New lower bounds on scattering amplitudes

MASAHIDE YAMAGUCHI (Institute for Basic Science)

22/01/2024@High1 Workshop on Particle, String and Cosmology

Luca Buoninfante, Junsei Tokuda, MY, arXiv: 2305.16422, JHEP, 01, 082 (2024)

$$c = \hbar = M_G^2 = 1/(8\pi G) = 1$$

Contents

Introduction

Basics of kinematics (scattering amplitude)Froissart (upper) bound, Cerulus-Martin (lower) bound(Jaffe's) classification of localizability

New lower bound

Polynomial boundedness Description Exponential boundedness New bound in hard scattering limit and in Regge limit

Discussion and conclusions

Introduction

What is the ultimate (UV complete) theory ?
What kind of conditions it should satisfy ?

In order to address these questions, we investigate **S-matrix (scattering amplitude)**.

Basics of kinematics (scattering amplitude)

S-matrix:
$$\langle f | S | i \rangle_{\text{Heisenberg}} = \langle f; t = \infty | i; t = -\infty \rangle_{\text{Schrodinger}}$$

 $(S = 1 + iT) \implies \langle f | T | i \rangle = (2\pi)^4 \delta^{(4)} (p_i - p_f) \mathcal{M}(i \to f)$

2 \rightarrow 2 elastic scattering (p1 + p2 = p3 + p4) :

$$\langle p_3, p_4 | T | p_1, p_2 \rangle = (2\pi)^4 \delta(p_1 + p_2 - p_3 - p_4) \mathcal{M}(s, t, u)$$

Mandelstam variables : $s = -(p_1 + p_2)^2$, $t = -(p_1 - p_3)^2$, $u = -(p_1 - p_4)^2$.

(CM energy squared) (momentum transfer squared)

 $\left(s+t+u=4m^2, \ z=\cos\theta=1+\frac{2t}{s-4m^2}\right)$ All masses are assumed equal.

scattering amplit

Hard-scattering limit, M(s,z) :

$$s \to \infty$$
, $-1 < z = \cos \theta < 1 = \text{fixed}$.

• Regge limit, M(s,t): $s \to \infty$, $t = -2p_s^2(1 - \cos\theta) = \text{fixed}$.

(Well-known) upper and lower bounds

• Froissart (upper) bound

$$|\mathcal{M}(s, z = \cos \theta = 1)| < s \ln^2 s$$
, for $s \to \infty$

• Cerulus-Martin (lower) bound

$$\max_{-a \le \cos \theta \le a} |\mathcal{M}(s, \cos \theta)| \ge \mathcal{N}(s) e^{-f(a)\sqrt{s} \log(s/s_0)},$$

N(s) : a positive function of s that is subdominant in the s $\rightarrow \infty$ limit f(a) : a positive function of a $\in (0,1)$ so : some energy-squared reference scale

by assuming unitarity, analyticity, polynomial boundedness, a finite mass gap. $(SS^{\dagger} = 1)$ (analytic except at poles and branch cuts)

(If the bound would be falsified in an experiment, one of the assumptions must be violated !!)

(Jaffe's) classification of localizability

 $ho(-p^2)$: Kallen-Lehmann spectral density

$$\begin{cases} W(z \equiv x - y) = \langle 0 | \phi(x)\phi(y) | 0 \rangle = \int \frac{d^4p}{(2\pi)^4} \tilde{W}(p) e^{ipz} = \int_0^\infty d\mu \,\rho(\mu) W_{\text{free}}(z;\mu) \\ \tilde{W}(p) = 2\pi \,\Theta(p^0)\rho(-p^2) \,, \quad \rho_{\text{free}}(-p^2) = \delta(p^2 + m^2) \end{cases}$$

$$\rho(-p^2) \sim (-p^2)^N \exp\left[c \,(-p^2)^\alpha\right] \,, \quad \begin{cases} 0 \leq \alpha < \frac{1}{2} & : \text{ strictly localizable }, \\ \alpha > \frac{1}{2} & : \text{ non-localizable }, \end{cases}$$

$$(-p^2) \sim (-p^2)^N \exp\left[c (-p^2)^{\alpha}\right], \quad \begin{cases} \alpha > \frac{1}{2} & : \text{ non-localizable}, \\ \alpha = \frac{1}{2} & : \text{ quasi-local}. \end{cases}$$

Note that W(x-y) with $\alpha \ge 1/2$ is ill-defined (diverges) even for $x \ne y$.

$$W_{\rm free}(z;\mu) \equiv \int \frac{\mathrm{d}^4 p}{(2\pi)^3} \Theta(p^0) \delta(p^2 + \mu) e^{ipz} \sim \begin{cases} \frac{(2\sqrt{\mu})^{1/2}}{(4\pi\sqrt{z^2})^{3/2}} e^{-\sqrt{\mu z^2}} & \text{for } \mu z^2 \gg 1 \,, \\ -ie^{-i\pi/4} \frac{(2\sqrt{\mu})^{1/2}}{(4\pi\sqrt{-z^2})^{3/2}} e^{-i\sqrt{-\mu z^2}} & \text{for } -\mu z^2 \gg 1 \,, \end{cases}$$

Examples

- $\rho(-p^2) \sim (-p^2)^N \exp\left[c \, (-p^2)^\alpha\right] \qquad \begin{cases} 0 \le \alpha < \frac{1}{2} & : \text{ strictly localizable} , \\ \alpha > \frac{1}{2} & : \text{ non-localizable} , \\ \alpha = \frac{1}{2} & : \text{ quasi-local} . \end{cases}$
- Standard interacting QFT : α = 0 (polynomial bounded)
- Gravity and BH formation : $\alpha = (D-2) / (2(D-3))$, $\alpha > 1/2$ for D > 3

In the usual perturbative QFTs, we can probe arbitrary short-distance scales $L \sim E^{-1}$ with s, $-t \sim E^2$.

In GR, there exists a lower limit on the distance scale L that can be probed before BH formation sets in, and this is given by $L \gtrsim 2E / Mp^2$.

→ More energetic probes are affected by a larger uncertainty in resolving distances.

$$\rho(s \sim (-p^2)) \sim e^{S_{\mathsf{BH}}(\sqrt{s})} = e^{c \left(\sqrt{s}/M_p\right)^{\frac{D-2}{D-3}}}$$

Similar argument

$$\mathcal{M}(s, \cos\theta) \sim e^{-S_{\mathsf{BH}}(\sqrt{s})} = e^{-c\left(\sqrt{s}/M_p\right)^{\frac{D-2}{D-3}}} \text{ for } E \gg M_p$$

New bound

(Well-known) upper and lower bounds

• Froissart (upper) bound

$$|\mathcal{M}(s, z = \cos \theta = 1)| < s \ln^2 s$$
, for $s \to \infty$

• Cerulus-Martin (lower) bound

$$\max_{-a \le \cos \theta \le a} |\mathcal{M}(s, \cos \theta)| \ge \mathcal{N}(s) e^{-f(a)\sqrt{s} \log(s/s_0)},$$

N(s) : a positive function of s that is subdominant in the s $\rightarrow \infty$ limit f(a) : a positive function of a $\in (0,1)$ so : some energy-squared reference scale

by assuming unitarity, analyticity, polynomial boundedness, a finite mass gap. $(SS^{\dagger} = 1)$ (analytic except at poles and branch cuts)

(If the bound would be falsified in an experiment, one of the assumptions must be violated !!)

Polynomial boundedness → Exponential boundedness

 $|\mathcal{M}(s,z)| \le A\left(\frac{s}{s_0}\right)^N, \ \frac{s}{s_0} \gg 1 \quad \square \qquad |\mathcal{M}(s,z)| \le A\left(\frac{s}{s_0}\right)^N \ e^{\sigma(s/s_0)^{\alpha}}$

(N, α: positive constant, A: positive parameter relying on z, s0 : some energy-squared reference scale)

Cerulus-Martin (lower) bound is more generalized !!

New lower bound in the hard-scattering limit: $\max_{-a \leq \cos \theta \leq a} |\mathcal{M}(s, \cos \theta)| \geq \mathcal{N}(s) e^{-f(a)\sqrt{s} \log(s/s_0)} e^{-g(a) s^{\alpha + \frac{1}{2}}},$

N(s) : a positive function of s that is subdominant in the s $\rightarrow \infty$ limit f(a), g(a) : positive functions of a $\in (0,1)$ so : some energy-squared reference scale

• *α*=0 consistently recovers the Cerulus-Martin(CM) bound.

• Our result admits a violation of the original CM bound even for $0 < \alpha < 1/2$. This is interesting since the CM bound has been used as a test of locality in the past.

New lower bound in the Regge limit

Regge limit : $s \to \infty$, $t = -2p_s^2(1 - \cos \theta) = \text{fixed}$ $(p_s = |\vec{p_1}| = |\vec{p_3}| = \frac{1}{2}\sqrt{s - 4m^2})$ $\Delta \equiv \frac{p_s^2}{4m^2}(1-a) \quad \longleftrightarrow \quad t = -8m^2 \Delta |_{a=\cos\theta}$ **New lower bound in the Regge limit:** $\max_{8m^2\Delta-4p_s^2 < t < -8m^2\Delta} |\mathcal{M}(s, t)| \ge h(\Delta) e^{-\tilde{f}(\Delta)\log(s/s_0) - \tilde{g}(\Delta)s^{\alpha}}$ $\begin{cases} h(\Delta), f(\Delta), g(\Delta) : \text{ positive functions of } \Delta, 0 < \Delta < ps^2/(4m^2) \\ s_0 : \text{ some energy-squared reference scale} \end{cases}$

- α=0 corresponds to the bound for polynomial boundedness
- The s-dependence in the lower bound for fixed momentum transfer differs from the one for fixed scattering angle by a factor of sqrt{s} in the exponent. This means that amplitudes in the hard-scattering regime (large angles) can be more suppressed as compared to the ones in the Regge regime (small angles).

Summary

- We have generalized the so-called Cerulus-Martin (lower) bound on elastic scattering amplitude in hard-scattering limit by assuming exponential boundedness.
- Given a scenario in which the high-energy behavior of an elastic scattering amplitude is known, we can use our new bounds to check whether the starting assumptions are satisfied.
- In particular, the degree of (non-)localizability of the underlining UV theory can be constrained.
- We have also derived the new (lower) bounds on elastic scattering amplitude in Regge limit by assuming both polynomial and exponential boundedness.