Dispersive determination of neutrino mass ordering

Hsiang-nan Li

Presented at High 1

Jan. 22, 2024

2306.03463

Unsolved issues in neutrino physics

- Today's talk will try to answer:
- Neutrino mass ordering

 $\Delta m_{21}^2 \equiv m_2^2 - m_1^2 = (7.55^{+0.20}_{-0.16}) \times 10^{-5} \text{ eV}^2 \qquad \Delta m_{32}^2 \equiv m_3^2 - m_2^2 = (2.424 \pm 0.03) \times 10^{-3} \text{ eV}^2$

but normal ordering or inverted ordering?

• Why small mixing in quark sector, but large mixing in lepton sector?

CKM: $\theta_{12} = 13.04^{\circ} \pm 0.05^{\circ}, \ \theta_{13} = 0.201^{\circ} \pm 0.011^{\circ}, \ \theta_{23} = 2.38^{\circ} \pm 0.06^{\circ}$

Pontecorvo–Maki–Nakagawa–Sakata: $\theta_{12} = 33.41^{\circ} + 0.75^{\circ}_{-0.72^{\circ}}$ $\theta_{13} = 8.54^{\circ} + 0.11^{\circ}_{-0.12^{\circ}}$

- Why lepton mixing has maximal angle $\theta_{23} \approx 45^{\circ}$?
- Why neutrinos so light?

m₃= EW scale x EW symmetry restoration scale

Speculation

- Fundamental parameters in theory (like Standard Model) usually constrained by symmetries at Lagrangian level
- Physical observables are analytical
- Dispersion relations must be respected
- Γ_{12} involves CKM matrix elements and fermion masses
- Additional dynamical constraints imposed by dispersion relations, given $M_{12}\,$?
- Turn out that dispersive constraints are so strong that Yukawa couplings in SM are in fact not free parameters

Idea

• Neutral state mixing disappears at high energy, where electroweak symmetry is restored (working assumption)

Li, 2304.05921

Proof of $M_{12}(s) \approx 0$

- Consider mixing of $Q_L ar{q}_L$, $ar{Q}_L q_L$ neutral states
- Before breaking, all particles are massless, quarks in flavor eigenstates
- Mixing occurs via exchanges of charged or neutral scalars, whose strengths described by Yukawa matrices

- After breaking, particles get masses, quarks turned to mass eigenstates
- Mixing occurs via W boson exchanges, whose strengths described by CKM matrix

Mixing in symmetric phase at leading order

- Yukawa interaction $\overline{Q_L}Y_u u_R \varphi + \overline{Q_L}Y_d d_R \tilde{\varphi} \qquad \varphi = \frac{1}{\sqrt{2}} \begin{pmatrix} \varphi^+ \\ \varphi^0 \end{pmatrix}$, left-handed doublet
- In symmetric phase, implement quark field transformation adopted in broken phase $u_L \rightarrow U_u u_L$ $u_R \rightarrow V_u u_R$ $d_L \rightarrow U_d d_L$ $d_R \rightarrow V_d d_R$
- Yukawa matrices diagonalized, but charged scalar currents exist
- down-type quarks, coupling to up-type quarks in mass eigenstates through charged scalar currents, are not in mass eigenstates

Box diagrams

- Heavy quark Q provides large s in box diagrams. Symmetry restores and intermediate particles become massless, $M_{12}(s) \approx 0$
- s' can be low, so $\Gamma_{12}(s')$ depends on CKM matrix elements associated with massive intermediate quarks in broken phase.

Cheng 1982 Buras et al 1984

$$\begin{split} \Gamma_{12}(s) &\propto -\frac{G_F^2}{16\pi} \sum_{i,j} \lambda_i \lambda_j \Gamma_{ij}(s) \\ \Gamma_{ij}(s) &= \frac{1}{s^2} \frac{\sqrt{s^2 - 2s(m_i^2 + m_j^2) + (m_i^2 - m_j^2)^2}}{(m_W^2 - m_i^2)(m_W^2 - m_j^2)} \\ &\times \left\{ \left(m_W^4 + \frac{m_i^2 m_j^2}{4} \right) [2s^2 - 4s(m_i^2 + m_j^2) + 2(m_i^2 - m_j^2)^2] + 3m_W^2 s(m_i^2 + m_j^2)(m_i^2 + m_j^2 - s) \right\} \end{split}$$

for D mixing i, j = d, s, b $\lambda_i \equiv V_{ci}^* V_{ui}$

Constraints

How to diminish dispersive integral

$$\int ds' \frac{\Gamma_{12}(s')}{s-s'} ?$$

Asymptotic expansion

to have finite integral

 $\lambda_i \lambda_j g_{ij} \approx 0$

$$\begin{split} \Gamma_{ij}(s') &\approx \Gamma_{ij}^{(1)}s' + \Gamma_{ij}^{(0)} + \frac{\Gamma_{ij}^{(-1)}}{s'} + \cdots & \text{EW symmetry} \\ \text{restoration scale} \\ \Gamma_{ij}^{(1)} &= \frac{4m_W^4 - 6m_W^2(m_i^2 + m_j^2) + 4m_i^2m_j^2}{2(m_W^2 - m_i^2)(m_W^2 - m_j^2)}, \quad \clubsuit \Lambda^2/s \\ \Gamma_{ij}^{(0)} &= -\frac{3(m_i^2 + m_j^2)\left[4m_W^4 - 4m_W^2(m_i^2 + m_j^2) + m_i^2m_j^2\right]}{2(m_W^2 - m_i^2)(m_W^2 - m_j^2)} \quad \clubsuit (m_i^2 + m_j^2)\Lambda/s \\ \Gamma_{ij}^{(-1)} &= \frac{3(m_i^4 + m_j^4)\left[4m_W^4 - 2m_W^2(m_i^2 + m_j^2) + m_i^2m_j^2\right]}{2(m_W^2 - m_i^2)(m_W^2 - m_j^2)}. \quad \clubsuit (m_i^4 + m_j^4)\ln\Lambda/s \\ \Gamma_{ij}^{(-1)} &= \frac{3(m_i^4 + m_j^4)\left[4m_W^4 - 2m_W^2(m_i^2 + m_j^2) + m_i^2m_j^2\right]}{2(m_W^2 - m_i^2)(m_W^2 - m_j^2)}. \quad \clubsuit (m_i^4 + m_j^4)\ln\Lambda/s \\ \text{to diminish integral} \end{split}$$

EW symmetry

$$\int ds' \frac{\Gamma_{12}(s')}{s-s'} \approx \frac{1}{s} \sum_{i,j} \lambda_i \lambda_j g_{ij} \qquad g_{ij} \equiv \int_{t_{ij}}^{\infty} ds' \left[\Gamma_{ij}(s') - \Gamma_{ij}^{(1)}s' - \Gamma_{ij}^{(0)} - \frac{\Gamma_{ij}^{(-1)}}{s'} \right]$$

Minimization

• Use unitarity to eliminate λ_b and to rewrite constrains

$$r^{2}R_{dd}^{(m)} + 2rR_{ds}^{(m)} + 1 \approx 0, \quad m = 1, 0, -1, i$$

$$R_{dd}^{(m)} = \frac{\Gamma_{dd}^{(m)} - 2\Gamma_{db}^{(m)} + \Gamma_{bb}^{(m)}}{\Gamma_{ss}^{(m)} - 2\Gamma_{sb}^{(m)} + \Gamma_{bb}^{(m)}}, \quad R_{ds}^{(m)} = \frac{\Gamma_{ds}^{(m)} - \Gamma_{db}^{(m)} - \Gamma_{sb}^{(m)} + \Gamma_{bb}^{(m)}}{\Gamma_{ss}^{(m)} - 2\Gamma_{sb}^{(m)} + \Gamma_{bb}^{(m)}} \qquad m = 1, 0, -1$$

- Expression for m = i similar, but with g_{ij}
- Ratio of CKM elements $r = \frac{\lambda_d}{\lambda_s} = \frac{V_{cd}^* V_{ud}}{V_{cs}^* V_{us}} \equiv u + iv,$
- Tune u and v to minimize the sum (real parts of constraints)

$$\sum_{m=1,-1,i} \left[(u^2 - v^2) R_{dd}^{(m)} + 2u R_{ds}^{(m)} + 1 \right]^2$$

Results $m_d = 0.005 \text{ GeV}$ $m_s = 0.12 \text{ GeV}$ $m_b = 4.0 \text{ GeV}$ $m_W = 80.377 \text{ GeV}$

3. × 10⁻⁶ $3. \times 10^{-6}$ v=0.00062 v=0 minimum reached 2. × 10⁻⁶ 2. × 10⁻⁶ m=0,-1 1.×10⁻⁶ $1. \times 10^{-6}$ - m=1 -0.9985 -1_0000 -0 9995 -1.0000-0.9990 -0.9995 U U $-1. \times 10^{-6}$ $-1. \times 10^{-6}$ $-2. \times 10^{-6}$ $-2. \times 10^{-6}$ m=i PDG

 $r = \frac{V_{cd}^* V_{ud}}{V_{cs}^* V_{us}} = -1.0 + (6.2^{+1.2}_{-1.0}) \times 10^{-4} i \qquad u = -1.00029 \pm 0.00002, \qquad v = 0.00064 \pm 0.00002$ variation of ms by 0.01 GeV they agree well

Pontecorvo–Maki–Nakagawa–Sakata matrix

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{13}} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 Chau-Keung
=
$$\begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13} \end{bmatrix}.$$

PDG

	Ref. $[188]$ w/o SK-ATM		Ref. [188] w SK-ATM		Ref. [189] w SK-ATM		Ref. [190] w SK-ATM	
NO	Best Fit Ordering		Best Fit Ordering		Best Fit Ordering		Best Fit Ordering	
Faram	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
$\frac{\sin^2 \theta_{12}}{10^{-1}}$	$3.10^{+0.13}_{-0.12}$	$2.75 \rightarrow 3.50$	$3.10^{+0.13}_{-0.12}$	$2.75 \rightarrow 3.50$	$3.04^{+0.14}_{-0.13}$	$2.65 \rightarrow 3.46$	$3.20^{+0.20}_{-0.16}$	$2.73 \rightarrow 3.79$
$\theta_{12}/^{\circ}$	$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$	$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$	$33.46^{+0.87}_{-0.88}$	$30.98 \rightarrow 36.03$	$34.5^{+1.2}_{-1.0}$	$31.5 \rightarrow 38.0$
$\frac{\sin^2 \theta_{23}}{10^{-1}}$	$5.58^{+0.20}_{-0.33}$	$4.27 \rightarrow 6.09$	$5.63^{+0.18}_{-0.24}$	$4.33 \rightarrow 6.09$	$5.51^{+0.19}_{-0.80}$	$4.30 \rightarrow 6.02$	$5.47^{+0.20}_{-0.30}$	$4.45 \rightarrow 5.99$
$\theta_{23}/^{\circ}$	$48.3^{+1.2}_{-1.9}$	$40.8 \rightarrow 51.3$	$48.6^{+1.0}_{-1.4}$	$41.1 \rightarrow 51.3$	$47.9^{+1.1}_{-4.0}$	$41.0 \rightarrow 50.9$	$47.7^{+1.2}_{-1.7}$	$41.8 \rightarrow 50.7$
$\frac{\sin^2 \theta_{13}}{10^{-2}}$	$2.241^{+0.066}_{-0.065}$	$2.046 \rightarrow 2.440$	$2.237^{+0.066}_{-0.065}$	$2.044 \rightarrow 2.435$	$2.14^{+0.09}_{-0.07}$	$1.90 \rightarrow 2.39$	$2.160^{+0.083}_{-0.069}$	$1.96 \rightarrow 2.41$
$\theta_{13}/^{\circ}$	$8.61^{+0.13}_{-0.13}$	$8.22 \rightarrow 8.99$	$8.60^{+0.13}_{-0.13}$	$8.22 \rightarrow 8.98$	$8.41^{+0.18}_{-0.14}$	$7.9 \rightarrow 8.9$	$8.45_{-0.14}^{+0.16}$	$8.0 \rightarrow 8.9$
$\delta_{\rm CP}/^{\circ}$	222_{-28}^{+38}	$141 \rightarrow 370$	221_{-28}^{+39}	$144 \rightarrow 357$	238^{+41}_{-33}	$149 \rightarrow 358$	218^{+38}_{-27}	$157 \rightarrow 349$
$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.39^{+0.21}_{-0.20}$	$6.79 \rightarrow 8.01$	$7.39^{+0.21}_{-0.20}$	$6.79 \rightarrow 8.01$	$7.34_{-0.14}^{+0.17}$	$6.92 \rightarrow 7.91$	$7.55_{-0.16}^{+0.20}$	$7.05 \rightarrow 8.24$
$\frac{\Delta m_{32}^2}{10^{-3} \text{ eV}^2}$	$2.449^{+0.032}_{-0.030}$	$2.358 \rightarrow 2.544$	$2.454_{-0.031}^{+0.029}$	$2.362 \rightarrow 2.544$	$2.419^{+0.035}_{-0.032}$	$2.319 \rightarrow 2.521$	2.424 ± 0.03	$2.334 \rightarrow 2.524$
IO	$\Delta \chi^2 = 6.2$		$\Delta \chi^2 = 10.4$		$\Delta \chi^2 = 9.5$		$\Delta \chi^2 = 11.7$	
$\frac{\sin^2 \theta_{12}}{10^{-1}}$	$3.10^{+0.13}_{-0.12}$	$2.75 \rightarrow 3.50$	$3.10^{+0.13}_{-0.12}$	$2.75 \rightarrow 3.50$	$3.03^{+0.14}_{-0.13}$	$2.64 \rightarrow 3.45$	$3.20^{+0.20}_{-0.16}$	$2.73 \rightarrow 3.79$
$\theta_{12}/^{\circ}$	$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$	$33.82^{+0.78}_{-0.75}$	$31.62 \rightarrow 36.27$	$33.40^{+0.87}_{-0.81}$	$30.92 \rightarrow 35.97$	$34.5^{+1.2}_{-1.0}$	$31.5 \rightarrow 38.0$
$\frac{\sin^2 \theta_{23}}{10^{-1}}$	$5.63^{+0.19}_{-0.26}$	$4.30 \rightarrow 6.12$	$5.65^{+0.17}_{-0.22}$	$4.36 \rightarrow 6.10$	$5.57^{+0.17}_{-0.24}$	$4.44 \rightarrow 6.03$	$5.51^{+0.18}_{-0.30}$	$4.53 \rightarrow 5.98$
$\theta_{23}/^{\circ}$	$48.6^{+1.1}_{-1.5}$	$41.0 \rightarrow 51.5$	$48.8^{+1.0}_{-1.2}$	$41.4 \rightarrow 51.3$	$48.2^{+1.0}_{-1.4}$	$41.8 \rightarrow 50.9$	$47.9^{+1.0}_{-1.7}$	$42.3 \rightarrow 50.7$
$\frac{\sin^2 \theta_{13}}{10^{-2}}$	$2.261^{+0.067}_{-0.064}$	$2.066 \rightarrow 2.461$	$2.259^{+0.065}_{-0.065}$	$2.064 \rightarrow 2.457$	$2.18^{+0.08}_{-0.07}$	$1.95 \rightarrow 2.43$	$2.220^{+0.074}_{-0.076}$	$1.99 \rightarrow 2.44$
$\theta_{13}/^{\circ}$	$8.65^{+0.13}_{-0.12}$	$8.26 \rightarrow 9.02$	$8.64^{+0.12}_{-0.13}$	$8.26 \rightarrow 9.02$	$8.49^{+0.15}_{-0.14}$	$8.0 \rightarrow 9.0$	$8.53^{+0.14}_{-0.15}$	$8.1 \rightarrow 9.0$
$\delta_{\rm CP}/^{\circ}$	285^{+24}_{-26}	$205 \rightarrow 354$	282^{+23}_{-25}	$205 \rightarrow 348$	247^{+26}_{-27}	$193 \rightarrow 346$	281^{+23}_{-27}	$202 \rightarrow 349$
$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.39^{+0.21}_{-0.20}$	$6.79 \rightarrow 8.01$	$7.39^{+0.21}_{-0.20}$	$6.79 \rightarrow 8.01$	$7.34_{-0.14}^{+0.17}$	$6.92 \rightarrow 7.91$	$7.55_{-0.16}^{+0.20}$	$7.05 \rightarrow 8.24$
$\frac{\Delta m_{32}^2}{10^{-3} \text{ eV}^2}$	$-2.509^{+0.032}_{-0.032}$	$-2.603 \rightarrow -2.416$	$-2.510^{+0.030}_{-0.031}$	$-2.601 \rightarrow -2.419$	$-2.478^{+0.035}_{-0.033}$	$-2.577 \rightarrow -2.375$	$-2.50\pm^{+0.04}_{-0.03}$	$-2.59 \rightarrow -2.39$

Lepton mixing

- Apply the same formalism to lepton $\mu^-e^+-\mu^+e^-$ mixing through similar box diagrams with intermediate neutrino channels **PMNS**
- Correspondence $m_{d,s,b} \leftrightarrow m_{1,2,3}$ $V_{cd}^*V_{ud}/(V_{cs}^*V_{us}) \leftrightarrow r = U_{\mu 1}^*U_{e1}/(U_{\mu 2}^*U_{e2})$
- Normal hierarchy (NH) $m_1^2 = 10^{-6} \text{ eV}^2$ de Salas et al, 2018

 $\Delta m_{21}^2 \equiv m_2^2 - m_1^2 = (7.55^{+0.20}_{-0.16}) \times 10^{-5} \text{ eV}^2 \qquad \Delta m_{32}^2 \equiv m_3^2 - m_2^2 = (2.424 \pm 0.03) \times 10^{-3} \text{ eV}^2$

• Predict LO analysis so far

$$r = \frac{U_{\mu 1}^* U_{e1}}{U_{\mu 2}^* U_{e2}} \approx -1.0 - 0.02i$$

$$r = -(0.738_{-0.048}^{+0.050}) - (0.179_{-0.125}^{+0.136})i$$

- Inverted hierarchy (IH) $r \approx -1.0 O(10^{-5})i$ $r = -(1.03^{+0.05}_{-0.16}) (0.356^{+0.015}_{-0.048})i$
- NH and observed PMNS matrix satisfy constraint at order of magnitude

Why neutrinos so light?

So far, connections between mixing angles and mass ratios Haven't addressed absolute neutrino masses

alternative to see-saw mechanism

NLO in symmetric phase

• Mixing disappears above EW restoration scale only at LO, in fact

does not vanish, and determines smallness of neutrino masses

Estimate m₃

• Consider 2-3 generation mixing to reach maximal neutrino mass

50 TeV, between b' mass 2.7 TeV and t' mass 200 TeV

Li, 2309.15602

measured value
$$\Delta m^2_{32} \equiv m^2_3 - m^2_2 = (2.424 \pm 0.03) \times 10^{-3} \text{ eV}^2$$

Analyticity dictates scalar sector and explains SM flavor structure?