FEASIBILITY STUDY FOR THE NEXT-GENERATION SPECTROSCOPIC SURVEY WITH DEDICATED LARGE TELESCOPES

Sungwook E. Hong, Jae-Woo Kim, Arman Shafieloo, David Parkinson, Yujin Yang, Chung-Uk Lee, Byeong-Gon Park, Jeong-Yeol Han, Yunjong Kim, Bong Won Sohn, Woong-Seob Jeong, Soung-Chul Yang, Sang-Hyun Chun (kasi), Ho Seong Hwang, Jubee Sohn (snu), M. James Jee (Yonsei), Changbom Park (kias)

SURVEY SCIENCE GROUP WORKSHOP 2024 @ HIGH1 RESORT, JANUARY 30^{TH,} 2024

SPECTROSCOPIC SURVEY: CURRENT AND NEAR-FUTURE STATUS

- Korean community has participated in several international spectroscopy programs (SDSS & DESI).
- We also have access to spectrographs in current and future large & extremely large telescopes such as Gemini (8.1m) and GMT (24.5m).
- We have been involved with various large programs, maybe its time to lead!

6.5M-CLASS SPECTROSCOPIC SURVEY?

► Why 6.5m-class?

 To get scientifically meaningful spectrum sample at Hubble distance (z ~ 1) with 1-hour exposure time

► Why Flux-limited Survey?

- To maximize the sample density at the limited dark energy-dominated era (z <~ 0.8)
- To study various astrophysical phenomena other than just dark energy

In 2006/2007...

levMexAA (Serie de Conferencias), 28, 39-48 (2007) @ SSG 2023

SPM-TWIN TELESCOPES: PROJECT OVERVIEW

J. Jesús González¹ and The SPM-Twin Project Team

	TABLE 1 GENERAL SPA-TWIN INSTRUMENT CONCEPT			
		Wide-Field Telescope (WPT) (Modified Magellan/MIKT)	Standard Faid Trinscope (SPT) (Updated Magelias/MNT)	
	Optimized Re-	Wide-Langral-Field Spectroscopy	Multi-grapuse liseing-iteated Violai-fit. Astronemy and AO prepared	
	Field of view:	$\Phi \ge - \pm V$	$\Psi \sim 1.5^{\circ}$ (average limited) $\Psi \simeq 1^{\circ}$ (with AO)	
	Uperation Bacage	Visible to NIII (0.32-1.8am)	Vashie to Mid-IR (~ #4 ~ 2hani)	
	Spatial Resolutions	factory busied (Narrow-Batel anaging) $\sim 2^{\circ} - 3^{\circ}$ Spacel-busiest sampling (bulaged-Field Spectroscopy)	Bering (hotted (commit result) Differentian Instan((AD mode)	
	Apriles Mexiciane	~ 4001 (DF Rescharging) ≤ '~ 1000 (Transfe № D imaging)	While range (original indexaged auto).	
	1 ^{er} Generation Entrementation	a) Wirder Patit & Arsampherte Dispension Consiste operano de Depágadado cagle opasati and literagui Field tauba conjule do a suit de partera agentes de literación Mi-Gauga epietras agentes de literación de disperse er Wain-Field Senger (Chandel Narene Hand)	 Browskey an (Nam (Cam (AD))) High-Resolution Value & Nam Indexes Sportsgraphy (Nat Science Lammann) MAR B. Science Lammann) MAR B. Science Lammann, Lammann, Hody to accommission MAR B. Science Lammann, Lammann, (A) Arithmetic Marc Spring in Adaptive monology sature (B) (Cam I: Application) Instruments 	

ig. 6. Examples of detailed Magellan proprietary drawings and design updates. Some potential upgrades and optiizations are also shown: a higher building (for better assing at SPA), wind-flow optimized dome, top-end of telescope stimutations for a wide field secondary of WFT and low-emissivity SFT.

PAST, PRESENT, AND NEAR-FUTURE

Dec 2019	Initial discussion started
Jan-Sep 2020	Discuss on main surveyStart writing a brief white pape
Aug-Oct 2020	 KASI preliminary study proposa Pre-Study for a Large Korean Spectroscopic Telescope (PI: Arman Shafieloo)
Jul 2022 - Now	Discussion resumed

and state to be able to

PAST, PRESENT, AND NEAR-FUTURE

Mar-May 2023	Apply for KASI Qrontier		
ul-Dec 2023 If Qrontier selected)	 Write Qrontier Preliminary Report Form domestic/international committee 		
024-2026 If Qrontier selected)	 Detailed study with committee Surveys to collect community requests from KAS (& KSSS) Write the Qrontier Final Report as an input for the next step Consider joining other next-gen international survey projects 		

@ Qrontier Proposal

WHAT KOREAN COMMUNITY WANTS: 4 1. UNDERSTANDING 8GYR HISTORY OF THE UNIVERSE

- First complete spectroscopic survey of the Universe of 8Gyr
- Solving the problems of dark matter/energy
- Measuring galaxy clustering without bias
- Studying early universe using quasars at z > 6

- Making the galaxy map at 8Gyr ago
- Discovering new galaxy clusters & largescale structures
- Studying their evolution during 8Gyr
- Testing cosmic inflation using density field

- Limits on telescopes & technology
 Bigs due to the color (type colorities)
- Bias due to the color/type selection
- Insufficient for coherent understanding of the Universe
- Needs large optical/NIR spec. survey with large telescopes
- Needs spec. data @ r=22-23 (J~22)
- 10-23k galaxies per deg²

@ Qrontier Proposal

WHAT KOREAN COMMUNITY WANTS: 2. Understanding Our Galaxy

- Age of Universe & early element abundance
- Formation time of disks & halos
- Low-mass tail of stellar IMF
- Host stars of habitable exoplanets
- Aims M-dwarfs with r<22 within 2.5-15 kpc (c.f. LAMOST: r<19-20)

- He-rich stars
- Differences on Helium abundance
- Star formation & chemical abundance
- Metal-poor stars
- Chemical abundance due to the SNs
- Stars formed at the early Milky Way

Red Giants at Nearby Galaxies

5

- Giants at nearby galaxies
- Kinematic mapping of galaxies
- Metallicity mapping of galaxies
- Galaxy formation study from galactic structures
- Understanding the formation of Milky Way using the comparison

@ Qrontier Proposal

Large Telescope

Wide-field MOS

Optical/NIR

Flux-limited

Southern Hemisphere

Surveying objects with $r \sim 22$ without bias (1hr-exposure, $R \sim 2,000$)

- 1. Measuring spectra of stars within Milky Way up to $r \sim 22$
- 2. 3D mapping of ~100M extragalaxies up to past 8Gyr
- 3. Unexpected discoveries!!!

- Originality compared to other planned surveys
- Synergies with Korean communityassociated facilities (GMT, Gemini, VRO)

7 |

「차세대 분광탐사 전용 관측시설·장비 개 념설계 연구개발 사전기획」을 위한 활용 수요조사

안녕하십니까?

한국천문연구원은 2023년 연구기획 프로젝트 운영 계획에 따라 Qrontier(미래유망)* 과제로 선정된「**차세대 다천체 분광탐사 전용 관측시설·장비(6~15m급) 개념설계 연구개발 사업**」 을 위한 사전 기획을 하고 있습니다.

* 30년 내 천문우주과학계를 주도할 것으로 기대되는 차세대 유망 과제 또는 타 분야와의 융합을 통한 연구 분야 확장 및 신규 연구분야 도출 과제

본 조사의 목적은 다가오는 2030년대 다천체 분광탐사 시대를 대비하고 한국 천문학계가 세 계적인 수준의 연구경쟁력을 확보하기 위해 실제 연구현장에서 시급하게 필요로 하는 분광 탐사 전용 연구시설.장비 수요와 그 활용 분야, 활용 목적을 파악함에 있습니다.

본 활용수요조사서가 기획 추진에 유용하게 활용될 수 있도록 산.학.연 전문가님들의 많은 관심과 협조를 부탁 드립니다.

감사합니다.

Initial survey to KAS members

- Oct. 18-31, 2023 (after KAS fall meeting)
- 19 answers

→ Will be renewed early 2024!

			분류	중분류
	과학기술정보통신부			요구조건 분석기술
	사업기획 총괄, 사업기획 검토 · 조정	실무혐의체		광학설계 및 해석기술
	총괄기획위원회 기획 방향 제시 및 세부기획 검토 · 조정	한국천문연구원 사업 상세기획 및 과업 전반 주관		광학제작 기술
	기획분과위원회 연구개발사업 기획결과(안) 도출	주관연구기관 아웃소성 각종 양식 및 정보제공 기획분과 위원회 운영 지원 등 기술수요조사	망원경	기계부 설계 및 제작 기술
				톰
Science wG				관측영향 요소 분석기술 (관측부지)
 핵심 과학연구 주제 논의 각 연구주제에 대한 연구목표 논의 학계 의견 수렴을 통한 연구목표 구체화 다른 거대탐사 프로젝트와의 시너지 연구 연구 목표 달성을 위한 요구사항 도출 	 기기 디자인 조사 국내외 연구기관/업체의 기술개발/협력 가능성 조사 개념설계 및 예산 규모 산출 	 망원경 디자인 조사 국내외 연구기관/업체의 기술개발/협력 가능성 조사 망원경 건설 후보지 및 협력 기능 기관 조사 개념설계 및 예산 규모 산출 		소프트웨어

세분류	@ Pre-Study Report					
요구조건 분석 기술	, I -					
광학설계 및 해석 기술						
산란광 해석 기술						
적응과학 측정 및 제작						
능동과학 측정 및 제작						
광학가공 기술						
증착 및 측정 기술						
광기계 가공 기술						
광학시험						
광학계 및 기계부 조립	분류	중분류	세분류			
광기계 설계		요구조건 분석기술	요구조건 분석			
광기계 해석		까하셔게 더 헤셔 가스	광학설계 및 해석			
마운트 설계		광막일계 및 애익 기울	산란광 해석			
광기계 조립		광학제작기술	광학가공			
치구제작			증착 및 측정			
마운트 가공	가시광/ 저이서		광기계 가공			
마운트 조립	역파인 분광기		광학시험			
안전장치 설계 및 제작	-0.1		광학계 및 기계부 조립			
구동 장치 설계 및 해석		기계부	광기계 설계			
동설계			광기계 해석			
과측영향 요소 부성기술		검출기	검출기			
2708 #1 27/12		소프트웨어	분광기 제어 프로그램			
망원경 제어 프로그램		요구조건	요구조건 분석			
		다 위해 날 개 개 중 기 스	초점면 기기			
	다천체 분광관측 시스템 -	나면제 운영한국 기울	초점면 모니터링 시스템			
		광섬유 케이블	광섬유 케이블			
			전단 광학계			
		717111	구동부 설계			
		1/11-	마운트 설계			
		소프트웨어	광섬유 위치기 제어 프로그램			
	자료 보관 및 처리	자료 보관 및 처리	자료 보관 및 처리			

PLAN FOR FEASIBILITY STUDY ('24-26)

Scientific topics

- ► Key topics confirmation (early '24)
- Detailed studies on key(+alpha) topics (late '24-early '25)
- Concept on instruments & facilities
 - Requirements & concept confirmation ('24)
 - Technology system diagram & planning ('25)
 - Observatory candidates studies ('25)
- Planning
 - Relation with other planned international surveys ('24-early '25)
 - Risks & resolutions ('25)
 - Roadmap, budget & operation strategy ('25-early '26)
- Writing reports for the next step ('26)

Kick-off Meeting 2:30 PM Today!