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QFT vs Inhomogeneous field theory (IFT)

* (canonical, renormalizable, local ) QFT

[ /ddrﬁﬁ(ﬁﬁaa @LQ%; m, g.n)

Constant =» Poincare symmetric

Classical solution
Non-relativistic limit <= QFT <= Supersymmetric QFT

‘ - Juantum effects
Quantum mechanics 2

(perturbation level)



QFT vs Inhomogeneous field theory (IFT)

* (canonical, renormalizable, local ) QFT

S = / dd/L L:(Qﬁa,; a‘u.d)a,; m, g-n)

Constant =» Poincare symmetric
* Classical and quantum approaches
* Preferred vacuum (Minkowski spacetime: global vacuum)

- Canonical quantization: [ (¢ 7). 7.(t. 7)] = i6" (7 — )  7alx) oL

~ 94,

d1p 1 - - T
| =) 1p-x T _—ipx a a
o(t, ) / 2T e (ape™™ + ale™™") P D




QFT vs Inhomogeneous field theory (IFT)

 (canonical, renormalizable, local ) QFT

S = / dd/L L:(Qﬁa,; a‘u.d)a,; m, g-n)

Constant =» Poincare symmetric
* One particle state:
select the prepared vacuum: Minkowski vacuum |0)

, , Unitary transform
Poincare transformation

a}]0) = #1p) L IAP) = U(A)p)

Construct the Hilbert Poincare should be preserved
space from vacuum at quantum level as well




QFT vs Inhomogeneous field theory (IFT)

* (canonical, renormalizable, local ) QFT

S = / dd/L L:(Qﬁa,; a‘u.d)a,; m, g-n)

Constant =» Poincare symmetric
* One particle state:
select the preferred vacuum: Minkowski vacuum |0)

oo trancf t' Unitary transform
_ oincare transformation

al|0) = #[p) L JAP) = U(A)lp)

=> In the canonical quantization of a field theory, preferred vacuum,

Poincare symmetry are necessary!
=> If not, no particle notion and cannot construct global Hilbert space




QFT vs Inhomogeneous field theory (IFT)

 (canonical, renormalizable, local ) Inhomogeneous QFT (IFT)

S = / dd:}: [:(Oa a,u Oa 'TH-(LY_T ) 9n (‘T>)

Arbitrary functions =» Poincare
“symmetry is broken

Classical solutions (condensed matter, cosmology, nuclear physics)

/ N
Non-relativistic limit <= |FT 4= Supersymmetric IF'I" (SIFT)

| ~ —

Quantum mechanics Canonical quantization is not possible
. without the Poincare symmetry
with space-dependent mass 3 algebraic QFT (our proposal)



QFT vs Inhomogeneous field theory (IFT)

* Merits of SQFT:
1. 2"d-order diff. eq. > 1t —order diff. eq.
- analytic solutions (classical level)
2. Exact results in quantum level (ex. Index calculations)
2. BPS solutions (classical level): protected from
quantum corrections (Hierarchy problem)
3. superparticles?? Applications to condensed matter
physics (classical level)
(ex. models of top. Superconductor)



Origin of the inhomogeneous
parameters

* In the context of string t.heor%, mass and coupling parameters
in low energy effective field theories can be understood as
non-dynamical traces (or background) of high energy fields.

* Usually, these mass and coupling parameters are taken as
constants in order to maintain Poincare symmetry of
theories.

* Inhomogeneous non-dynamical traces break supersymmetry
partially.



Janus field theories Vs Inhomogeneous field
theories
« spatially varying coupling parameters

- space-dependent gauge coupling parameter g=g(x)
- Inhomogeneous mass m=m(x)

*Due to renormalizability of theory, possible number of parameter is limited.



Janus field theories

« spatially varying coupling parameters

gm(x)

- usual coupling parameter g=g(x)

Janus super Yang-Mills
theory

Interface
SYM ﬂ SYM
<= =)
§- \/\ -

0
SIanus = j ded3XLSYM(g—)

+ f d3x'£interface

y=0
+00
" f dy j Loy (gs)
0



Inhomogeneous field

theories
* spatially varying coupling parameters
yuules! [Kyung Kiu Kim-OK]

Inhomogenous mass-deformed
< > ABJM theory ) ) ,.

LImAB_JM = LABJM - vferm - VﬂUX - vmass - vj

.

Vy=m'er (Yive = vily?)

m=m(Xx)

- Inhomogeneous mass m=m(x) arbitrary function



Janus field theories Vs Inhomogeneous field theories

 Dual gravity origin (AdS/CFT correspondence)

: Bak- Gutperle-Hirano, 2003
usual coup||ng constant g=g(x) [ utperle-Hirano ]

.
turning on spatially varying background dilaton & _ P
field 47

Kim-OK, 2018] [Arav et al, 2020]

_ [
Inhomogeneous mass m=m(X) ;. im_kim-0OK, 2019]Kim-OK-Tolla, 2020]

turning on spatially varying 4-form field strength in 11-dim. SUGRA
(M-theory)
Fagep = Tapep(wi)

Tioi3 = —m,  Tyz3=m

RR 7-form field strength (IIB SUGRA)



Inhomogeneously mass-deformed
ABJM(ImABJM)

* Reduction of supersymmetry » - — » =3

1 i " a=1.2 and 1 = 3.4,
YV Wah = —Wahp < wy =w?,

L, i1 ., at
Y Wai = Wai R —— Wy =—w,

- Deformation of the Lagrangian:

- ;},;”MBD (1'5-1' C}'ETJ}' Py G}'Jﬁ' BTE,}) : flux term

2 B 'y By vAy
(m Oq Htm' My )} }g : mass term

m = m(x)



Gravity dual of the ImABJM

* N=3 Inhomogeneously mass-deformed ABJM (Janus ABJM)
model

m = m( x) : arbitrary mass function [OK-KKim]

[K.Kim-Y.Kim-OK-C.Kim]

« SUSY Q-lattice geometry in 11-dimensional gravity

For a special mass function: [Gauntlett-Rosen]
m(x) = mysin(kx) [Arav-Gauntlett-Roberts-Rosen]

- Black brane solution dual to the N=3 ImABJM at finite
temperature with the mass function [Ahn-Hyun-OK-Park]



* Extension to well-known supersymmetric field theories, such
as N=2 Chern-Simon Higgs model in 3d and Abelian Higgs
models in 3d and 4d, etc.

N=6 Mass deformed ABJM N=2* Mass deformed super Yang-Mills

Abelian projection Abelian projection

& *origin of space-dependent parameters N g
N=2 Chern-Simon Higgs N=1 Abelian Higgs in 4d
_ _ — ke | _ : _ .
L=- DLL".—’_;’D”Q"? + f'i'.'".‘ﬂ,-"ﬁD;L W+ EEﬁypflgC')yﬂp H= lu(%) H = M(17 y)
.7 . 9T 19 T 2 —= k
+ g — 3iN| 6P — |62 (N o2 — 1)”, - AN A]2 — — ulr. B
A0 0% — |o]* (A|]° — ) L=1L— (Dou(x))|d] L £+7Tg,u(mjy)

BPS solutions for non-constant /, and other applications for various physical situations.



Inhomogeneous coupling constant deformations
iIn 1+1 dimensions

« 2-dimensional N=1 supersymmetric real scalar field theory

S = / d*x [ — {—)(;_)N_(_j)(;_)’u(_ﬂ +1 Q:-":.”{'Lt;_)ﬂ_ U+ W H((_;J) W — 5“ ! ((_;;)2} W' = Cf}—i
0P = 1, = (io* ') with p = 0,1
<./ 1 Loy 1 7
oY = —5’}"{' € + 5”’ e

Q.= [ deJ’ =ie.Q, +ie_Q_ with Qi = [ do((0yp £ 010)L F W
€ +U+ F

€= (e, e ) withe= el = ¢

{Qe, QL =2(P"F P'),  {Q+, QL) =2T

T = / dr(010)W' (o) = / dx (”I(([(;([)) = W(p(o0)) — W(d(—00))



Inhomogeneous coupling constant deformations
In 1T+1 dimensions

« 2-dimensional N=1 supersymmetric real scalar field
theory

1 _
E = PY = 1{Q+ + ()_. Ql + QT_} T [Witten-Olive,
1978]

E > |T|



Inhomogeneous coupling constant deformations
In 1T+1 dimensions

« 2-dimensional N=1 supersymmetric real scalar field
theory

| _
E = P — 1{Q+ + ()_. Ql 1 QT_} T [Witten-Olive,
1978]

E > |T|

- Homogeneous QFT = Inhomogeneous QFT (ImQFT)
Wi(p) = Z???iﬁr(c;ﬁ) — Wi, x) = Z?ni(i‘)ﬁ*(rj})

i 1



Inhomogeneous coupling constant deformations
In 1T+1 dimensions

S — — o Lo 1 1 oW
0 = —=~"0 e+ —W'e > i) = ——=~"0,q ——
. 5 11G 5 O 57 Oy e+ 290 €

W= W |
do PrOJeCt|On: "} S— :tE € — :i:E_|_

! 2w~ 1 ( ﬂ ) 2 oW

L=—=0,00"d+itvy"'0,0 +i——th — = | = —
2 HTT B Op? " 2\ Jo Jx
Q. =ic QO = / A [(ao b+ 010 — O W), — (Dg — Dy + O, U)z_} new term
| | [Kim-Kim-OK]
Position 1 /7OW\?%2 oW 1 - -
J(b.1) = = o E=-{Q.Q"+T
dependent  V(d.2) = 5 ( c‘)o) + 4{ h

potential . o
need not be nonnegative definite,



Equivalence between IFT and FTCS

* Instead, we explore another way for a quantization of the above IFT.
 For this purpose, we consider a (1 + 1)-dimensional scalar FTCS:

SETes = /{fE.IJ\E—EJEFTUS = /f/ TV —g [— ~V,oV'o — —mﬂm — Z fe(R)q ]

mg 1s a constant, R denotes the scalar curvature of the background metric
Srrcs satisfies the general covariance : Under the coordinate transformation ## — X#(x)

G (X) = 2222, (x)

e Conformal form of the metric in (1+1) dimensions:

ds? = e*@)(—dt* + dz*) 9 Spatial inhomogeneity in IFT



Equivalence between IFT and FTCS

e Conversion from IFT to FTCS

2

—qg = e, g =—qgF = —e", R = —2uw"e

\/jggﬂ 'V 1. OV, = > ( e ) ( ”H Y a,u 00y P) = ?.?” Y rj,u 0Oy @

Regardless w(x), the kinetic terms in both sides are always
identical in (1+1) dimension

* I[FT is converted to FTCS with the parameter matching:
'mg(.r) = \/”——g(m‘é -+ sz('ﬂi))
'_ffu(f} — \sf{_—gfrl(R) ;
J(x) = —V/=9gfi(R).



Supersymmetric Field Theory on Curved spacetime
(SFTCS)

* [FT and FTCS
i : 1 1
STIFT = / A Lipr = /t‘fzil‘[ — 5!;“’”0#@01;@ )mz( r)d? — Z gn(x)d" + J(x )r;} .

- n=23

SFTCs = /dg.t‘w—g Lrrcs = /e:i’ T/ — [ gV OV, 0 — ”*'-'u” — Zh{ } .

« Wess-Zumino model (real scalar + quadratic Majorana fermion) N =(1,1)
with two real supercharges

i . 1 O2W I 2 »
Sepr = [ d*aLgpr = | Po [— —r} Y 0,00,0 + - L"‘Fd a8 —|— np — = C' _ ] W(¢) = Z’\”“
2\ do? 2\ Jdo n>2

 SIFT version of Wess-Zumion model (position-dependence only)

oW (¢, x) IW (¢, x) _ Z OAn(x) o

3 o [Kim-Kim-Kwon]

Ls1er = LSIFT 020 (2) — dx



Supersymmetric Field Theory on Curved spacetime
(SFTCS)

« Supersymmetric field theory on curved spacetime (SFTCS) : One may ask
whether there is a relation between SFTCS and SIFT just like the bosonic
case. However, it is well-known that a rigid background allowing
supersymmetric field theory is not abundant.

A tentative Wess-Zumino model on curved background (which is obtained
simply by replacing the flat metric 7, — g,

HFT /d Ty —( ,C(]

1 92 W
ﬁ:——q#v(v(+ m;wvy - w—.— ‘
2\ 92 2\ do

 This is not supersymmetric in general. As a method of
supersymmetrization of supersymmetrization of the action preserving
covariance, we extend the superpotential as ) . Wi ZF R)e



Supersymmetric Field Theory on Curved spacetime
(SFTCS)

« Under the supersymmetric variation:

0 = iWe .

UW)E

‘ FVpe et db

the variation of the Lagrangian results in

0(V=gLo) = —iv/=g Vup U (g™ = )Vye +iv/=g Yy nd" 104"V, (Fre)

» , | B
Conditions to be supersymmetric: v, = e f=1R)

| Generalized Killing
VuFn(R)Ve = Gu(R)e  spinor equation

vV —9 LspTcs = —ﬂ(ﬁm — [(R)W(od,R) —U(o. R)) UO.R) = Gu(R)o"



 Our results by solving the generalized Killing spinor equation:

1. Flat background (Minkowski, Rindler, etc....) =» two susy
2. AdS2 background = two susy dS2 =» no susy

3. m = m(t), g = g(t) = no susy

4. m = m(x), g = g(x) =» one susy



A supersymmetric background

* To be specific, let us take: ;2 oo (_g2 1 g2)

f(R)= >R

N

f(R) =+w'e™ :supersymmetric condition

mo
! !
b - . ) i

W e“w =)

2&

o) _ 1 ab =12 b0
a -+ e—bz

R = 2ab%e™ ™

* Interestingly, the rigid background described by the above metric allows
various field theories, such as Sine-Gordon, Liouville,  ¢° theory, etc.



A supersymmetric background

* The supersymmetric background metric )
has curvature singularity at = — -




Free scalar FTCS and free scalar IFT

_ A | q ; . . \ . .
SrTcs = / (/2.1'\/——_(/[ — SV“OV“O — 3111(“;(')2 — %'R.()z} r.",w"z — ;2“"1“-?"] (—rffz -+ ff.!'z)
. 2 . F,i-‘f'[-r:' N I
Klein-Gordon eq: (B +mg+E&R)¢ =0 T b e
0ip=—Ap,  A=-02+e*(mj+ER)
Lapr = —l-r]””c‘? O, D + i@ﬂ--*”(‘? v+ inz.(;r)tﬂt’f — l(-';“1'2.2(;1?) + -'n'z.'(;r)) 2
SIFT 9 1 PUL ¢ 9 PYRpYul 9 . DU 5 . . D

(m2e’® + 2£ab?)e’
(aeb® + 1)2

m2g = e*(mi + ER) = m? +m/

[_ & + Veﬂ(x)] b, (x) = WP, (), Vert (2) = meg(r) =

dx?



Free scalar FTCS and free scalar IFT

The operator A can be identified with Haimiltonian in Supersymmetric quantum
mechanics

(m2e”® + 2¢ab?)e’
(act® + 1)

[ _ dd_; + veff(g:)] bu(t) = W?Pu(z),  Vig(z) = mZz(z) =

2 2002 ey — a2
mig = e (mg+ER) =m” +m

dWam
dx

2 / 2
Veg =m™+m =V —

WQl\_{ = —m (7,)

a>0 : Rosen-Morse potential
a<0 : Eckart potential => Exactly solvable!

dr

fT 00
A=D_D_., Dy = o m(z) (¢, Ad) = / |D_ ¢|2dx .



Solution:

y = ae’” = o) o, (y) =y (1 +y) fuly)
[ (1+T)d—2+(2{1—|—1—|—(2 +2a + 1) )i+ (2a+1)—2§]f (y) =0
Yy deg g Yy dy g wlY :

b (y) = (1+y)”[aly“F(A=B; Cl-—y)+ay*™ “F(A-C+1,B-C+1;2-C| —y)]

FAB;C|lz)=(1-2)"*PF(C-AC-B;C|z2)

(

A=-(w—k)+p3, B= :

b
where £ is defined by

(Ww+k)+8, C=1+2

W,

S| =

k* = w? — (26€)°.

Note that this choice implies A — B = —23'%.



Proposal on the quantization of IFT

1
> () > —
CL 9 5—4

* Explicit example: ) =

a+ e-bx

I:mﬂ [ T }.. L




Proposal on the quantization of IFT

+ L(eft)-quantization: aula) = [ - \/:Z[ (QSJ)%(HSJ(I))*]

hi(r) — a ._i-.i.w(z’—;ro) ..i—-z'w(:r—'ro) B o
bulT) T3 e Tt u (@) = (L+ ) 2F(A.B; | — e)em ™),

(i
uH (@) =1+ *FA-C+1,B=C+1;2-C| —ebr)emiwli)

(@) =+ EFA-CH+1L,B-C+1;2-C| —é" )ew(m
“L(:')(x))* _ (l+ ) F(”l B-C | lu piwltte)
[”S) (Q(JI})T} _ (5-sij(5(w —w') uP(z) — T “a(u:']“DL —0

Fock space #iis constructed by these operators.

b (_jt‘_iw“—i_mj _|_a£.}—}{—iw(t—xj 4 (“E,_,—H)%féw“—i_m) 4 (GF‘—])TEiw{t—r}}

hald

N L



Proposal on the quantization of IFT

° R(“ght)‘quantlzatlon or(T / ji%\/: { (4), (1} -|—(EJE})T(F;{:](:L')):]

(’w("f) ; blt_i-ik(-.r—;ro) + bze—-ik(;r—afg)
T—00 (=)

@) = (14 EF(AA=CH1; A= B 1] = et )il

k
o) = (146 )ng(B B—C+1:B—A+1

bl) e —i(wt+kx)

W = .2 2 2
[k'(}"f’)]_( o(k ) by [0)r =0

Fock space # is constructed by these operators.

E}EJ—I_JE_E-(Mt_kI} 4 bi—}ﬁ_,—i[wt—kx] 4 (bEJ—H)Tt__i{wt—l—k:uj 4 (bi—])Tt_,i[wt—k:ﬂ]}

(z) /' dik 1
Op\T ~
5 Jo V2r V2w



Some comments:

« Two vacua |0)r. and [0)r are inequivalent due to the lack of an invertible
transformation connecting % and 5 =» no unitary transformation
between two

« Both quantization schemes are distinct, and neither vacuum is preferred.

* It is natural to interpret the Fock spaces % and % as local Hilbert
space, rather than global ones.

« Even though (local) %1 and Fr are not unitarily equivalent, they share
the same algebraic relation among the field operators.

* In this algebraic viewpoint, one may consider some extended (algebraic)
states from the local fock spaces.



Discussions

* Inhomogeneous couplings in IFT can be understood as relics of some
fields of enlarged theory, dilaton = g(x) in SYM, form field = m(x) in
MABJM

e [FT = FTCS in (1+1) dimensions

« A new supersymmetric background

« SQM interpretation of the results (Rosen-Morse /Eckart potential)

« Quantization of IFT: algebraic quantization approach is natural
Future directions

« Calculation of two-point function in the supersymmetric background?

« How to understand the finite temperature in IFT

* Integrability for the field theory on the supersymmetric vacuum

« Algebraic understanding for the quantization in our background



Thank you for attention!!
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