
Project: Many-body approach to superconductivity

In this project, we will derive the Bardeen-Cooper-Schrieffer (BCS) gap equation using the operator
method and the path-integral method, respectively. Additionally, we will obtain the effective action for
the superconducting order parameter and partially derive the Ginzburg-Landau free energy.

1. BCS mean-field theory

The effective Hamiltonian involving Cooper pairs with opposite momenta and spins is given by

ĤBCS =
∑
k

ξk

(
ĉ†k↑ĉk↑ + ĉ†−k↓ĉ−k↓

)
−
∑
k,k′

Ukk′ ĉ†k↑ĉ
†
−k↓ĉ−k′↓ĉk′↑,

where ξk = ε
(0)
k − µ and Ukk′ = 〈k,−k| Û |k′,−k′〉 describing scattering of a pair of electrons from

states (k′ ↑,−k′ ↓) to states (k ↑,−k ↓). Note that Ukk′ > 0 because of the attractive interaction
potential.

(a) In the presence of the pair interaction, operators such as ĉ−k↓ĉk↑ can have nonzero expectation
values for the ground state. Expressing ĉ−k↓ĉk↑ = bk + (ĉ−k↓ĉk↑ − bk) where bk = 〈ĉ−k↓ĉk↑〉 and
neglecting small fluctuation terms, show that

ĤBCS ≈
∑
k

ξk

(
ĉ†k↑ĉk↑ + ĉ†−k↓ĉ−k↓

)
−
∑
k

(
∆kĉ

†
k↑ĉ
†
−k↓ + ∆∗kĉ−k↓ĉk↑ −∆kb

∗
k

)
= E0 +

∑
k

Ψ†kh(k)Ψk,

where Ψ†k =
(
ĉ†k↑, ĉ−k↓

)
. Find ∆k, E0 and h(k).

(b) For a general two-component Hamiltonian H = a0 + a · σ where σ are Pauli matrices, show
that H has eigenvalues ε± = a0 ± a and the corresponding eigenfunctions are given by (up to a
constant)

|+〉 =

(
cos θ2

sin θ
2e
iφ

)
, |−〉 =

(
− sin θ

2

cos θ2e
iφ

)
,

where a =
√
a2

1 + a2
2 + a2

3, tan θ =

√
a21+a22
a3

and tanφ = a2
a1

.

∗ Note that the eigenfunctions are nothing but a rotated spin up and spin down states about the
y-axis by θ and subsequently by angle φ about the z-axis.

(c) Note that the Hamiltonian in (a) is a quadratic form in the operators, thus can be diagonalized.
For simplicity, assume that ∆k is real. By diagonalizing the matrix h(k), show that the mean-field
Hamiltonian can be rewritten as

HBCS = EG +
∑
k

Ek(α̂†kα̂k + β̂†kβ̂k).

with

ĉk↑ = ukα̂k + vkβ̂
†
k , ĉ−k↓ = ukβ̂k − vkα̂†k.

Find Ek, EG, uk and vk. (Here, choose uk and vk as real.)

∗ Alternatively, we can use the canonical transformation. Note that αk and βk satisfy the fermionic
commutation relations.

(d) Show that

〈ĉ−k↓ĉk↑〉 = ukvk

〈
1− α̂†kα̂k − β̂†kβ̂k

〉
=

∆k

2Ek
[1− 2f(Ek)] =

∆k

2Ek
tanh

βEk

2
,
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where f(Ek) =
(
eβEk + 1

)−1
and β = 1

kBT
. Then show that the gap function ∆k is given by

∆k =
∑
k′

Uk,k′ 〈ĉ−k′↓ĉk′↑〉 =
∑
k′

Uk,k′
∆k′

2Ek′
tanh

βEk′

2
.

(e) Assume that Uk,k′ = g
V (g > 0) for |ξk|, |ξk′ | < ~ωD and zero otherwise, where ωD is the Debye

frequency for phonons. Then, show that the gap function reduces to ∆k = ∆Θ(~ωD − |ξk|) where
∆ is a (temperature-dependent) constant which satisfies

1 ≈ gN0

∫ ~ωD

0

dξ
tanh β

2

(
ξ2 + ∆2

) 1
2

(ξ2 + ∆2)
1
2

and N0 is the density of states per spin per volume at the Fermi energy.

∗ Further reading: Tinkham, Ch. 3.5; Fetter and Walecka, §37 and §51.

2. BCS gap equation

(a) Show that at T = 0, ∆(T = 0) ≡ ∆0 is given by

∆0 =
~ωD

sinh(1/gN0)
.

(b) At T = Tc, ∆(T = Tc) = 0. Then show that

kBTc ≈ A~ωDe
− 1
gN0 .

Note that
∫ xc

0
dx tanh x

x ≈ ln(2Axc) for large xc, where A = 2eγ

π ≈ 1.13 and γ ≈ 0.577.

(c) In the weak coupling limit gN0 � 1, find the ratio ∆0

kBTc
, which is universal independent of the

particular material.

(d) Assuming the weak coupling limit, draw ∆(T )/∆0 numerically as a function of T/Tc for gN0 =
0.1, 1, 10, respectively.

∗ Express the gap equation in Prob. 1(e) in terms of ∆(T )/∆(0) and T/Tc using the result of (a)
and (b).

∗ In the weak coupling limit gN0 � 1, ∆(T )/∆0 as a function of T/Tc in the BCS theory exhibits
a universal curve. Note that Tc relation in (b) is valid only for large xc or small Tc, i.e. for weak
coupling limit. In principle, for large gN0, you should find Tc numerically using the condition
∆(Tc) = 0 in the gap function.

∗ Further reading: Tinkham, Ch. 3.6; Fetter and Walecka, §37 and §51.

3. Path integral method: Effective action for the bosonic field

Consider a coordinate representation of the BCS Hamiltonian ignoring vector and scalar potentials:

ĤBCS =

∫
ddx

[∑
σ

ψ̂†σ(x)K0(x)ψ̂σ(x)− gψ̂†↑(x)ψ̂†↓(x)ψ̂↓(x)ψ̂↑(x)

]

where K0(x) = − ~2

2m∇
2 − µ. From now on, we will set ~ = 1 for simplicity.

(a) Using the coherent state path integral, show that the quantum partition function is given by

Z =
∫
Dψ̄Dψe−S[ψ̄,ψ] where

S[ψ̄, ψ] =

∫ β

0

dτ

∫
ddx

[∑
σ

ψ̄σ(x, τ) (∂τ +K0(x))ψσ(x, τ)− gψ̄↑(x, τ)ψ̄↓(x, τ)ψ↓(x, τ)ψ↑(x, τ)

]
.

(b) Using a Hubbard-Stratonovich transformation, express

eg
∫
dτ

∫
ddxψ̄↑ψ̄↓ψ↓ψ↑

by introducing a bosonic field ∆ to decouple the quartic interaction.



(c) Show that the partition function can be expressed as

Z =

∫
Dψ̄DψD∆̄D∆e−S[ψ̄,ψ,∆̄,∆]

where

S[ψ̄, ψ, ∆̄,∆] =

∫
dτ

∫
ddx

[∑
σ

ψ̄σ (∂τ +K0)ψσ −∆ψ̄↑ψ̄↓ − ∆̄ψ↓ψ↑ +
∆̄∆

g

]

=

∫
dτddx

(
∆̄∆

g
− Ψ̄g−1Ψ

)

with Ψ =

(
ψ↑
ψ̄↓

)
and g−1 =

(
−∂τ −K0 ∆

∆̄ −∂τ +K0

)
.

(d) Since the action is quadratic in the fermion field ψ, we can carry out the Gaussian integral over
the fermionic field to obtain an effective action for ∆. Show that

Z =

∫
D∆̄D∆e−Seff [∆̄,∆],

where

Seff [∆̄,∆] =

∫
dτ

∫
ddx

(
∆̄∆

g

)
− ln Det

(
−g−1

)
.

∗ Further reading: Altland and Simons, Ch. 6.4; Coleman, Ch. 14.6.

4. Path integral method: Saddle-point or mean-field solution

A variation of the action with respect to ∆ generates a mean-field equation for ∆. Assume that
configurations extremizing the action is homogeneous in space and time.

(a) Show that

Det
(
−g−1

)
=
∏
k,ωn

[
(iωn)2 − ξ2

k − |∆|2
]

and thus, the effective action for ∆ is given by

Seff [∆̄,∆] ≈ βV
(

∆̄∆

g

)
−
∑
k,ωn

ln
[
(iωn)2 − ξ2

k −∆2
k

]
.

(b) From the frequency summation 1
β~
∑
ωn

1
iωn−ωk

= f(ωk) where f(ω) =
(
eβ~ω + 1

)−1
for

fermions, prove that

1

β~
∑
ωn

1

ω2
n + ω2

k

=
1

2ωk
tanh

β~ωk

2
.

(c) The saddle-point solution can be obtained from ∂
∂∆̄
Seff [∆̄,∆] = 0. Then, show that

1

g
=

1

βV

∑
k,ωn

1

~2ω2
n + ξ2

k + |∆|2
=

∫
ddk

(2π)d
1

2Ek
tanh

βEk
2

where Ek =
√
ξ2
k + |∆|2, which gives the gap equation in Prob. 1(d) or 1(e).

∗ Further reading: Altland and Simons, Ch. 6.4; Coleman, Ch. 14.6.

5. Path integral method: Gaussian fluctuation

In the vicinity of the phase transition, ∆ is small in comparison with the temperature, thus we can
perturbatively expand the action in powers of ∆.

(a) Show that the effective action in Prob. 3(d) can be rewritten as

Seff [∆̄,∆] =

∫
dτ

∫
ddx

(
∆̄∆

g

)
− Tr ln

(
−g−1

)
.



(b) Let us define g−1 = g−1
0 + � with g−1

0 = g−1
∣∣
∆=0

and � =

(
0 ∆
∆̄ 0

)
, and expand Tr ln

(
−g−1

)
in powers of ∆. Then, show that

Tr ln
(
−g−1

)
= Tr ln

(
−g−1

0

)
+ Tr (g0�)− 1

2
Tr (g0�)

2
+ · · · .

(c) Explain that the first and second terms in (b) do not contribute to Seff [∆̄,∆].

(d) Show that

1

2
Tr (g0�)

2
= −

∑
q

∆̄(−q)Π0(q)∆(q),

where q = (q, iνm) with an even m and Π0(q, iνm) is given by

~Π0(q, iνm) =
1

β~
∑
ωn

∫
ddk

(2π)d
g0(k, iωn)g0(−k + q,−iωn + iνm) = −

∫
ddk

(2π)d
1− f(ξk)− f(ξk+q)

iνm − ωk − ωk+q
.

Here f(ξk) =
(
eβξk + 1

)−1
is the Fermi distribution function.

(e) Show that the effective action Seff [∆̄,∆] becomes

Seff [∆̄,∆] ≈ 1

β~
∑
νm

∫
ddq

(2π)d
∆̄(−q,−iνm)Γ−1(q, iνm)∆(q, iνm)

where Γ−1(q, iνm) = 1
g −Π0(q, iνm).

(f) Note that Γ−1(0, 0) → 0 corresponds to an instability of the ∆(0, 0) mode with a sign change
in action, which occurs at T = Tc. Show that

1

g
≈ Π0(0, 0)|T=Tc

≈ N0

∫ ~ωD

−~ωD

dξ
1− 2f(ξ)

2ξ

∣∣∣∣
T=Tc

,

which gives the equation for the critical temperature in Prob. 2(b).

(g) For r(T ) ≡ Γ−1(0, 0), show that

r(T ) ≈ N0

∫ ~ωD

−~ωD

dξ
f(ξ)|T − f(ξ)|Tc

ξ
≈ N0

(
T − Tc

Tc

)
,

which changes sign at T = Tc.

∗ Note that f(ξ)|T− f(ξ)|Tc
≈ (βξ − βcξ)

(
∂f
∂βξ

)
=
(
T−Tc

Tc

)
ξ
(
−∂f∂ξ

)
where β = 1

kBT
and βc = 1

kBTc
.

(h) For T < Tc, justify that Seff [∆̄,∆] near Tc can be expanded as

Seff [∆̄,∆] =

∫
dτdx

[
r(T )∆̄∆ +

u

2
(∆̄∆)2 +

c

2
(∇∆)2 + · · ·

]
with u > 0 and c > 0, leading to the Ginzburg-Landau theory.

∗ Further reading: Altland and Simons, Ch. 6.4; Nagaosa, Ch. 5.1.

∗ Considering symmetries of the order parameter, we can construct the Ginzburg-Landau free
energy phenomenologically even without the corresponding microscopic theory. From it, we can
derive various physical properties, for example, the Meissner effect and fluxoid quantization in
superconductors. For further reading, refer to Coleman, Ch. 11.5, Tinkham, Ch. 4 and Annet, Ch.
4.3-11.

[1] M. Tinkham, Introduction to Superconductivity (2nd ed.), McGraw-Hill, Inc (1996).
[2] A. Fetter and J. Walecka, Quantum theory of many-particle systems, Dover (2003).
[3] A. Altland and B. Simons, Condensed matter field theory (2nd ed.), Cambridge University Press (2010).
[4] Piers Coleman, Introduction to Many-Body Physics, Cambridge University Press (2016).
[5] Naoto Nagaosa, Quantum Field Theory in Condensed Matter Physics, Springer (1999).


	References

