KPQC 공모전 1 라운드 격자기반 알고리즘 안전성 분석

(2023-080) KPQC 공모전 격자기반 알고리즘 기반문제 안전성 분석 기술연구

2023.10.20.

Sungshin Women's University

Joohee Lee

CONTENTS

- KpqC Round I Lattice-based Schemes (Summary)
- CCA Attack for NTRU+
- May's Meet-LWE Attack Costs for Lattice-based KEMs
- Security Evaluation of {LWE, LWR}-based schemes Using Lattice Estimator

KPQC COMPETITION

- I6 algorithms in Round I
 - 7 KEMs & 9 Signatures
- KpqC Bulletin : <u>https://groups.google.com/g/kpqc-bulletin</u>
 - Analysis reports
 - Benchmarks
 - Scheme Updates
 - Etc.

KPQC ROUND I –LATTICE-BASED SCHEMES

Among Round I candidates, 3 KEMs and 5 signatures are lattice-based schemes.

Category	Name	Base problem	Note
KEM	NTRU+	NTRU/RLWE	 RLWE with binary secrets/ternary errors Analysis Reported (6/14/23)
	SMAUG	MLWE/MLWR	MLWE/MLWR with sparse secrets
	TiGER	RLWR/RLWE	 RLWR/RLWE with sparse secrets Analysis Reported (7/9/23)
Signature	GCKSign	GCK	Analysis Reported (1/14/23)
	HAETAE	MLWE/MSIS	
	NCC-Sign	RLWE/RSIS	
	Peregrine	NTRU/SIS	Analysis Reported (1/6/23)
	SOLMAE	NTRU/SIS	

CCA ATTACK FOR NTRU+

Game OW-CCA	$O_{dec}(c)$
1: $(pk, sk) \leftarrow KeyGen(1^{\lambda})$	1: if $c = c^*$
2: $(K^*, c^*) \leftarrow Encaps(pk)$	2: return ⊥
3: $K' \leftarrow \mathcal{A}^{O_{dec}(\cdot)}(pk, c^*)$	3: else return
4: return $[K' = K^*]$	4: $K \leftarrow \text{Decaps}(sk, c)$

***OW-CCA SECURITY GAME**

Reported on 6/14/23, in the KpqC Bulletin

RESULTS

- Analysis of NTRU+ (google.com), eprint: <u>A Novel CCA Attack for NTRU+ KEM (iacr.org)</u>
- For NTRU+ (CCA ver.), we can achieve the challenge encapsulated key K*, and win the CCA game with <u>4</u> decapsulation queries in average.
 - It breaks the OW-CCA security and hence NTRU+ is *not* IND-CCA secure.
- It can be fixed by adding a verification process in the decoding algorithm("Inv") to check if the intermediate value $M + u_2$ (or the output) is binary and abort otherwise.
- We summarize some comments for the security proof, some of which introduced our attack.

NTRU

- Firstly suggested by Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman in 1998.
 - refered as "grandfather of lattice-based encryption schemes"
- Simple and efficient
 - h: public key in \mathbb{R}_q (h is typically set as a ratio of small polynomials g/f which are the secret keys)
 - Computes the ciphertext

 $c = m + h \cdot r \mod q$

for small m, r

- Use the rings of the form $R_q = Z_q[x]/(x^p 1)$, where p is a prime and q is a power of 2
 - Not NTT-friendly

NTRUENCRYPTVS. RLWE-BASED ENCRYPTION

RLWE-based Enc	NTRUEncrypt	
pk = (a, b), • the uniform random a can be compressed with a random seed	pk = h	
$Ct = (C_1, C_2),$ • c_2 can be compressed so that only 2~3 bits for each component need to be output	ct = c	
 For flexible parameters, Module structure can be used for LWE (e.g., Kyber) Can use smaller-degree power-of-2 rings e.g. Z_q[x]/(x²⁵⁶ + 1) It does not increase pk sizes 	 Module approach doesn't work well avoids power-of-2 rings because they are sparse (512, 1024,) 	
 Can use NTT Highly parallelizable (with AVX implementation) 	 Cannot use NTT Slow KeyGen Other divide-and-conquer approaches such as Toom-cook, Karatsuba can be used 	
Decryption failure rates are dealt in the average cases • Message is an additive term in the decryption procedure	 For correctness, p(gr + mf) < q/2 where m is a message, and g, r, f are small Considers decryption error for worst-case messages, since an attacker might use "bad" messages to recover the secret key 	

NTTRU

- Vadim Lyubashevsky and Gregor Seiler. NTTRU: Truly fast NTRU using NTT. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2019 (https://tches.iacr.org/index.php/TCHES/article/view/8293).
- In lattice-based schemes, typically the LWE dimension (ring dimension) $n = 7 \sim 800$ would be enough for 128-bit security.
- They show that NTT over the ring $Z_{7681}[x]/(x^{768} x^{384} + 1)$ is as efficient as NTT over power-of-2 rings
 - Can be generalized for dimensions $2^k 3^\ell$ (*n* can be 576, 648, 768, 864, ...)
 - q is larger than that in LWE-based enc (e.g. In Kyber, they used q = 3329)

Schemes	pk size	ct size	KG (cycles)	Enc (cycles)	Dec (cycles)	<u>* Kyber Performance; taken</u>
Kyber 512*	800	768	I3K	17K	18K	from "Faster Lattice-Based KEMs via a Generic Fujisaki-
Kyber 768*	1184	1088	25K	28K	30K	Okamoto Transform Using Prefix Hashing (CCS'21)''
NTTRU**	1248	1248	6K	6K	8K	** Performance Taken from the NTTRU Paper

NTRU-A,B,C

- Julien Duman, Kathrin Hövelmanns, Eike Kiltz, Vadim Lyubashevsky, Gregor Seiler, and Dominique Unruh. A thorough treatment of highly-efficient NTRU instantiations. Public-Key Cryptography – PKC 2023 (<u>https://eprint.iacr.org/2021/1352</u>).
- They also use the NTT-friendly rings of the form $Z_q[x]/(x^n x^{n/2} + 1)$
- They suggest transforms from PKE with small average-case correctness error into PKE' with small worst-case correctness error : NTRU-A, NTRU-B, NTRU-C
 - Smaller modulus such as q = 3457 for n = 768 are available

 E.g.

	pk size	ct size
Kyber 512	800	768
Kyber 768	1184	1088
NTTRU	1248	1248
NTRU-A*	1152	1152

SUMMARY ON NTRU+ KEM

- Security based on the NTRU, RLWE assumptions
 - RLWE here uses (random) <u>binary secrets</u> and <u>ternary errors</u>
- Uses NTT-friendly rings
 - $R_q = Z_q[x]/(f(x))$, where $f(x) = x^n x^{n/2} + 1$ and $n = 2^i 3^j$ [1,2]
- Uses a <u>new encoding</u> named **SOTP** (Semi-generalized One Time Pad)
- In the CCA-secure KEM, they **remove re-encryption** in decapsulation by adjusting Fujisaki-Okamoto transform

Parameters	Securit y level	n	P	Sizes (Bytes)		Cycles(ref)		Cycles(AVX2)		Claimed Security (bits)				
				pk	ct	sk	Keygen	Encaps	Decaps	Keygen	Encaps	Decaps	Classical	Quantum
NTRU+576	I	576	3,457	864	864	1,728	321,405	110,754	163,277	17,440	14,307	12,445	115	104
NTRU+768	I	768	3,457	1,152	1,152	2,304	313,669	145,658	227,028	16,032	17,514	15,848	164	148
NTRU+864	3	864	3,457	1,296	1,296	2,592	339,912	169,634	262,017	14,068	19,293	17,671	188	171
NTRU+1152	5	1,152	3,457	1,728	1,728	3,456	905,131	230,448	348,076	42,993	25,592	24,063	264	240

 Vadim Lyubashevsky and Gregor Seiler. NTTRU: Truly fast NTRU using NTT. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2019 (https://tches. iacr.org/index.php/TCHES/article/view/8293).
 Julien Duman, Kathrin Hövelmanns, Eike Kiltz, Vadim Lyubashevsky, Gregor Seiler, and Dominique Unruh. A thorough treatment of highly-efficient NTRU instantiations. Public-Key Cryptography – PKC 2023 (https://eprint.iacr.org/2021/1352).

ТĽ

CCA-NTRU+

- Use a <u>new encoding</u> **SOTP** defined by :
 - $m \in \{0,1\}^n, u = (u_1, u_2) \in \{0,1\}^{2n}$

•
$$SOTP(m, u = (u_1, u_2)) \coloneqq (m \oplus u_1) - u_2 \in \{-1, 0, 1\}^n$$

•
$$Inv(M \in \{-1,0,1\}^n, u = (u_1, u_2)) \coloneqq (M + u_2) \bigoplus u_1 \in \{0,1\}^n$$

CCA-NTRU+

- Use a <u>new encoding</u> **SOTP** defined by :
 - $m \in \{0,1\}^n, u = (u_1, u_2) \in \{0,1\}^{2n}$
 - $SOTP(m, u = (u_1, u_2)) \coloneqq (m \bigoplus u_1) u_2 \in \{-1, 0, 1\}^n$
 - $Inv(M \in \{-1,0,1\}^n, u = (u_1, u_2)) \coloneqq (M + u_2) \bigoplus u_1 \in \{0,1\}^n$

Caution! $M + u_2$ has to be binary (if not, they make the result binary by computing 0×1)

$Gen(1^\lambda)$	$Decap(sk,\mathbf{c})$
1: $\mathbf{f}', \mathbf{g} \leftarrow \psi_1^n$	1: $\mathbf{m} = (\mathbf{cf} \mod {\pm q}) \mod {\pm 3}$
2: $f = 3f' + 1$	2: $\mathbf{r} = (\mathbf{c} - \mathbf{m})\mathbf{h}^{-1}$
3: if f , g are not invertible in R_q	3: $m = \operatorname{Inv}(\mathbf{m}, G(\mathbf{r}))$
4: restart	4: $(\mathbf{r}', \overline{K}) = H(m)$
5: return $(pk, sk) = (\mathbf{h} = 3\mathbf{g}\mathbf{f}^{-1}, \mathbf{f})$	5: if $\mathbf{r} = \mathbf{r}'$
Encap(pk)	6: return K
$1: m \leftarrow \{0,1\}^n$	7: else
2: $(\mathbf{r}, K) = H(m)$	8: return \perp
3: $\mathbf{m} = SOTP(m, G(\mathbf{r}))$	
4: $\mathbf{c} = \mathbf{hr} + \mathbf{m}$	
5. return (c. K)	

CCA-NTRU+

- Use a <u>new encoding</u> **SOTP** defined by :
 - $m \in \{0,1\}^n, u = (u_1, u_2) \in \{0,1\}^{2n}$
 - $SOTP(m, u = (u_1, u_2)) \coloneqq (m \bigoplus u_1) u_2 \in \{-1, 0, 1\}^n$
 - $Inv(M \in \{-1,0,1\}^n, u = (u_1, u_2)) \coloneqq (M + u_2) \bigoplus u_1 \in \{0,1\}^n$

⊟void poly_sotp_inv(unsigned char *msg, const poly *e, const unsigned char *buf) uint32_t t1, t2, t3; Algorithm 5 Inv **Require:** Polynomial $y \in R_q$ for(int i = 0; i < 2; i++)**Require:** Byte array $B = (b_0, b_1, \cdots, b_{n/4-1})$ for(int i = 0; i < 8; i++) **Ensure:** Message Byte array $m = (m_0, m_1, \cdots, m_{31})$ 1: $(\beta_0, \cdots, \beta_{2n-1}) := \mathsf{BytesToBits}(B)$ 2: for *i* from 0 to n-1 do t1 = load32_littleendiar 3: $m_i := ((f_i + \beta_{i+n} \& 1) \oplus \beta_i)$ t2 = load32 littleendiar $m = \mathsf{BitsToBytes}((m_0, \cdots, m_{n-1}))$ t3 = 0;4: return m for (int k = 0; k < 2; k++) for (int | = 0; | < 16; |++)t3 ^= (((e->coeffs[256*i + 16*l + 2*j + k] + t2)^t1) & 0x1) << (l+16*k); t1 >>= 1; $t_{2} >>= 1$: msa[32*i + 4*i] = t3;msg[32*i + 4*j + 1] = t3 >> 8;

msg[32*i + 4*j + 2] = t3 >> 16;

Caution! $M + u_2$ has to be binary (if not, they make the result binary by computing 0×1)

$Gen(1^{\lambda})$	$Decap(sk,\mathbf{c})$
1: $\mathbf{f'}, \mathbf{g} \leftarrow \psi_1^n$	1: $\mathbf{m} = (\mathbf{cf} \mod {\pm q}) \mod {\pm 3}$
2: $f = 3f' + 1$	2: $\mathbf{r} = (\mathbf{c} - \mathbf{m})\mathbf{h}^{-1}$
3: if f , g are not invertible in R_q	3: $m = \operatorname{Inv}(\mathbf{m}, G(\mathbf{r}))$
4: restart	4: $(\mathbf{r}', \overline{K}) = H(m)$
5: return $(pk, sk) = (h = 3gf^{-1}, f)$	5: if $\mathbf{r} = \mathbf{r}'$
Encap(pk)	6: return K
$1: m \leftarrow \{0,1\}^n$	7: else
2: $(\mathbf{r}, K) = H(m)$	8: return ⊥
3: $\mathbf{m} = SOTP(m, G(\mathbf{r}))$	
4: $\mathbf{c} = \mathbf{hr} + \mathbf{m}$	
5: return (\mathbf{c}, K)	

ATTACK FOR CCA-NTRU+

- Step I. find an example of malicious $M' \in \{-1,0,1\}^n$ such that an intermediate value $M' + u_2$ in Inv(M', u) is non-binary;
 - Example (n=4): Suppose m = (1,0,1,1), G(r) = u = (1,1,0,1,1,0,1,0)

$$SOTP(m, G(r)) = (m \bigoplus u_1) - u_2$$

= ((1,0,1,1) \oplus (1,1,0,1)) - (1,0,1,0)
= (0,1,1,0) - (1,0,1,0)
= (-1,1,0,0) := M

Let
$$M' \coloneqq M + (2, 0, 0, 0) = (1, 1, 0, 0)$$
. Then,
 $Inv(M', G(r)) = (M' + u_2) \oplus u_1$
 $= ((1, 1, 0, 0) + (1, 0, 1, 0)) \oplus (1, 1, 0, 1)$
 $= (2, 1, 1, 0) \oplus (1, 1, 0, 1)$
 $= (3, 0, 1, 1) \rightarrow (1, 0, 1, 1) = m$

ATTACK FOR CCA-NTRU+

- Step 2. use Step 1 to construct a malicious ciphertext c' from a challenge ciphertext $c^* = h \cdot r^* + M^*$ in the CCA security game ;
 - Assume $c^* = h \cdot r^* + M^*$

where $m^* = (1,0,1,1), G(r^*) = u = (1,1,0,1,1,0), M^* = SOTP(m^*, G(r^*))$

• We set $c' \coloneqq c^* + (2,0,0,0) = h \cdot r^* + M'$

then Decaps(sk, c') successfully produces the secret key K^* which is a decapsulation result of c^* (: $Inv(M', G(r^*)) = m^*$).

- i.e., we can ask decapsulation oracle to achieve K^*
- But, in the CCA security game, since we don't know both M^* and $G(r^*)$ used in the challenge ciphertext, we need to guess :
 - the 0-th bits of M^* and $G(r^*)$ should be one of the four cases.
 - When i) happens and we add (2,0,0,0) to c*,
 <u>decapsulation fails</u> (since it produces different r)
 - ii) happens with probability $\frac{1}{4}$

ATTACK FOR CCA-NTRU+

- Step 2. use Step 1 to construct a malicious ciphertext c' from a challenge ciphertext $c^* = h \cdot r^* + M^*$ in the CCA security game ;
 - Assume $c^* = h \cdot r^* + M^*$

where $m^* = (1,0,1,1), G(r^*) = u = (1,1,0,1,1,0), M^* = SOTP(m^*, G(r^*))$

• We set $c' \coloneqq c^* + (2,0,0,0) = h \cdot r^* + M'$

then Decaps(sk, c') successfully produces the secret key K^* which is a decapsulation result of c^* (: $Inv(M', G(r^*)) = m^*$).

- i.e., we can ask decapsulation oracle to achieve K^*
- But, in the CCA security game, since we don't know both M^* and $G(r^*)$ used in the challenge ciphertext, we need to guess with probability 1/4 for each component
- With <u>4 decapsulation queries in average</u>, we can achieve K^* , and win the CCA game

OW-CCA SECURITY GAME & ATTACK ALGORITHM

Game OW-CCA	$O_{dec}(c)$
1: $(pk, sk) \leftarrow \text{KeyGen}(1^{\lambda})$	$1: if c = c^*$
2: $(K^*, c^*) \leftarrow \text{Encaps}(pk)$	2: return ⊥
3: $K' \leftarrow \mathcal{A}^{O_{dec}(\cdot)}(pk, c^*)$	3: else return
4: return $[K' = K^*]$	4: $K \leftarrow Decaps(sk, c)$

***OW-CCA SECURITY GAME**

Algorithm 1 Pseudocode for our attack algorithm Require: a challenge ciphertext $c^* \in \mathcal{R}_q$ Ensure: a secret key $K \in \{0, 1\}^{2\lambda}$ for $i \in \{1, \dots, n\}$ do $c' \leftarrow c^* + 2 \cdot e_i$ (Note that $c' \neq c^*$) Send c' to the decapsulation oracle O_{dec} if O_{dec} outputs K' then Output K' as a decapsulation for c^* break; end if end for

*ATTACK ALGORITHM

[FO transform without Re-Encryption (Lemma 5 in NTRU+ paper)]

	$\frac{Encap(pk)}{1: \ m \leftarrow \mathcal{M}}$ 2: $(r, K) := H(m)$ 3: $c := Enc'(pk, m; r)$	T	$ \frac{\operatorname{Gen}(1^{\lambda})}{1: (pk, sk) := \operatorname{Gen}'(1^{\lambda})} $ 2: return (pk, sk) Encap (pk)	Decap(sk, c)
	$-M := \operatorname{SOTP}(m, \operatorname{G}(r))$		$\frac{1}{1} m \leftarrow M$	$\frac{D \cos p(\cos, \varepsilon)}{1 \cos r' (\sin \theta)}$
	$-c := \operatorname{Enc}(pk, M; r)$		$\begin{array}{c} 1. \ m \lor \mathbf{y} \lor \mathbf{f} \\ 2. \ (\mathbf{r} \ \mathbf{K}) := \mathbf{H}(\mathbf{m}) \end{array}$	M' = Dec(sk, c)
	4: return (K,c)		$2: (r, R) := \Pi(m)$ 3: c := Enc'(nk, m; r)	-M = Dec(sk, c) -r' = Rec(nk, M', c)
			-M := SOTP(m, G(r))	$-m' = \ln v(M' G(r'))$
Decap(sk,c)			$-c := \operatorname{Enc}(nk, M; r)$	2: (r'' K') := H(m')
1: $m' := Dec'(sk, c)$			4 return (K, c)	2. $(7, R) := \Pi(m)$
- $M' = Dec(sk, c)$				3: If $m \equiv \bot$ of $r \neq r$
- $r' = RRec(pk, M', c)$				4: return \perp
-m' = Inv(M', G(r'))				5: else
2: $(r'', K') := H(m')$				6: Ietuin A
3: if $m' = \perp$ or $c \neq \text{Enc}'(p)$	pk, m'; r'')		Fig. 10. KEM =	$=\overline{FO}^{\perp}[PKE',H].$
4: return \perp				
5: else				
6: return K'				

Fig. 9. $KEM = FO^{\perp}[PKE', H].$

[FO transform without Re-Encryption (Lemma 5 in NTRU+ paper)]

• To show: For input ciphertext *c*,

c = Enc'(pk, m'; r'') if and only if r' = r''

$\begin{array}{l} \underline{Decap(sk,c)} \\ \hline 1: \ m' := \ Dec'(sk,c) \\ - \ M' = \ Dec(sk,c) \\ - \ r' = \ RRec(pk,M',c) \\ - \ m' = \ Inv(M',G(r')) \\ \hline 2: \ (r'',K') := \ H(m') \\ \hline 3: \ \mathbf{if} \ m' = \ L \ \mathrm{or} \ c \neq \ Enc'(p) \\ \hline 4: \ \mathbf{return} \ \bot \end{array}$	k,m';r'')
6: return K'	

Fig. 9. KEM = $FO^{\perp}[PKE', H]$.

$ \underbrace{Encap(pk)}_{1: \ m \leftarrow \mathcal{M}} \\ 2: \ (r, K) := H(m) \\ 3: \ c := Enc'(pk, m; r) \\ - M := SOTP(m, G(r)) \\ - c := Enc(pk, M; r) \\ 4: \ \mathbf{return} (K, c) $	$\begin{array}{c} \underline{Decap(sk,c)} \\ \hline 1: \ m' := Dec'(sk,c) \\ - \ M' = Dec(sk,c) \\ - \ r' = RRec(pk,M',c) \\ - \ m' = Inv(M',G(r')) \\ 2: \ (r'',K') := H(m') \\ 3: \ \mathbf{if} \ m' = \bot \ \mathrm{or} \ \overline{r' \neq r''} \\ 4: \ \mathbf{return} \ \bot \\ 5: \ \mathbf{else} \\ 6: \ \mathbf{return} \ K' \end{array}$

[FO transform without Re-Encryption (Lemma 5 in NTRU+ paper)]

• To show: For input ciphertext *c*,

c = Enc'(pk, m'; r'') if and only if r' = r''

• (\rightarrow) Assume c = Enc'(pk, m'; r'') in Decaps.

Because PKE' is injective, the pair (m, r) used in Encaps is the same as (m', r'')

	$ \begin{array}{l} \underline{Encap(pk)} \\ \hline 1: \ m \leftarrow \mathcal{M} \\ 2: \ (r, K) := H(m) \\ 3: \ c := Enc'(pk, m; r) \\ - \ M := SOTP(m, G(r)) \\ - \ c := Enc(pk, M; r) \\ 4: \ \mathbf{return} (K, c) \end{array} $			
Decap(sk,c)				
1: $m' := Dec'(sk, c)$				
- $M' = Dec(sk, c)$				
- $r' = RRec(pk, M', c)$				
- $m' = Inv(M', G(r'))$				
2: $(r'', K') := H(m')$				
3: if $m' = \perp$ or $c \neq \text{Enc}'(pk, m'; r'')$				
4: return ⊥				
5: else				
6: return K'				

Fig. 9. $KEM = FO^{\perp}[PKE', H].$

$\begin{array}{lll} \underline{Encap(pk)} & \underline{Decap(sk,c)} \\ \hline 1: \ m \leftarrow \mathcal{M} & 1: \ m' := Dec'(sk,c) \\ 2: \ (r,K) := H(m) & -M' = Dec(sk,c) \\ 3: \ c := Enc'(pk,m;r) & -M' = Dec(sk,c) \\ -M := SOTP(m,G(r)) & -r' = RRec(pk,M',c) \\ -c := Enc(pk,M;r) & 2: \ (r'',K') := H(m') \\ 4: \ \mathbf{return} \ (K,c) & 3: \ \mathbf{if} \ m' = \bot \ \mathbf{or} \ \overline{r' \neq r''} \end{array}$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Encap(pk)	Decap(sk,c)
$\begin{array}{lll} 2: \ (r,K) := H(m) & -M' = Dec(sk,c) \\ 3: \ c := Enc'(pk,m;r) & -r' = RRec(pk,M',c) \\ -M := SOTP(m,G(r)) & -m' = Inv(M',G(r')) \\ -c := Enc(pk,M;r) & 2: \ (r'',K') := H(m') \\ 4: \ \mathbf{return} \ (K,c) & 3: \ \mathbf{if} \ m' = \bot \ \mathbf{or} \ \overline{r' \neq r''} \end{array}$	1: $m \leftarrow \mathcal{M}$	1: $m' := Dec'(sk, c)$
3: $c := \text{Enc}'(pk, m; r)$ $-r' = \text{RRec}(pk, M', c)$ $-M := \text{SOTP}(m, G(r))$ $-m' = \text{Inv}(M', G(r'))$ $-c := \text{Enc}(pk, M; r)$ 2: $(r'', K') := \text{H}(m')$ 4: return (K, c) 3: if $m' = \bot$ or $r' \neq r''$	2: $(r, K) := H(m)$	- $M' = Dec(sk, c)$
$-M := SOTP(m, G(r)) \qquad -m' = Inv(M', G(r'))$ $-c := Enc(pk, M; r) \qquad 2: \ (r'', K') := H(m')$ $4: \ \mathbf{return} \ (K, c) \qquad 3: \ \mathbf{if} \ m' = \bot \ \mathbf{or} \ \boxed{r' \neq r''}$	3: $c := Enc'(pk, m; r)$	- $r' = RRec(pk, M', c)$
$\begin{array}{rl} -c := Enc(pk, M; r) & 2: \ (r'', K') := H(m') \\ 4: \ \mathbf{return} & (K, c) & 3: \ \mathbf{if} \ m' = \bot \ \mathbf{or} \ \boxed{r' \neq r''} \end{array}$	-M := SOTP(m,G(r))	- $m' = Inv(\tilde{M}',G(r'))$
4: return (K,c) 3: if $m' = \perp$ or $r' \neq r''$	- $c := Enc(pk, M; r)$	2: $(r'', K') := H(m')$
	4: return (K, c)	3: if $m' = \perp$ or $r' \neq r''$
4: return ⊥		4: return ⊥
5: else		5: else
6: return K'		6: return K'

Fig. 10. $KEM = \overline{FO}^{\perp}[PKE', H]$

[FO transform without Re-Encryption (Lemma 5 in NTRU+ paper)]

• To show: For input ciphertext *c*,

c = Enc'(pk, m'; r'') if and only if r' = r''

• (\rightarrow) Assume c = Enc'(pk, m'; r'') in Decaps.

Because PKE' is injective, the pair (m, r) used in Encaps is the same as (m', r'')

 $Gen(1^{\lambda})$ Encap(pk)1: $m \leftarrow \mathcal{M}$ 1: $(pk, sk) := \operatorname{Gen}'(1^{\lambda})$ 2: (r, K) := H(m)2: return (pk, sk)3: c := Enc'(pk, m; r) $-M := \mathsf{SOTP}(m, \mathsf{G}(r))$ $-c := \operatorname{Enc}(pk, M; r)$ 4: return (K, c)Decap(sk, c)1: $m' := \mathsf{Dec}'(sk, c)$ - $M' = \mathsf{Dec}(sk, c)$ $-r' = \mathsf{RRec}(pk, M', c)$ - $m' = \operatorname{Inv}(M', \mathsf{G}(r'))$ 2: $(r'', K') := \mathsf{H}(m')$ 3: if $m' = \perp$ or $c \neq \text{Enc}'(pk, m'; r'')$ 4: return ⊥ 5: else 6: return K'

They assumed that c (input of Decaps) is an output of Encaps, i.e., c = Encaps(m, r) for some (m, r). But, there is no guarantee that c = Encaps(m, r) for some $m \in M, r \in R$

[FO transform without Re-Encryption (Lemma 5 in NTRU+ paper)]

• To show: For input ciphertext *c*,

$$c = Enc'(pk, m'; r'')$$
 if and only if $r' = r''$

:

• (\leftarrow) Assume r' = r'' in Decaps.

Because SOTP is rigid, m' = Inv(M', G(r')) implies M' = SOTP(m', G(r')), and thus M' = SOTP(m', G(r''))

$\frac{\operatorname{Gen}(1^{\lambda})}{1: (pk, sk) := \operatorname{Gen}'(1^{\lambda})}$ 2: return (pk, sk)	
$\underline{Decap(sk, c)}$ 1: $m' := Dec'(sk, c)$ $-M' = Dec(sk, c)$ $-r' = RRec(pk, M', c)$ $-m' = Inv(M', G(r'))$ 2: $(r'', K') := H(m')$ 3: if $m' = \bot$ or $c \neq Enc'(pk)$ 4: return \bot 5: else 6: return K'	(k,m';r'')
0. Ictuin A	

Fig. 9. $KEM = FO^{\perp}[PKE', H].$

$Gen(1^{\lambda})$	
1: $(pk, sk) := \operatorname{Gen}'(1^{\lambda})$	
2: return (pk, sk)	
Encap(pk)	Decap(sk,c)
1: $m \leftarrow \mathcal{M}$	1: $m' := Dec'(sk, c)$
2: $(r, K) := H(m)$	- $M' = Dec(sk, c)$
3: $c := Enc'(pk, m; r)$	- $r' = RRec(pk, M', c)$
-M := SOTP(m,G(r))	- $m' = Inv(M',G(r'))$
- $c := Enc(pk, M; r)$	2: $(r'', K') := \underline{H}(m')$
4: return (K,c)	3: if $m' = \perp$ or $r' \neq r''$
	4: return ⊥
	5: else
	6: return K'

Fig. 10. $KEM = \overline{FO}^{\perp}[PKE', H].$

[FO transform without Re-Encryption (Lemma 5 in NTRU+ paper)]

• To show: For input ciphertext *c*,

$$c = Enc'(pk, m'; r'')$$
 if and only if $r' = r''$

• (\leftarrow) Assume r' = r'' in Decaps.

M' = SOTP(m', G(r''))

Because SOTP is rigid, m' = Inv(M', G(r')) implies M' = SOTP(m', G(r')), and thus

They assumed that M' = Dec(sk, c) is an output of SOTP w.r.t. u = G(r'), i.e., M' = SOTP(m, G(r')) for some m. But, there is no guarantee that $M' \in \{SOTP(m, G(r')) | m \in M\}$ as shown in our attack.

(Recall) Rigidity of SOTP ; For all $u \in U$, and $y \in Y$ encoded with respect to u, it holds that SOTP(Inv(y, u), u) = y

$ \begin{array}{c} \displaystyle \frac{Gen(1^{\lambda})}{1: \ (pk, sk)} := Gen'(1^{\lambda}) \\ \displaystyle 2: \ \mathbf{return} \ \ (pk, sk) \end{array} $	$\begin{array}{l} \underline{Encap(pk)}\\ \hline 1: \ m \leftarrow \mathcal{M}\\ 2: \ (r, K) := H(m)\\ 3: \ c := Enc'(pk, m; r)\\ - M := SOTP(m, G(r))\\ - c := Enc(pk, M; r)\\ 4: \ \mathbf{return} (K, c) \end{array}$
$\begin{array}{ c c c c c } \hline \underline{Decap(sk,c)} \\ \hline 1: & m' := Dec'(sk,c) \\ & - & M' = Dec(sk,c) \\ & - & r' = RRec(pk,M',c) \\ & - & m' = Inv(M',G(r')) \\ \hline 2: & (r'',K') := H(m') \\ \hline 3: & \mathbf{if} & m' = \bot \text{ or } \hline c \neq Enc'(p) \\ \hline 4: & \mathbf{return} & \bot \end{array}$	k,m';r'')
5: else 6: return K'	

Fig. 9. KEM = $FO^{\perp}[PKE', H]$.

(.)

$Gen(1^{\wedge})$	
1: $(pk, sk) := \operatorname{Gen}'(1^{\lambda})$	
2: return (pk, sk)	
Encap(pk)	Decap(sk,c)
1: $m \leftarrow \mathcal{M}$	1: m' := Dec'(sk, c)
2: (r, K) := H(m)	- $M' = Dec(sk, c)$
3: $c := Enc'(pk, m; r)$	- $r' = RRec(pk, M', c)$
-M := SOTP(m,G(r))	- $m' = Inv(M',G(r'))$
- $c := Enc(pk,M;r)$	2: $(r'', K') := H(m')$
4: return (K,c)	3: if $m' = \perp$ or $r' \neq r''$
	4: return ⊥
	5: else
	6: return K'

ABOUT NTRU+VERSION I.I

- On 9/16/23, NTRU+ ver. 1.1 has been released
 - We checked that the attack strategy does not work for the updated algorithm.

Algorithm 7 Inv
Require: Polynomial $\mathbf{f} \in R_q$
Require: Byte array $B = (b_0, b_1, \cdots, b_{n/4-1})$
Ensure: Message Byte array $m = (m_0, m_1, \cdots, m_{31})$
1: $(\beta_0, \cdots, \beta_{n-1}) := BytesToBits((b_0, \cdots, b_{n/8-1}))$
2: $(\beta_n, \dots, \beta_{2n-1}) := BytesToBits((b_{n/8}, \dots, b_{n/4-1}))$
3: for <i>i</i> from 0 to $n-1$ do
4: if $f_i + \beta_{i+n} \notin \{0, 1\}$, return \perp
5: $m_i := ((f_i + \beta_{i+n}) \& 1) \oplus \beta_i$
$m = BitsToBytes((m_0, \cdots, m_{n-1}))$
6: return m

Security proofs should be revised also, as pointed in this presentation

MEET-LWE ATTACK COSTS FOR LATTICE-BASED KEMS

- [May21] May, Alexander. "How to meet ternary LWE keys." Advances in Cryptology–CRYPTO 2021: 41st Annual International Cryptology Conference, CRYPTO 2021, Virtual Event, August 16–20, 2021, Proceedings, Part II 41. Springer International Publishing, 2021.
- Some parts of the slides introducing Meet LWE idea are taken from May's slide in Crypto 2021 ((40) How to Meet Ternary LWE Keys YouTube)

TERNARY LWE PROBLEM

[Ternary LWE problem] <u>Given</u>; $A \in Z_q^{n \times n}$, $b \in Z_q^n$ such that $A \cdot s = b + e$ for $s, e \in \{0, \pm 1\}^n$, <u>Find</u>; $s \in \{0, \pm 1\}^n$

- Asymptotically, Brute Force < Odlyzko's MitM < Meet LWE</p>
- Meet LWE can be extended to (fixed size of) small errors, so it is applicable to all 3 Lattice-based KEMs
 - SMAUG, TiGER use sparse secrets
 - NTRU+ uses the ternary LWE problem (they use sparse ternary or binary secrets)

BRUTE FORCE ATTACK FOR TERNARY LWE

• Equation : $A \cdot s = b + e \mod q$

- [Brute Force]
- Input : $A \in Z_q^{n \times n}$, $b \in Z_q^n$
- For all $s \in \{0, \pm 1\}^n$:
 - If $A \cdot s b \in \{0, \pm 1\}^n$ then output s
- $S = 3^n$; search space size for ternary keys
- Running time is T = S

A s b e

ODLYZKO'S MITM

• Equation : $A_1 \cdot s_1 = -A_2 \cdot s_2 + b + e \mod q$

i.e. $A_1 \cdot s_1 \approx -A_2 \cdot s_2 + b \mod q$

[Odlyzko's MitM]

- Input : $A = (A_1|A_2) \in Z_q^{n \times n}, b \in Z_q^n$
- For all $s_1 \in \{0, \pm 1\}^{n/2}$:
 - Construct L_1 with entries $(s_1, h(A_1s_1))$
- For all $s_2 \in \{0, \pm 1\}^{n/2}$:
 - Construct L₂ with entries $(s_2, h(-A_2s_2 + b))$
- Output $(s_1|s_2)$ with $h(A_1s_1) = h(-A_2s_2 + b)$

* *h*: locality sensitive hash

- $S = 3^n$; search space size for ternary keys
- Running time is $T = 3^{n/2} = S^{1/2}$ with same memory

REPRESENTATIONS (HOWGRAVE-GRAHAM, JOUX '10)

- **<u>Idea</u>** ; $s \coloneqq s_1 + s_2$ for $s_1, s_2 \in \{0, \pm 1\}^n$
 - Allows redundancy
- (1,0,1,-1,0) = (1,0,0,-1,0) + (0,0,1,0,0)
 - = (1,0,1,0,0) + (0,0,0,-1,0)
 - = (0,0,1,0,0) + (1,0,0,-1,0)
 - = (0,0,1,-1,0) + (1,0,0,0,0)

		0	- 1
REP-0	 I+0 0+1 	-	 (-1)+0 0+(-1)
REP-1	 I+0 0+1 	 I+(-1) (-1)+1 	 (-1)+0 0+(-1)
REP-2	 1+0 2+(-1) 0+1 (-1)+2 	 I+(-1) (-1)+1 (-2)+2 	 (-1)+0 1+(-2) 0+(-1) (-2)+1

MEET LWE ATTACK [MAY21]

• Equation : $A \cdot s_1 = -A \cdot s_2 + b + e \mod q$

i.e. $A \cdot s_1 \approx -A \cdot s_2 + b \mod q$

[Meet LWE (high-level idea)]

- Input : $A \in Z_q^{n \times n}$, $b \in Z_q^n$
- Choose representation REP-0, REP-1, REP-2
- Guess r coordinates of e (say e_r)
- For s_1 , construct L_1 with entries (s_1, As_1)
- For s_2 , construct L_2 with entries $(s_2, -As_2 + b)$
- Output $s_1 + s_2$ s.t.
 - $\pi_r(As_1) = \pi_r(-As_2 + b) + e_r$
 - $h(As_1) = h(-As_2 + b)$ for n r coordinates
- By using representations $s = s_1 + s_2$, the number of solutions (= R) increases
- We can reduce the list (L_1, L_2) sizes with a factor of R (by guessing r coordinates of e), expecting at least one solution exists
 - This strategy can be recursively applied to s_1 , s_2 , respectively (lists can be obtained by tree-based construction)
- Run-time $T = T_g \cdot T_\ell$ where T_g ; guessing complexity, T_ℓ ; list construction complexity

Α

Α

ATTACK COMPLEXITIES OF MEET LWE

****	*****	*****
Meet-LWE Rep-0	Meet-LWE Rep-0	Meet-LWF Rep-0
*****	*****	****
SMAUG128: time= 230.9 = 217.0 + 13.9, memory= 217.0 SMAUG192: time= 294.8 = 278.5 + 16.3, memory= 278.5 SMAUG256: time= 368.2 = 350.8 + 17.4, memory= 350.8	NTRU+576: time= 340.7 = 322.5 + 18.2, memory= 322.5 NTRU+768: time= 454.8 = 430.3 + 24.6, memory= 430.3 NTRU+864: time= 512.7 = 484.2 + 28.5, memory= 484.2 NTRU+1152: time= 683.8 = 645.8 + 38.0 memory= 645.8	TiGER128: time= 225.3 = 213.4 + 11.9, memory= 213.4 TiGER192: time= 220.3 = 209.9 + 10.4, memory= 209.9 TiCER256: time= 287.7 = 260.5 + 18.2 memory= 260.5
Maat-IWE Ban-1	************	110L1200: [111e- 007.7 - 009.5 1 10.2, inemoty- 009.5
Meet LWL Hep I	Meet-LWE Rep-1	
SMALIC(128; time= 183; 3 = 152; 0 + 31; 3 memory= 152; 0 wi	*****	Meet-LWE Rep-1
SMALIG192: time= 233 1 = 192 4 + 40 6 memory= 192 4 wi	NTRU+576: time= 269.4 = 237.7 + 31.7. memorv= 237.7 with (1	, ********
SMALIG256: time= $303.3 = 254.5 + 48.8$ memory= 254.5 wi	NTRU+768: time= 361.7 = 320.5 + 41.2, memory= 320.5 with (2	TiGER128: time= 175.5 = 150.2 + 25.4, memory= 150.2 with (11, 2, 1)
**********	NTRU+864: time= 411.4 = 366.2 + 45.2, memory= 366.2 with (2	TiGFR192: time= 194 0 = 164 9 + 29 0, memory= 164 9 with (8, 1, 1)
Meet-LWE Rep-2	NTRU+1152: time= 569.3 = 513.0 + 56.3, memory= 513.0 with (TiGER256: time= $309.5 = 269.1 + 40.4$ memory= 269.1 with (16.1.1)
*****	*****	
SMAUG128: time= 176.4 = 147.4 + 29.0 memory= 147.4 wi	Meet-LWE Rep-2	
SMAUG192: time= 229.9 = 199.7 + 30.2 memory= 199.7 wi	****	Meet-LWE Rep-2
SMAUG256: time= 296.5 = 253.6 + 43.0 memory= 253.6 wi	NTRU+576: time= 263.3 = 227.6 + 35.7, memory= 227.6 vith (2	******
	NTRU+768: time= 349.1 = 302.3 + 46.8, memory= 302.3 vith (2	TiGER128: time= 167.0 = 141.7 + 25.4, memory= 141.7 with (11, 0, 2, 0)
	NTRU+864: time= 391.7 = 338.6 + 53.1, memory= 338.6 with (2	TiGFR192: time= 170.1 = 141.1 + 29.0, memory= 141.1 with (8, 0, 1, 0)
	NTRU+1152 time= 518.6 = 448.1 + 70.5 memory= 448.1 with (TiGEB256: time= 298 5 = 258 1 + 40 4, memory= 258 1 with (16, 0, 3, 0)

- We slightly modified Meet-LWE algorithm for non-ternary errors
- **TiGER192** parameter is **vulnerable to Meet-LWE attack**
 - In their analysis, the claimed log complexity against best (quantum) attack was 192, but it is dropped to 170.1 (Note. it is a <u>classical attack</u>)
 - (Recommendation) They need to increase h_s , h_r to fix it
- The other parameter sets of 3 lattice-based KEMs are fine

OUR EXPERIMENT

```
from math import log, floor, sqrt, log2 #, prod
from scipy.special import gammaln
import numpy as np
```

```
def log2_multinom(c):
    return (gammaln(c.sum()+1) - gammaln(c+1).sum()) / log(2)
```

```
def meet_lwe_rep0(n, q, w, B):
    n2 = floor(n/2)
```

```
w2 = floor(w/2)
w4 = floor(w/4)
w8 = floor(w/8)
```

```
# Compute log_2 of L^(1) = S^(1) / R^(1),
# where S^(1) = (n choose w/4, w/4, n-w/2) and
# R^(1) = (w/2 choose w/4, w/4).
logS1 = log2_multinom(np.array([w4, w2-w4, n-w2]))
logR1 = 2*log2_multinom(np.array([w4, w2-w4]))
logL1 = logS1 - logR1
```

```
# Compute log_2 of L^(2) = S^(2),
# where S^(2) = n/2 choose w/8, w/9, n/2-w/4
logL2 = log2_multinom(np.array([w8, w4-w8, n-n2-w4]))
```

- Use Python code to compute the Meet LWE attack costs for Rep-0, Rep-1, and Rep-2, respectively
 - We utilized the python code modified from an open source "Meet_LWE.py" in SMAUG v1.0 helper scripts, by extending it into the non-ternary error cases
- B: error parameter for LWE

```
# Compute T_l for the list construction,
# where T_l = max(L^(1), L^(2))
logT_l = max(logL1, logL2)
# Compute T_g for the guessing,
# where T_g = 3^(r/2) = 3^( log_q(R^(1))/2 )
# which leads to log_2 (T_g) = 0.5*log_2(R^(1))*log_2(3)/log_2(q)
logT_g = 0.5*floor(logR1/log2(q))*log2(B)
```

```
return (logT_l+logT_g, logT_l, logT_g, logT_l)
```

ATTACK COMPLEXITIES FOR VARIOUS PARAMETERS

 Meet LWE Complexity for the LWR instance in TiGER when increasing h_s (hamming weight of LWR's secret key sk.)

(Recommendation) They need to increase h_s to be over 104 to achieve 200-bit classical security as claimed in TiGER against the Meet-LWE attack. (104 ≤ h_s)

SECURITY EVALUATION OF {LWE, LWR}-BASED SCHEMES USING LATTICE ESTIMATOR

- Lattice Estimator Lattice Estimator 0.1 documentation (lattice-estimator.readthedocs.io)
- Albrecht, Martin R., Rachel Player, and Sam Scott. "On the concrete hardness of learning with errors." *Journal of Mathematical Cryptology* 9.3 (2015): 169-203.

GOAL

- Better understanding for the security estimation of KpqC Round I candidates
 - Analysis reports for the respective attacks
- Estimate the security for all the LWE/LWR based schemes {NTRU+, SMAUG, TiGER, HAETAE, NCC-Sign}

METHODS

Lattice estimator

For LWE/LWR security analysis, M. Albrecht's Lattice Estimator (<u>Lattice Estimator — Lattice Estimator 0.1 documentation</u> (<u>lattice-estimator.readthedocs.io</u>)) is used. Lattice Estimator is a Sage open source that calculates the attack complexities and additional parameters required for attack by taking LWE/LWR parameters as input values.

The BKZ Algorithm Complexity – Core-SVP model

- The principle of the BKZ algorithm is to repeatedly apply the SVP solver, an algorithm that finds the shortest vector, for a sub-lattice of dimension (β) smaller than that of a given lattice.
- The Core-SVP model from the NewHope paper (USENIX'16) is a model for estimating the time complexity of the BKZ algorithm. The classical security in bits is estimated as $2^{c \cdot \beta}$ using c = 0.292, and the quantum security (bit) can be also estimated by calculating the classical security (bit) $\times c_q/0.292$ in the Core-SVP model.

	Classical	Quantum[1]	[1] Chailloux, A., Loyer, J. Lattice Sieving via
С	0.292	0.257	Quantum Random Walks. ASIACRYPT 2021
Т	$2^{0.292\beta}$	$2^{0.257\beta}$	

RESULTS - KEMS

Notes.

- NTRU+ in its specification uses the binary secrets for LWE (Algorithm 6, 9 in the specification), while it uses the centered binomial distribution for the LWE secrets in the implementation. So, we present evaluations for both.
- Estimated security for SMAUG-256, TiGER-256; I-bit lower than the proposed security

RESULTS - SIGNATURES

Notes.

• NCC-Sign proposed the security without core-SVP model, so we presented the security evaluation with and without the Core-SVP model.

SUMMARY

- CCA-NTRU+ can be attacked since their decoding method(the *Inv* algorithm) does not check if the intermediate value is binary
 - Can be fixed if they check if the intermediate value is binary, and abort otherwise.
- We evaluate the concrete security of 3 lattice-based KEMs against Meet LWE attack
 - TiGER needs to take into account Meet LWE attack for their TiGER 192 parameter set
 - Can be fixed by increasing h_s , h_r
 - TiGER updated the parameter sets : now secure against Meet-LWE attack

Table 1: The detail parameters for each security level												
param	eters	security level	n	q	p	k_1	k_2	h_s	h_r	h_e	d	J
TiGE	R128	AES128	512	256	128	64	64	160	128	32	128	3
TiGE	R192	AES192	1024	256	64	64	4	84	84	84	256	5
TiGE	R256	AES256	1024	256	128	128	4	198	198	32	256	Ę
		•						1				

parameters	security level	n	q	p	k_1	k_2	h_s	h_r	h_e	d	f
TiGER128	AES128	512	256	128	64	16	142	110	32	128	3
TiGER192	AES192	1024	256	128	64	4	132	132	32	256	5
TiGER256	AES256	1024	256	128	128	4	196	196	32	256	5

 We estimated the security of all the {LWE, LWR}-based schemes using Lattice estimator and verified the (most of) claims in the proposals of {NTRU+, SMAUG, TiGER, HAETAE, NCC-Sign}

ANY QUESTIONS OR COMMENTS?

JOOHEELEE@SUNGSHIN.AC.KR