑆𝑂𝑇𝑃 𝑚′, 𝐺(𝑟′) , and thus

𝑀′ = 𝑆𝑂𝑇𝑃 𝑚′, 𝐺(𝑟′′)

⋮

They assumed that 𝑀′ = 𝐷𝑒𝑐(𝑠𝑘, 𝑐) is an output of SOTP w.r.t. u = 𝐺(𝑟′),
i.e., 𝑀′ = 𝑆𝑂𝑇𝑃(𝑚, 𝐺 𝑟′) for some 𝑚.

But, there is no guarantee that 𝑴′ ∈ {𝑺𝑶𝑻𝑷 𝒎,𝑮 𝒓′) 𝒎 ∈ 𝑴 as

shown in our attack.

(Recall) Rigidity of SOTP ;

For all 𝑢 ∈ 𝑈, and 𝑦 ∈ 𝑌 encoded with respect to 𝑢, it holds that 𝑆𝑂𝑇𝑃(𝐼𝑛𝑣(𝑦, 𝑢), 𝑢) = 𝑦 24

ABOUT NTRU+ VERSION 1.1

 On 9/16/23, NTRU+ ver. 1.1 has been released

 We checked that the attack strategy does not work for the updated algorithm.

 Security proofs should be revised also, as pointed in this presentation

25

MEET-LWE ATTACK COSTS FOR

LATTICE-BASED KEMS

• [May21] May, Alexander. "How to meet ternary LWE keys." Advances in Cryptology–CRYPTO 2021: 41st Annual International Cryptology Conference, CRYPTO 2021,

Virtual Event, August 16–20, 2021, Proceedings, Part II 41. Springer International Publishing, 2021.

• Some parts of the slides introducing Meet LWE idea are taken from May’s slide in Crypto 2021 ((40) How to Meet Ternary LWE Keys – YouTube) 26

https://www.youtube.com/watch?v=Fa6PxC5ufvU

TERNARY LWE PROBLEM

 Asymptotically, Brute Force < Odlyzko’s MitM < Meet LWE

 Meet LWE can be extended to (fixed size of) small errors, so it is applicable to all 3 Lattice-based KEMs

 SMAUG, TiGER use sparse secrets

 NTRU+ uses the ternary LWE problem (they use sparse ternary or binary secrets)

[Ternary LWE problem]

Given; 𝐴 ∈ 𝑍𝑞
𝑛×𝑛, 𝑏 ∈ 𝑍𝑞

𝑛 such that 𝐴 ⋅ 𝑠 = 𝑏 + 𝑒 for 𝒔, 𝒆 ∈ 𝟎,±𝟏 𝒏,

Find; 𝑠 ∈ 0,±1 𝑛

A s eb

+=

27

BRUTE FORCE ATTACK FOR TERNARY LWE

 Equation : 𝐴 ⋅ 𝑠 = 𝑏 + 𝑒 𝑚𝑜𝑑 𝑞

 𝑆 = 3𝑛; search space size for ternary keys

 Running time is 𝑇 = 𝑆

[Brute Force]

• Input : 𝐴 ∈ 𝑍𝑞
𝑛×𝑛, 𝑏 ∈ 𝑍𝑞

𝑛

• For all 𝑠 ∈ 0,±1 𝑛:

• If 𝐴 ⋅ 𝑠 − 𝑏 ∈ 0, ±1 𝑛 then output 𝑠

A s eb

+=

28

ODLYZKO’S MITM

 Equation : 𝐴1 ⋅ 𝑠1 = −𝐴2 ⋅ 𝑠2 + 𝑏 + 𝑒 𝑚𝑜𝑑 𝑞

i.e. 𝐴1 ⋅ 𝑠1 ≈ −𝐴2 ⋅ 𝑠2 + 𝑏 𝑚𝑜𝑑 𝑞

 𝑆 = 3𝑛; search space size for ternary keys

 Running time is 𝑇 = 3𝑛/2 = 𝑆1/2 with same memory

[Odlyzko’s MitM]

• Input : 𝐴 = (𝐴1|𝐴2) ∈ 𝑍𝑞
𝑛×𝑛, 𝑏 ∈ 𝑍𝑞

𝑛

• For all 𝑠1 ∈ 0,±1 𝑛/2:

• Construct L1 with entries (𝑠1, ℎ 𝐴1𝑠1)
• For all 𝑠2 ∈ 0,±1 𝑛/2:

• Construct L2 with entries (𝑠2, ℎ −𝐴2𝑠2 + 𝑏)
• Output 𝑠1 𝑠2 with ℎ 𝐴1𝑠1 = ℎ −𝐴2𝑠2 + 𝑏

𝑠1
eb

+=

𝐴1 𝐴2
𝑠2

+

A

=

𝐴1 𝐴2

* ℎ: locality sensitive hash

29

REPRESENTATIONS (HOWGRAVE-GRAHAM, JOUX ‘10)

 Idea ; 𝑠 ≔ 𝑠1 + 𝑠2 for 𝑠1, 𝑠2 ∈ 0,±1 𝑛

 Allows redundancy

 (1,0,1,-1,0) = (1,0,0,-1,0) + (0,0,1,0,0)

 = (1,0,1,0,0) + (0,0,0,-1,0)

= (0,0,1,0,0) + (1,0,0,-1,0)

= (0,0,1,-1,0) + (1,0,0,0,0)

𝑠1 eb

+=

𝑠2

+

AA

1 0 -1

REP-0 • 1+0

• 0+1

- • (-1)+0

• 0+(-1)

REP-1 • 1+0

• 0+1

• 1+(-1)

• (-1)+1

• (-1)+0

• 0+(-1)

REP-2 • 1+0

• 0+1

• 2+(-1)

• (-1)+2

• 1+(-1)

• (-1)+1

• 2+(-2)

• (-2)+2

• (-1)+0

• 0+(-1)

• 1+(-2)

• (-2)+1

30

MEET LWE ATTACK [MAY21]

 Equation : 𝐴 ⋅ 𝑠1 = −𝐴 ⋅ 𝑠2 + 𝑏 + 𝑒 𝑚𝑜𝑑 𝑞

i.e. 𝐴 ⋅ 𝑠1 ≈ −𝐴 ⋅ 𝑠2 + 𝑏 𝑚𝑜𝑑 𝑞

 By using representations s = 𝑠1 + 𝑠2, the number of solutions (≔ 𝑹) increases

 We can reduce the list (L1, 𝐿2) sizes with a factor of 𝑅 (by guessing 𝑟 coordinates of 𝑒), expecting at least one solution exists

 This strategy can be recursively applied to 𝑠1, 𝑠2, respectively (lists can be obtained by tree-based construction)

 Run-time 𝑇 = 𝑇𝑔 ⋅ 𝑇ℓ where 𝑇𝑔; guessing complexity, 𝑇ℓ; list construction complexity

[Meet LWE (high-level idea)]

• Input : 𝐴 ∈ 𝑍𝑞
𝑛×𝑛, 𝑏 ∈ 𝑍𝑞

𝑛

• Choose representation REP-0, REP-1, REP-2

• Guess 𝑟 coordinates of 𝑒 (say 𝑒𝑟)
• For 𝑠1, construct L1 with entries (𝑠1, 𝐴𝑠1)
• For 𝑠2, construct L2 with entries (𝑠2, −𝐴𝑠2 + 𝑏)
• Output s1 + s2 s.t.

• 𝜋𝑟 𝐴𝑠1 = 𝜋𝑟 −𝐴𝑠2 + 𝑏 + 𝑒𝑟
• ℎ 𝐴𝑠1 = ℎ −𝐴𝑠2 + 𝑏 for n − 𝑟 coordinates

𝑠1 eb

+=

𝑠2

+

AA

31

ATTACK COMPLEXITIES OF MEET LWE

 We slightly modified Meet-LWE algorithm for non-ternary errors

 TiGER192 parameter is vulnerable to Meet-LWE attack

 In their analysis, the claimed log complexity against best (quantum) attack was 192, but it is dropped to 170.1 (Note. it is a classical attack)

 (Recommendation) They need to increase ℎ𝑠, ℎ𝑟 to fix it

 The other parameter sets of 3 lattice-based KEMs are fine

32

OUR EXPERIMENT

 Use Python code to compute the Meet LWE attack

costs for Rep-0, Rep-1, and Rep-2, respectively

 We utilized the python code modified from an open

source “Meet_LWE.py” in SMAUG v1.0 helper scripts, by

extending it into the non-ternary error cases

 B: error parameter for LWE

33

ATTACK COMPLEXITIES FOR VARIOUS PARAMETERS

▪ Meet LWE Complexity for the LWR instance in

TiGER when increasing ℎ𝑠 (hamming weight of

LWR’s secret key 𝑠𝑘.)

▪ (Recommendation) They need to increase ℎ𝑠 to be

over 104 to achieve 200-bit classical security as

claimed in TiGER against the Meet-LWE attack.

(104 ≤ ℎ𝑠)

𝑋 = ℎ𝑠(Hamming weight parameter

of LWR’s secret key 𝑠𝑘.)

𝑌 =
Meet-LWE

Time

Complexity

34

SECURITY EVALUATION OF {LWE, LWR}-BASED SCHEMES

USING LATTICE ESTIMATOR

▪ Lattice Estimator — Lattice Estimator 0.1 documentation (lattice-estimator.readthedocs.io)

▪ Albrecht, Martin R., Rachel Player, and Sam Scott. "On the concrete hardness of learning with errors." Journal of

Mathematical Cryptology 9.3 (2015): 169-203.

35

https://lattice-estimator.readthedocs.io/en/latest/

GOAL

 Better understanding for the security estimation of KpqC Round 1 candidates

 Analysis reports for the respective attacks

 Estimate the security for all the LWE/LWR based schemes {NTRU+, SMAUG, TiGER, HAETAE, NCC-Sign}

36

METHODS

▪ Lattice estimator
 For LWE/LWR security analysis, M. Albrecht's Lattice Estimator (Lattice Estimator — Lattice Estimator 0.1 documentation

(lattice-estimator.readthedocs.io)) is used. Lattice Estimator is a Sage open source that calculates the attack complexities

and additional parameters required for attack by taking LWE/LWR parameters as input values.

▪ The BKZ Algorithm Complexity – Core-SVP model
 The principle of the BKZ algorithm is to repeatedly apply the SVP solver, an algorithm that finds the shortest vector, for a

sub-lattice of dimension (𝛽) smaller than that of a given lattice.

 The Core-SVP model from the NewHope paper (USENIX’16) is a model for estimating the time complexity of the BKZ

algorithm. The classical security in bits is estimated as 2𝑐⋅𝛽 using 𝑐 = 0.292, and the quantum security (bit) can be also

estimated by calculating the classical security (bit) × 𝑐𝑞/0.292 in the Core-SVP model.

Classical Quantum[1]

𝑐 0.292 0.257

𝑇 20.292𝛽 20.257𝛽

[1] Chailloux, A., Loyer, J. Lattice Sieving via
Quantum Random Walks. ASIACRYPT 2021

37

https://lattice-estimator.readthedocs.io/en/latest/
https://lattice-estimator.readthedocs.io/en/latest/

RESULTS - KEMS

Notes.

• NTRU+ in its specification uses the binary secrets for LWE (Algorithm 6, 9 in the specification), while it uses the

centered binomial distribution for the LWE secrets in the implementation. So, we present evaluations for both.

• Estimated security for SMAUG-256, TiGER-256 ; 1-bit lower than the proposed security
38

RESULTS - SIGNATURES

Notes.

• NCC-Sign proposed the security without core-SVP model, so we presented the

security evaluation with and without the Core-SVP model.
39

SUMMARY

 CCA-NTRU+ can be attacked since their decoding method(the 𝐼𝑛𝑣 algorithm) does not check if the

intermediate value is binary

 Can be fixed if they check if the intermediate value is binary, and abort otherwise.

 We evaluate the concrete security of 3 lattice-based KEMs against Meet LWE attack

 TiGER needs to take into account Meet LWE attack for their TiGER192 parameter set

 Can be fixed by increasing ℎ𝑠, ℎ𝑟

 TiGER updated the parameter sets : now secure against Meet-LWE attack

 We estimated the security of all the {LWE, LWR}-based schemes using Lattice estimator and verified the

(most of) claims in the proposals of {NTRU+, SMAUG, TiGER, HAETAE, NCC-Sign}

40

THANK YOU!
ANY QUESTIONS OR COMMENTS?

JOOHEELEE@SUNGSHIN.AC.KR

	슬라이드 1: KpqC 공모전 1 라운드 격자기반 알고리즘 안전성 분석
	슬라이드 2: Contents
	슬라이드 3: KpqC competition
	슬라이드 4: KpqC round 1 –lattice-based schemes
	슬라이드 5: CCA Attack for NTRU+
	슬라이드 6: Results
	슬라이드 7: NTRU
	슬라이드 8: NTRUencrypt vs. Rlwe-based encryption
	슬라이드 9: NTTRU
	슬라이드 10: NTRU-A,B,C
	슬라이드 11: Summary on ntru+ KEM
	슬라이드 12: Cca-NTRU+
	슬라이드 13: Cca-NTRU+
	슬라이드 14: Cca-NTRU+
	슬라이드 15: Attack for cca-NTRU+
	슬라이드 16: Attack for cca-NTRU+
	슬라이드 17: Attack for cca-NTRU+
	슬라이드 18: OW-CCA Security game & attack algorithm
	슬라이드 19: Comments for the security proof
	슬라이드 20: Comments for the security proof
	슬라이드 21: Comments for the security proof
	슬라이드 22: Comments for the security proof
	슬라이드 23: Comments for the security proof
	슬라이드 24: Comments for the security proof
	슬라이드 25: About NTRU+ version 1.1
	슬라이드 26: Meet-LWE Attack Costs for lattice-based kems
	슬라이드 27: Ternary LWE problem
	슬라이드 28: Brute Force Attack for Ternary LWE
	슬라이드 29: Odlyzko’s MitM
	슬라이드 30: Representations (Howgrave-Graham, Joux ‘10)
	슬라이드 31: Meet LWE Attack [May21]
	슬라이드 32: Attack complexities of Meet LWE
	슬라이드 33: Our Experiment
	슬라이드 34: Attack Complexities for various Parameters
	슬라이드 35: Security Evaluation of {LWE, LWR}-based schemes Using Lattice Estimator
	슬라이드 36: goal
	슬라이드 37: methods
	슬라이드 38: Results - KEMs
	슬라이드 39: Results - signatures
	슬라이드 40: Summary
	슬라이드 41

