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QFT vs  Inhomogeneous field theory (IFT) 

• (canonical, renormalizable, local ) QFT

Constant ➔ Poincare symmetric

QFT



QFT vs  Inhomogeneous field theory (IFT) 

• (canonical, renormalizable, local ) QFT

• Classical and quantum approaches

• Preferred vacuum (Minkowski spacetime: global vacuum)

• Canonical quantization: 

Constant ➔ Poincare symmetric



QFT vs  Inhomogeneous field theory (IFT) 

• (canonical, renormalizable, local ) QFT

• One particle state: 

select the prepared vacuum: Minkowski vacuum 

Constant ➔ Poincare symmetric

Unitary transform

Construct the Hilbert 
space from vacuum

Poincare should be preserved 
at quantum level as well

Poincare transformation



QFT vs  Inhomogeneous field theory (IFT) 

• (canonical, renormalizable, local ) QFT

• One particle state: 

select the preferred vacuum: Minkowski vacuum 

Constant ➔ Poincare symmetric

Unitary transform

➔In the canonical quantization of a field theory, preferred vacuum, 
Poincare symmetry are necessary! 

➔ If not, no particle notion and cannot construct global Hilbert space

Poincare transformation



QFT vs  Inhomogeneous field theory (IFT) 

• (canonical, renormalizable, local ) Inhomogeneous QFT (IFT)

Arbitrary functions ➔ Poincare 
symmetry is broken

IFT

Canonical quantization is not possible
without the Poincare symmetry 
➔ algebraic QFT (our proposal)



QFT vs  Inhomogeneous field theory (IFT) 

• Merits of SQFT:
1. 2nd-order diff. eq. → 1st –order diff. eq.
    → analytic solutions (classical level)
2. Exact results in quantum level (ex. Index calculations)    
2. BPS solutions (classical level): protected from 
quantum corrections (Hierarchy problem)
3. superparticles?? Applications to condensed matter 
physics (classical level)
(ex. models of top. Superconductor)



Origin of the inhomogeneous 
parameters

• In the context of string theory, mass and coupling parameters 
in low energy effective field theories can be understood as 
non-dynamical traces (or background) of high energy fields. 

• Usually, these mass and coupling parameters are taken as 
constants in order to maintain Poincare symmetry of 
theories.

• Inhomogeneous non-dynamical traces break supersymmetry 
partially.  



Janus field theories Vs Inhomogeneous field 
theories

• spatially varying coupling parameters

- space-dependent gauge coupling parameter g=g(x)

- Inhomogeneous mass m=m(x)

*Due to renormalizability of theory, possible number of parameter is limited. 



Janus field theories Vs Inhomogeneous field theories

• spatially varying coupling parameters

- usual coupling parameter g=g(x)

- Inhomogeneous mass m=m(x)

Janus super Yang-Mills 
theory
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Janus field theories Vs Inhomogeneous field 
theories
• spatially varying coupling parameters

- usual coupling constant g=g(x)

- Inhomogeneous mass m=m(x)

Inhomogenous mass-deformed 
ABJM theory

m=m(x)

arbitrary function

[Kyung Kiu Kim-OK]



Janus field theories Vs Inhomogeneous field theories

• Dual gravity origin (AdS/CFT correspondence)

usual coupling constant g=g(x)

turning on spatially varying background dilaton 
field 

[Bak- Gutperle-Hirano, 2003]

Inhomogeneous mass m=m(x)

turning on spatially varying 4-form field strength in 11-dim. SUGRA 
(M-theory)

RR 7-form field strength (IIB SUGRA)

[Kim-OK, 2018]
[Kim-Kim-Kim-OK, 2019]

[Arav et al, 2020]
[Kim-OK-Tolla, 2020]



Inhomogeneously mass-deformed 
ABJM(ImABJM)
• Reduction of supersymmetry

• Deformation of the Lagrangian: 

𝓝 = 𝟔 ⟶ 𝓝 = 𝟑

: 𝐟𝐥𝐮𝐱 𝐭𝐞𝐫𝐦

: 𝐦𝐚𝐬𝐬 𝐭𝐞𝐫𝐦

m = m(x)



Gravity dual of the ImABJM
• N=3 Inhomogeneously mass-deformed ABJM (Janus ABJM) 

model

• SUSY Q-lattice geometry in 11-dimensional gravity

- Black brane solution dual to the N=3 ImABJM at finite 
temperature with the mass function

[OK-K.Kim] 𝒎 = ሻ𝒎( 𝒙 : arbitrary mass function
[K.Kim-Y.Kim-OK-C.Kim] 

𝐅𝐨𝐫 𝐚 𝐬𝐩𝐞𝐜𝐢𝐚𝐥 𝐦𝐚𝐬𝐬 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧: 
ሻ𝒎( 𝒙 = 𝒎𝟎𝐬𝐢𝐧 𝒌𝒙

[Gauntlett-Rosen] 

[Arav-Gauntlett-Roberts-Rosen] 

[Ahn-Hyun-OK-Park]



• Extension to well-known supersymmetric field theories, such 
as N=2 Chern-Simon Higgs model in 3d and Abelian Higgs 
models in 3d and 4d, etc. 

N=6 Mass deformed ABJM N=2* Mass deformed super Yang-Mills 

Abelian projection
Abelian projection

N=2 Chern-Simon Higgs N=1 Abelian Higgs in 4d

BPS solutions for non-constant    , and other applications for various physical situations. 

*origin of space-dependent parameters



Inhomogeneous coupling constant deformations 
in 1+1 dimensions

• 2-dimensional N=1 supersymmetric real scalar field theory



Inhomogeneous coupling constant deformations 
in 1+1 dimensions

• 2-dimensional N=1 supersymmetric real scalar field 
theory

[Witten-Olive, 
1978] 



Inhomogeneous coupling constant deformations 
in 1+1 dimensions

• 2-dimensional N=1 supersymmetric real scalar field 
theory

• Homogeneous QFT ➔ Inhomogeneous QFT (ImQFT)

[Witten-Olive, 
1978] 



Inhomogeneous coupling constant deformations 
in 1+1 dimensions

Projection:

new term

Position 
dependent 
potential

[Kim-Kim-OK]



Equivalence between IFT and FTCS

• Instead, we explore another way for a quantization of the above IFT. 

• For this purpose, we consider a (1 + 1)-dimensional scalar FTCS: 

• Conformal form of the metric in (1+1) dimensions: 

➔ Spatial inhomogeneity in IFT



Equivalence between IFT and FTCS

• Conversion from IFT to FTCS 

• IFT is converted to FTCS with the parameter matching:

Regardless w(x), the kinetic terms in both sides are always 
identical in (1+1) dimension



Supersymmetric Field Theory on Curved spacetime 
(SFTCS)

• IFT and FTCS 

• Wess-Zumino model (real scalar + quadratic Majorana fermion) N =(1,1) 
with two real supercharges

• SIFT version of  Wess-Zumion model (position-dependence only)

[Kim-Kim-Kwon]



Supersymmetric Field Theory on Curved spacetime 
(SFTCS)

• Supersymmetric field theory on curved spacetime (SFTCS) : One may ask 
whether there is a relation between SFTCS and SIFT just like the bosonic 
case. However, it is well-known that a rigid background allowing 
supersymmetric field theory is not abundant.

• A tentative Wess-Zumino model on curved background (which is obtained 
simply  by replacing the flat metric

• This is not supersymmetric in general. As a method of 
supersymmetrization of supersymmetrization of the action preserving 
covariance, we extend the superpotential as  



Supersymmetric Field Theory on Curved spacetime 
(SFTCS)

• Under the supersymmetric variation: 

the variation of the Lagrangian results in 

Conditions to be supersymmetric: 
Generalized Killing 
spinor equation 



• Our results by solving the generalized Killing spinor equation:

1. Flat background (Minkowski, Rindler, etc….)  ➔ two susy

2. AdS2 background ➔ two susy dS2 ➔ no susy

3. m = m(t), g = g(t) ➔ no susy

4. m = m(x), g = g(x) ➔ one susy



A supersymmetric background

• To be specific, let us take: 

• Interestingly, the rigid background described by the above metric allows 
various field theories, such as Sine-Gordon, Liouville,        theory, etc.

:supersymmetric condition 



A supersymmetric background

• The supersymmetric background metric

has curvature singularity at 



Free scalar FTCS and free scalar IFT

Klein-Gordon eq: 



Free scalar FTCS and free scalar IFT

The operator A can be identified with Haimiltonian in Supersymmetric quantum 
mechanics

a>0 : Rosen-Morse potential
a<0 : Eckart potential ➔ Exactly solvable!



Solution:



Proposal on the quantization of IFT

• Explicit example: 



Proposal on the quantization of IFT

• L(eft)-quantization:

Fock space    is constructed by these operators. 



Proposal on the quantization of IFT

• R(right)-quantization: 

Fock space     is constructed by these operators. 



Some comments:
• Two vacua are inequivalent due to the lack of an invertible 

transformation connecting              ➔ no unitary transformation 
between two

• Both quantization schemes are distinct, and neither vacuum is preferred.

• It is natural to interpret the Fock spaces                as local Hilbert 
space, rather than global ones. 

• Even though (local)                are not unitarily equivalent, they share 
the same algebraic relation among the field operators. 

• In this algebraic viewpoint, one may consider some extended (algebraic) 
states from the local fock spaces.  



Discussions
• Inhomogeneous couplings in IFT can be understood as relics of some 

fields of enlarged theory, dilaton ➔ g(x) in SYM, form field ➔ m(x) in 
mABJM

• IFT = FTCS in (1+1) dimensions

• A new supersymmetric background

• SQM interpretation of the results (Rosen-Morse /Eckart potential)

• Quantization of IFT: algebraic quantization approach is natural

• Calculation of two-point function in the supersymmetric background?

• How to understand the finite temperature in IFT

• Integrability for the field theory on the supersymmetric vacuum

• Algebraic understanding for the quantization in our background

Future directions



Thank you for attention!! 
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