

High1 Workshop on Particle, String and Cosmology

B Anomalies & SMEFT Interpretations

Fanrong Xu Jinan University, China

Jan. 25, 2024

- Introduction
- $b \rightarrow s\ell^+\ell^-$ and its implication
- Correlation within SMEFT
- Numerical results
- Summary

OUTLINE

INTRODUCTION

Flavor physics is an indirect probe of new physics.

 $B^+ \to K^+ \nu \bar{\nu} \& B^0 \to K^{*0} \nu \bar{\nu}$

Search for $B ightarrow h u ar{ u}$ decays with semileptonic tagging at Belle

Belle Collaboration • J. Grygier (KIT, Karlsruhe, EKP) et al. (Feb 10, 2017) Published in: *Phys.Rev.D* 96 (2017) 9, 091101, *Phys.Rev.D* 97 (2018) 9, 099902 (addendum) • e-Print: 1702.03224 [hep-ex]

 $\mathcal{B}(B^0 \to K^{*0} \nu \bar{\nu})_{exp} < 1.8 \times 10^{-5}$

$$R\big|_{\exp} = \frac{\mathcal{B}(B^0 \to K^{*0}\nu\bar{\nu})\big|_{\exp}}{\mathcal{B}(B^+ \to K^+\nu\bar{\nu})\big|_{\exp}} < 0.78$$

in tension?

$$R\big|_{\rm SM} = \frac{\mathcal{B}(B^0 \to K^{*0}\nu\bar{\nu})\big|_{\rm SM}}{\mathcal{B}(B^+ \to K^+\nu\bar{\nu})\big|_{\rm SM}} \approx 2.37$$

 $R_{D^{(*)}}$

$$R_{D^{(*)}} \equiv \frac{\mathcal{B}(B \to D^{(*)} \tau \bar{\nu}_{\tau})}{\mathcal{B}(B \to D^{(*)} \ell \bar{\nu}_{\ell})}$$

 $\mathcal{R}(D) = 0.440 \pm 0.058 \pm 0.042$ $\mathcal{R}(D^*) = 0.332 \pm 0.024 \pm 0.018$

Babar, 1205.5442

5

LHCb, Phys.Rev.Lett. 128 (2022) 19, 191802

LHCb PRD 108 (2023) 3, 032002

 $R(K) = 0.78^{+0.46}_{-0.23} (stat)^{+0.09}_{-0.05} (syst) = 0.78^{+0.47}_{-0.23}$ CMS , 2401.0709

Standard model EFT (SMEFT)

Defined between Λ_{NP} and Λ_{EW} :

- Dynamical degrees of freedom (DoFs) restricted to SM fields;
- Symmetries $-SU(3)_C \times SU(2)_L \times U(1)_Y$, no L or B conservation requirement etc;
- Power counting expansion in p/Λ_{NP} .

SMEFT is an infinite tower of effective interactions involving higher and higher dimensional operators: Weinberg 1979 $\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{\text{SM}} + \mathscr{L}_5 + \mathscr{L}_6 + \mathscr{L}_7 + \mathscr{L}_8 + \mathscr{L}_9 + \cdots$

GSW 1960s Grzadkowski et al 2010 – Warsaw basis

Latest: up to dim-12, Harlander et al, 2305.06832

SMEFT: dim-6

- Long history on basis of operators. Started with Buchmüller-Wyler 1986, Corrected and improved by efforts by many groups, Culminated with Warsaw basis Grzadkowski et al 2010 –
- 63 operators $\begin{cases} 59: \Delta B = \Delta L = 0\\ 4: \Delta B = \Delta L = 1 \end{cases}$

without counting flavors (easy with trivial flavor relations) and Hermitian conjugate.

- 1-loop RGE by UC San Diego group in 2013, 2014 Barcelona group in 2013
- Rich phenomenology, especially for LHC phys, vast literature skipped Commonly quoted proton decay: $p \rightarrow e^+\pi^0$

Low-energy EFT

When $E < \Lambda_{\rm EW}$, electroweak SSB manifests itself. Heavy particles (h, W^{\pm}, Z^0, t) of mass $\sim \Lambda_{EW}$ are integrated out \rightarrow LEFT

Defined between $\Lambda_{\rm EW}$ and $\Lambda_{\chi} \sim 1$ GeV:

- Dynamical DoFs = SM fields other than above heavy ones;
- Symmetries $-SU(3)_C \times U(1)_O$;
- Power counting expansion in $p/\Lambda_{\rm EW}$.

 $\mathcal{L}_{\text{LEFT}} = \mathcal{L}_{V} + \mathcal{L}_{\text{QED}} + \mathcal{L}_{\text{QCD}} + \mathcal{L}_{5} + \mathcal{L}_{6} + \mathcal{L}_{7} + \mathcal{L}_{8} + \mathcal{L}_{9} + \cdots$ Li et al, 2020 Liao et al, 2020

Attention: combined power counting in $1/\Lambda_{EW}$ and $1/\Lambda_{NP}$

Actually well applied in the past, e.g., in b phys, although not studied systematically.

EFT & DATA

TIME EVOLUTION OF "ANOMALIES" IN $b \rightarrow s\ell^+\ell^-$

THE REMAINING CANDY IN $b \rightarrow s\ell^+\ell^-$

dq² [10⁻⁷(GeV²/ 0.8 £ < 0.1 dB(

 $\phi \mu^{+} \mu^{-})/dq^{2} (\text{GeV}^{-2} c^{4})$ $\mathrm{d}B(B_s^0$

1.51 0.5 P_{5} -0.5-1 -1.5 ^C₀ 5

 $_{5}^{P'}$ LHCb Run 1 + 2016 SM from DHMV 0.5 DHMV: JHEP 06 (2016) 092 [arXiv: 1510.04239] 59 -0.5 5 10 0 15 LHCb $q^2 \,[\text{GeV}^2/c^4]$ Phys.Rev.Lett. 125 (2020) 1, 011802 $B^+ o K^{*+} \mu^+ \mu^-$ LHCb + Data 9 fb⁻¹ SM from DHMV SM from ASZB ABSZ: JHEP 08 (2016)_098 H 1510LHCb $q^2 \; [\; {
m GeV^2}/c^4]$ Phys.Rev.Lett. 126 (2021) 16, 161802

 $B^0 o K^{*0} \mu^+ \mu^-$

Angular analysis could be found in: LHCb, JHEP **11** (2021) 043 arXiv: 2107.13428

THEORETICAL SKELETON OF FCNC PROCESS $b \rightarrow s$

effective Hamiltoni

$$\mathcal{H} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_{i} C_i \mathcal{O}_i + C_i' \mathcal{O}_i') + h.c.$$
SM Output Output

an:
$$\mathcal{H} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_{i} (C_i \mathcal{O}_i + C_i' \mathcal{O}_i') + h.c.$$
high energy information
$$C_i^{(\ell)\ell} = C_i^{(\ell)\ell;SM} + \Delta C_i^{(\ell)\ell;SM} + \Delta C_i^{(\ell)\ell}$$

$$\mathcal{O}_7 = \frac{m_b}{e} (\bar{s}\sigma_{\mu\nu} P_R b) F^{\mu\nu},$$

$$\mathcal{O}_7 = \frac{m_b}{e} (\bar{s}\sigma_{\mu\nu} P_R b) F^{\mu\nu},$$

$$\mathcal{O}_8 = \frac{g_s m_b}{e^2} (\bar{s}\sigma_{\mu\nu} T^a P_R b) G_a^{\mu\nu},$$

$$\mathcal{O}_8 = \frac{g_s m_b}{e^2} (\bar{s}\sigma_{\mu\nu} T^a P_R b) G_a^{\mu\nu},$$

$$\mathcal{O}_9 = (\bar{s}\gamma_{\mu} P_L b) (\bar{\ell}\gamma^{\mu}\ell),$$

$$\mathcal{O}_{10} = (\bar{s}\gamma_{\mu} P_L b) (\bar{\ell}\gamma^{\mu}\gamma_5\ell),$$

$$\mathcal{O}_8 = m_b (\bar{s}P_R b) (\bar{\ell}\ell),$$

$$\mathcal{O}_9 = m_b (\bar{s}P_R b) (\bar{\ell}\gamma_5\ell),$$

$$\mathcal{O}_{F} = m_b (\bar{s}P_L b) (\bar{\ell}\gamma_5\ell),$$

$$\mathcal{O}_{F} = m_b (\bar{s}P_L b) (\bar{\ell}\gamma_5\ell),$$

decay amplitude:

QCDF

observables:

PHYSICS FROM EW SCALE

• High energy information: Wilson coefficients in SM

- EW scale
 - $C_{9,10}$: NNLL;
 - $C_{1-6}, C_{7,8}$: NLL
 - 2-loop matching: C. Bobeth, M. Misiak, J. Urban, NPB 574, 291 (2000)
- RGE running
 - 3-loop anomalous dimension matrix:

K.G. Chetyrkin, M. Misiak, M. Munz, PLB 400, 206 (1997); 425, 414(E) (1998);

P. Gambino, M. Gorbahn, U. Haisch, NPB673, 238 (2003);

M. Gorbahn, U. Haisch, NPB713, 291 (2005);

TABLE III. The SM Wilson coefficients at the scale $\mu = 4.6$ GeV in next-to-next-to-leading logarithmic order (NNLL). Input parameters

	C_1	C_2	C_3	C_4	C_5	C_6	$C_7^{ m eff}$	$C_8^{ m eff}$	C_9	C_{10}
LL	-0.5093	1.0256	-0.0050	-0.0686	0.0005	0.0010	-0.3189	-0.1505	2.0111	0
NLL	-0.3001	1.0080	-0.0047	-0.0827	0.0003	0.0009	-0.2969	-0.1642	4.1869	-4.3973
NNLL	-	_	_	_	_	-	_	_	4.2607	-4.2453

n leading logarithmic (LL), next-to-leading logarithmic (NLL) and	
s listed in Table II are used.	

15

THE ENCODED NEW PHYSICS

- New physics effect
 - Deviations from SM Wilson coefficients

$$C_i^{(\prime)\ell} = C_i^{(\prime)\ell;\mathrm{SM}} + \Delta C_i^{(\prime)\ell;\mathrm{NP}} = C_i^{(\prime)\ell;\mathrm{SM}} + \Delta C_i^{(\prime)\ell;\mathrm{SM}}$$

BSM operators •

$$\begin{aligned} \mathcal{O}_{7} &= \frac{m_{b}}{e} (\bar{s}\sigma_{\mu\nu}P_{R}b)F^{\mu\nu}, & \mathcal{O}_{7}' &= \frac{m_{b}}{e} (\bar{s}\sigma_{\mu\nu}P_{R}b)F^{\mu\nu}, \\ \mathcal{O}_{8} &= \frac{g_{s}m_{b}}{e^{2}} (\bar{s}\sigma_{\mu\nu}T^{a}P_{R}b)G^{\mu\nu}_{a}, & \mathcal{O}_{8}' &= \frac{g_{s}m_{b}}{e^{2}} (\bar{s}\sigma_{\mu\nu}T^{a}P_{R}b)F^{\mu\nu}, \\ \mathcal{O}_{9} &= (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell), & \mathcal{O}_{9}' &= (\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\ell), \\ \mathcal{O}_{10} &= (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell), & \mathcal{O}_{10}' &= (\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\ell), \\ \mathcal{O}_{S} &= m_{b}(\bar{s}P_{R}b)(\bar{\ell}\ell), & \mathcal{O}_{S}' &= m_{b}(\bar{s}P_{L}b)(\bar{\ell}\gamma_{5}\ell), \end{aligned}$$

Scenario I: muon-specific $\Delta C_{9,10,S,P}^{(\prime)e} = 0$

Scenario II: lepton-universal $\Delta C_{9,10,S,P}^{(\prime)\mu} = \Delta C_{9,10,S,P}^{(\prime)e}$

Scenario III: lepton-specific all parameters are taken except C7,C8

Scenario IV: full scenario all parameters are taken

THE $b \rightarrow s$ processes

- B meson leptonic decays
- B meson radiative decays
- B meson inclusive semi-leptonic decay
- B meson exclusive semi-leptonic decay: QCDF approach
 - $B \rightarrow P\ell^+\ell^-$
 - $B \rightarrow V \ell^+ \ell^-$

Bottomed baryon semi-leptonic decays: <u>naive factorization</u>

KINEMATICS & OBSERVABLES

• Kinematics

$$\frac{d^4\Gamma}{dq^2 d\cos\theta_l d\cos\theta_{K^*} d\phi} = \frac{9}{32\pi} I(q^2, \theta_l, \theta_{K^*}, \phi)$$

transversity amplitude

W. Altmannshofer, P. Ball, A. Bharucha, A.J. Buras, D. Straub, M. Wick, 0811.1214

$$\begin{split} I_{1}^{s} &= \frac{(2+\beta_{\mu}^{2})}{4} \left[|A_{\perp}^{L}|^{2} + |A_{\parallel}^{L}|^{2} + (L \to R) \right] + \frac{4m_{\mu}^{2}}{q^{2}} \operatorname{Re} \left(A_{\perp}^{L} A_{\perp}^{R*} + A_{\parallel}^{L} A_{\parallel}^{R*} \right) \\ I_{1}^{c} &= |A_{0}^{L}|^{2} + |A_{0}^{R}|^{2} + \frac{4m_{\mu}^{2}}{q^{2}} \left[|A_{t}|^{2} + 2\operatorname{Re}(A_{0}^{L} A_{0}^{R*}) \right] + \beta_{\mu}^{2} |A_{S}|^{2}, \\ I_{2}^{s} &= \frac{\beta_{\mu}^{2}}{4} \left[|A_{\perp}^{L}|^{2} + |A_{\parallel}^{L}|^{2} + (L \to R) \right], \\ I_{2}^{c} &= -\beta_{\mu}^{2} \left[|A_{0}^{L}|^{2} + (L \to R) \right], \\ I_{3} &= \frac{1}{2} \beta_{\mu}^{2} \left[|A_{\perp}^{L}|^{2} - |A_{\parallel}^{L}|^{2} + (L \to R) \right], \\ I_{4} &= \frac{1}{\sqrt{2}} \beta_{\mu}^{2} \left[\operatorname{Re}(A_{0}^{L} A_{\parallel}^{L*}) + (L \to R) \right], \end{split}$$

helicity amplitude

S. Jager, J. M. Camalich 1212.2263

$$\begin{split} I_1^c &= F\left\{\frac{1}{2}\left(|H_V^0|^2 + |H_A^0|^2\right) + |H_P|^2 + \frac{2m_\ell^2}{q^2}\left(|H_V^0|^2 - |H_A^0|^2\right) + \beta^2|H_S|^2\right\},\\ I_1^s &= F\left\{\frac{\beta^2 + 2}{8}\left(|H_V^+|^2 + |H_V^-|^2 + (V \to A)\right) + \frac{m_\ell^2}{q^2}\left(|H_V^+|^2 + |H_V^-|^2 - (V \to A)\right)\right\}\\ I_2^c &= -F\frac{\beta^2}{2}\left(|H_V^0|^2 + |H_A^0|^2\right),\\ I_2^s &= F\frac{\beta^2}{8}\left(|H_V^+|^2 + |H_V^-|^2\right) + (V \to A),\\ I_3 &= -\frac{F}{2}\text{Re}\left[H_V^+(H_V^-)^*\right] + (V \to A), \end{split}$$

 H_V H_A H_{TR}

$$I(q^{2},\theta_{l},\theta_{K^{*}},\phi) = I_{1}^{s}\sin^{2}\theta_{K^{*}} + I_{1}^{c}\cos^{2}\theta_{K^{*}} + (I_{2}^{s}\sin^{2}\theta_{K^{*}} + I_{2}^{c}\cos^{2}\theta_{K^{*}})\cos 2\theta_{l}$$
$$+ I_{3}\sin^{2}\theta_{K^{*}}\sin^{2}\theta_{l}\cos 2\phi + I_{4}\sin 2\theta_{K^{*}}\sin 2\theta_{l}\cos \phi$$
$$+ I_{5}\sin 2\theta_{K^{*}}\sin \theta_{l}\cos \phi$$
$$+ (I_{6}^{s}\sin^{2}\theta_{K^{*}} + I_{6}^{c}\cos^{2}\theta_{K^{*}})\cos \theta_{l} + I_{7}\sin 2\theta_{K^{*}}\sin \theta_{l}\sin \phi$$

 $+ I_8 \sin 2\theta_{K^*} \sin 2\theta_l \sin \phi + I_9 \sin^2 \theta_{K^*} \sin^2 \theta_l \sin 2\phi.$

$$\begin{split} \mathbf{A}_{\parallel L,R} &= -N\sqrt{2}(m_B^2 - m_{K^*}^2) \bigg[\left[(C_9^{\text{eff}} - C_9^{\text{eff}}) \mp (C_{10}^{\text{eff}} - C_{10}^{\text{eff}}) \right] \frac{A_1(q^2)}{m_B - m_{K^*}} \\ &+ \frac{2m_b}{q^2} (C_7^{\text{eff}} - C_7^{\text{eff}}) T_2(q^2) \bigg], \\ \mathbf{A}_{0L,R} &= -\frac{N}{2m_{K^*}\sqrt{q^2}} \bigg\{ \left[(C_9^{\text{eff}} - C_9^{\text{eff}}) \mp (C_{10}^{\text{eff}} - C_{10}^{\text{eff}}) \right] \\ &\times \bigg[(m_B^2 - m_{K^*}^2 - q^2)(m_B + m_{K^*}) A_1(q^2) - \lambda \frac{A_2(q^2)}{m_B + m_{K^*}} \bigg] \\ &+ 2m_b (C_7^{\text{eff}} - C_7^{\text{eff}}) \bigg[(m_B^2 + 3m_{K^*}^2 - q^2) T_2(q^2) - \frac{\lambda}{m_B^2 - m_{K^*}^2} T_3(q^2) \bigg] \bigg\} \\ A_t &= \frac{N}{\sqrt{q^2}} \lambda^{1/2} \left[2(C_{10}^{\text{eff}} - C_{10}^{\text{eff}}) + \frac{q^2}{m_{\mu}} (C_P - C_P') \bigg] A_0(q^2), \\ A_S &= -2N\lambda^{1/2} (C_S - C_S') A_0(q^2), \end{split}$$

$$\begin{split} H_{V}(\lambda) &= -i N \Big\{ C_{9} \tilde{V}_{L\lambda} + C_{9}' \tilde{V}_{R\lambda} + \frac{m_{B}^{2}}{q^{2}} \Big[\frac{2 \, \hat{m}_{b}}{m_{B}} (C_{7} \tilde{T}_{L\lambda} + C_{7}' \tilde{T}_{R\lambda}) - 16\pi^{2} h_{\lambda} \Big] \Big\} \\ H_{A}(\lambda) &= -i N (C_{10} \tilde{V}_{L\lambda} + C_{10}' \tilde{V}_{R\lambda}), \\ H_{TR}(\lambda) &= -i N \frac{4 \, \hat{m}_{b} \, m_{B}}{m_{W} \sqrt{q^{2}}} C_{T} \tilde{T}_{L\lambda}, \\ H_{TL}(\lambda) &= -i N \frac{4 \, \hat{m}_{b} \, m_{B}}{m_{W} \sqrt{q^{2}}} C_{T}' \tilde{T}_{R\lambda}, \\ H_{S} &= i N \frac{\hat{m}_{b}}{m_{W}} (C_{S} \tilde{S}_{L} + C_{S}' \tilde{S}_{R}), \\ H_{P} &= i N \Big\{ \frac{\hat{m}_{b}}{m_{W}} (C_{P} \tilde{S}_{L} + C_{P}' \tilde{S}_{R}) \\ &+ \frac{2 \, m_{\ell} \hat{m}_{b}}{q^{2}} \Big[C_{10} \Big(\tilde{S}_{L} - \frac{m_{s}}{m_{b}} \tilde{S}_{R} \Big) + C_{10}' \Big(\tilde{S}_{R} - \frac{m_{s}}{m_{b}} \tilde{S}_{L} \Big) \Big] \Big\}. \end{split}$$

FITS BEFORE XMAS 2022

$b \to s\ell^+\ell^-$ Global Fits after R_{K_S} and $R_{K^{*+}}$

Marcel Algueró^{a,b,*}, Bernat Capdevila^c, Sébastien Descotes-Genon^d, Joaquim Matias^{a,b}, Martín Novoa-Brunet^{d,e}

^aGrup de Física Teòrica (Departament de Física), Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Catalunya. ^bInstitut de Física d'Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB,

E-08193 Bellaterra (Barcelona), Catalunya. ^c Università di Torino and INFN Sezione di Torino, Via P. Giuria 1, Torino I-10125, Italy. ^dUniversité Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France.

^eIstituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, I-70126 Bari, Italy

private code ACDMN, 2104.08921

New Physics in Rare *B* Decays after Moriond 2021

Wolfgang Altmannshofer^a, Peter Stangl^b

^a Department of Physics and Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, United States

^b Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland

Flavio

AS, 2103.13370

Implications of new evidence for lepton-universality violation in $b \rightarrow s\ell^+\ell^-$ decays

Li-Sheng Geng,^{1,2} Benjamín Grinstein,³ Sebastian Jäger,⁴ Shuang-Yi Li,⁵ Jorge Martin Camalich,^{6,7} and Rui-Xiang Shi⁵

¹School of Physics & Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 102206, China ²School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China ³Department of Physics, University of California, San Diego, La Jolla, California, 92093, USA ⁴Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, United Kingdom ⁵School of Physics, Beihang University, Beijing 102206, China ⁶Instituto de Astrofisica de Canarias, C/ Via Lactea, s/n E38205 - La Laguna (Tenerife), Spain ⁷Universidad de La Laguna, Departamento de Astrofisica, La Laguna, Tenerife E-38205, Spain

GGJLCS, 2103.12378

Neutral current *B*-decay anomalies

T. Hurth^a, F. Mahmoudi^{b,c}, D. Martínez Santos^d, S. Neshatpour^e

^aPRISMA+ Cluster of Excellence and Institute for Physics (THEP), Johannes Gutenberg University, D-55099 Mainz, Germany

^bUniversité de Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, Institut de Physique des 2 Infinis de Lyon, UMR 5822, F-69622, Villeurbanne, France

^cCERN, Theoretical Physics Department, CH-1211 Geneva 23, Switzerland,

^dInstituto Galego de Física de Altas Enerxías, Universidade de Santiago de Compostela, Spain

^eINFN-Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Via Cintia Edificio 6, 80126 Napoli, Italy Superlso

HMMN, 2210.07221

FITTING PACKAGES ON THE MARKET

Brands	😽 flavio	Smelli	HEP fit	EOS	SuperIso
Developers	David M. Stra Jason Aebischer,	ub, Peter Stangl, Jacky Kumar et al.	Jorge de Blas, Debtosh Chowdhury, Marco Ciuchini et al.	Danny van Dyk, Christoph Bobeth, Frederik Beaujean et al.	Farvah Nazila Mahmoudi, A. Arbey et al.
Related works (& Manuals)	arXiv: 1810.08132 1704.07397 1608.02556 1704.07397	arXiv: 1810.07698 1911.07866 2103.13370 2212.10497	arXiv: 1910.14012 1902.05564 1512.07157 1306.4644	arXiv: 2111.15428 2305.06301 2208.08937 1912.09335	arXiv: 0710.2067 0808.3144 1410.4545 1806.11489
(as far as we know)	v0.1.3 (2016.2)	(2018.10)	SUSYfit (2013.06)	D. van Dyk, thesis, 2011	2007.10 2008.08
latest update (as far as we know)	v2.5.5 (2023.6.1)	v2.4.0 (2023.4.27)	v1.0 (2023.5.19)	v1.0.9 (2023.8.8)	v4.1 (2020.11.4)
Code PL	Pure Python3	Based on Flavio	Pure C++11	C++20 with python API	С
Statistic FrameWork	MLE (Bayesian Estimation can be self-defined)	Same as flavio	Bayesian Estimation	Bayesian Estimation	MLE
Scientific Library	iminuit Matplotlib	flavio flavio	<image/> <image/> <image/> <image/>	Doost & GSL	GSL
			20		

OUR HOME-MADE FIT

- Statistics: Bayesian statistics
 - weak prior dependence confirmed
 - relied package: emcee
- Theoretical framework: dynamics
 - most generic WEFT/LEFT operator basis (tensor to be added)
 - self-controllable Wilson coefficients
 - the up-to-date FF parameterization
- Observables & kinematics
 - transversity amplitude convention adopted
 - all observables (Br, ADO, LFU...) have been encompassed

OUR RESULTS (I)

Params	S-I'	S-II'	S-III'	S-IV'	S-I	S-II	S-III	S-IV	ADCMN [23]	AS [24]	HMMN [25]	GGJLCS [26]
Reduced χ^2	183.404/(n-12)	197.556/(n-12)	182.869/(n-16)	176.807/(n-20)	190.044/(n-12)	177.891/(n-12)	185.386/(n-16)	178.953/(n-20)	260.66/(254-6)		179.1/(183-20)	96.88/90
$\chi^2_{\rm min}/{\rm d.o.f}$	= 0.970	= 1.045	= 0.988	= 0.977	= 0.995	= 0.931	= 0.991	= 0.978	= 1.05		= 1.1	= 1.08
ΔC_7	$-0.003\substack{+0.020\\-0.019}$	$-0.001\substack{+0.015\\-0.015}$		$0.001\substack{+0.016\\-0.015}$	$-0.000\substack{+0.020\\-0.020}$	$-0.001\substack{+0.015\\-0.015}$		$-0.000\substack{+0.016\\-0.015}$	$0.00\substack{+0.01\\-0.02}$		$0.06\substack{+0.03\\+0.03}$	
$\Delta C'_7$	$0.017\substack{+0.018\\-0.019}$	$0.020\substack{+0.014\\-0.015}$		$0.020\substack{+0.014\\-0.014}$	$0.017^{+0.020}_{-0.018}$	$0.020^{+0.015}_{-0.014}$		$0.023^{+0.014}_{-0.016}$	$+0.00^{+0.02}_{-0.01}$		$-0.01^{-0.01}_{+0.01}$	
ΔC_8	$-0.788^{+0.595}_{-0.514}$	$-0.885\substack{+0.435\\-0.398}$		$-0.773^{+0.451}_{-0.449}$	$-0.995^{+0.540}_{-0.463}$	$-0.921^{+0.443}_{-0.378}$		$-0.773^{+0.465}_{-0.424}$			$-0.80^{-0.40}_{+0.40}$	
$\Delta C'_8$	$-0.073^{+1.089}_{-1.000}$	$-0.093\substack{+0.921\\-0.831}$		$-0.089^{+0.996}_{-0.922}$	$-0.080^{+1.046}_{-0.942}$	$-0.076^{+0.893}_{-0.833}$		$-0.258^{+1.007}_{-0.802}$			$-0.30^{+1.30}_{-1.30}$	
ΔC_9^{μ}	$-0.806^{+0.257}_{-0.272}$	$-0.795\substack{+0.205\\-0.210}$	$-1.068\substack{+0.161\\-0.164}$	$-0.863^{+0.214}_{-0.227}$	$-0.752^{+0.262}_{-0.265}$	$-0.789^{+0.198}_{-0.210}$	$-1.054\substack{+0.163\\-0.171}$	$-0.872^{+0.215}_{-0.215}$	$-1.08\substack{+0.18\\-0.17}$	$-0.82^{+0.23}_{-0.23}$	$-1.14^{+0.19}_{+0.19}$	$-1.07^{+0.29}_{-0.29}$
$\Delta C_9^{\prime \mu}$	$0.194^{+0.395}_{-0.416}$	$0.056\substack{+0.338\\-0.342}$	$0.112^{+0.393}_{-0.397}$	$0.020^{+0.346}_{-0.362}$	$0.174_{-0.441}^{+0.434}$	$0.048^{+0.338}_{-0.348}$	$0.130^{+0.439}_{-0.437}$	$0.088^{+0.342}_{-0.378}$	$0.16^{+0.37}_{-0.36}$	$-0.10^{+0.34}_{-0.34}$	$0.05\substack{+0.32\\-0.32}$	$0.32_{+0.21}^{-0.21}$
ΔC^{μ}_{10}	$0.236^{+0.216}_{-0.193}$	$0.145\substack{+0.166\\-0.156}$	$0.164^{+0.181}_{-0.180}$	$0.213_{-0.155}^{+0.166}$	$-0.019^{+0.206}_{-0.175}$	$0.163_{-0.160}^{+0.165}$	$0.112\substack{+0.166\\-0.184}$	$0.171_{-0.175}^{+0.157}$	$0.15_{-0.13}^{+0.13}$	$+0.14^{+0.23}_{-0.23}$	$0.21\substack{+0.20\\+0.20}$	$0.21_{+0.14}^{-0.14}$
$\Delta C_{10}^{\prime\mu}$	$-0.096^{+0.251}_{-0.237}$	$-0.108\substack{+0.186\\-0.177}$	$-0.115^{+0.200}_{-0.198}$	$-0.089^{+0.177}_{-0.176}$	$-0.118^{+0.266}_{-0.247}$	$-0.093^{+0.183}_{-0.179}$	$-0.115^{+0.215}_{-0.213}$	$-0.062\substack{+0.197\\-0.180}$	$-0.18\substack{+0.20\\-0.18}$	$-0.33^{+0.23}_{-0.23}$	$-0.03^{+0.19}_{-0.19}$	$-0.26^{-0.14}_{+0.14}$
ΔC_S^{μ}	$0.066^{+1.091}_{-1.142}$	$-0.004^{+1.102}_{-1.131}$	$-0.008\substack{+0.883\\-0.899}$	$-0.043^{+0.842}_{-0.875}$	$0.023^{+1.064}_{-1.097}$	$0.060^{+1.188}_{-1.230}$	$-0.066^{+0.944}_{-0.929}$	$0.009\substack{+0.858\\-0.845}$			$0.01\substack{+0.05\\-0.05}$	
$\Delta C_S^{\prime \mu}$	$0.065^{+1.087}_{-1.140}$	$0.003^{+1.103}_{-1.126}$	$-0.002\substack{+0.873\\-0.936}$	$-0.059^{+0.844}_{-0.869}$	$0.014^{+1.064}_{-1.086}$	$0.061^{+1.188}_{-1.225}$	$-0.070^{+0.957}_{-0.930}$	$0.012\substack{+0.858\\-0.862}$			$-0.01\substack{+0.05\\-0.05}$	
ΔC_P^{μ}	$0.167^{+1.172}_{-1.225}$	$1.017\substack{+0.735\\-0.816}$	$0.092^{+1.076}_{-0.994}$	$0.117\substack{+0.847\\-0.894}$	$0.079^{+1.159}_{-1.146}$	$0.478\substack{+0.808\\-0.899}$	$0.189\substack{+1.018\\-1.028}$	$0.124\substack{+0.902\\-0.910}$			$-0.04\substack{+0.02\\-0.02}$	
$\Delta C_P^{\prime\mu}$	$0.053^{+1.169}_{-1.227}$	$0.891\substack{+0.729\\-0.812}$	$0.010^{+1.083}_{-1.002}$	$0.040^{+0.854}_{-0.895}$	$-0.032^{+1.158}_{-1.145}$	$0.370^{+0.803}_{-0.897}$	$0.098^{+1.009}_{-1.024}$	$0.038^{+0.894}_{-0.913}$			$-0.04^{+0.02}_{-0.02}$	
ΔC_9^e		$-0.795\substack{+0.205\\-0.210}$	$-1.753\substack{+0.781\\-0.772}$	$-1.551^{+0.627}_{-0.599}$		$-0.789^{+0.198}_{-0.210}$	$-1.623^{+0.662}_{-0.734}$	$-1.511\substack{+0.561\\-0.533}$		$-0.24^{+1.17}_{-1.17}$	$-6.50^{+1.90}_{-1.90}$	
$\Delta C_9'^e$		$0.056\substack{+0.338\\-0.342}$	$1.725^{+1.724}_{-2.286}$	$1.710^{+1.466}_{-1.764}$		$0.048^{+0.338}_{-0.348}$	$1.090^{+1.610}_{-1.793}$	$0.864^{+1.483}_{-1.608}$			$1.40^{+2.30}_{-2.30}$	
ΔC_{10}^e		$0.145\substack{+0.166\\-0.156}$	$0.108^{+1.456}_{-0.661}$	$0.058\substack{+1.193\\-0.661}$		$0.163^{+0.165}_{-0.160}$	$0.555^{+1.042}_{-0.576}$	$0.383\substack{+0.840\\-0.424}$		$-0.24^{+0.78}_{-0.78}$	~0	
$\Delta C_{10}^{\prime e}$		$-0.108\substack{+0.186\\-0.177}$	$0.600^{+1.208}_{-1.099}$	$0.655\substack{+0.958\\-0.841}$		$-0.093^{+0.183}_{-0.179}$	$0.088\substack{+0.969\\-0.956}$	$0.002\substack{+0.881\\-0.815}$			~0	
ΔC^e_S		$-0.004^{+1.102}_{-1.131}$	$-0.719^{+1.861}_{-1.227}$	$-0.549^{+1.602}_{-1.232}$		$0.060^{+1.188}_{-1.230}$	$-0.952^{+2.122}_{-1.139}$	$-0.806^{+1.900}_{-1.238}$		•••	$-0.38\substack{+0.41\\-0.41}$	
$\Delta C_S^{\prime e}$		$0.003\substack{+1.103 \\ -1.126}$	$-0.699^{+1.837}_{-1.224}$	$-0.550^{+1.618}_{-1.326}$		$0.061\substack{+1.188\\-1.225}$	$-1.051\substack{+2.251\-1.075}$	$-0.803^{+1.861}_{-1.194}$			$-0.36\substack{+0.50\\-0.50}$	
ΔC_P^e		$1.017\substack{+0.735\\-0.816}$	$-1.592^{+1.552}_{-1.079}$	$-1.688^{+1.366}_{-0.978}$		$0.478\substack{+0.808\\-0.899}$	$-1.568^{+1.544}_{-1.149}$	$-1.837^{+1.376}_{-0.930}$			$-0.98\substack{+0.21\\-0.21}$	
$\Delta C_P^{\prime e}$		$0.891\substack{+0.729\\-0.812}$	$-1.360^{+1.318}_{-1.149}$	$-1.431^{+1.212}_{-1.017}$		$0.370\substack{+0.803 \\ -0.897}$	$-1.477^{+1.409}_{-1.083}$	$-1.652^{+1.200}_{-0.979}$			$-0.95\substack{+0.29\\-0.29}$	

After Dec. 2022

Before Dec. 2022

- we carried out a 20-D fit
- fitting results depend on the numbers of fitting d.o.f.
 - both old and new fits imply NP exists in ΔC_9^{μ} in various fitting scenarios
- both old and new fits imply: NP possibility in ΔC^{μ}_{10} is less hopeful

new fits implies: NP may be hidden in ΔC_9^e , and its inverse process $e^+e^- \rightarrow bs$ calls for CEPC

UNDERSTANDING THE ROLE OF $R_{K^{(*)}}$

Pure $R_{K^{(*)}}$ constraints on $(\Delta C_9^{\mu}, \Delta C_{10}^{\mu})$: still with large uncertainty $R_{K^{(*)}}$ is not main determiner of ΔC_9^{μ} , slightly shift ΔC_{10}^{μ}

Daping Du, et.al. 1510.02349

1.0

23

0

OUR RESULTS (II): FLAVOR CORRELATION

Muon-type operator as an example

- The lepton flavor for ΔC_{10}^{μ} is indistinguishable at 1σ level.
- All WCs are flavor identical at 2σ level

OUR RESULTS (III): CHIRAL CORRELATION

- ΔC_9^{μ} deviates from its chiral dual one more than 2σ level, while ΔC_{10}^{μ} is within 1σ region which is scenario dependent.
- scalar WCs have better chiral identity, and muon type is strictly respected.

IMPLICATIONS TO SMEFT

$$egin{aligned} \lambda_1 C_7 &= c_7 \,, \ \lambda_2 C_9 &= c_\ell^{V,LL} + c_\ell'^{V,LR} \,, \ \lambda_2 C_9' &= c_\ell^{V,LR} + c_\ell^{V,RR} \,, \ \lambda_2 C_S &= c_\ell^{S,RR} + c_\ell'^{S,RL} \,, \ \lambda_2 C_S' &= c_\ell^{S,RL} + c_\ell'^{S,RR} \,, \ \lambda_2 C_T' &= c_\ell'^{T,RR} + c_\ell'^{S,RR} \,, \end{aligned}$$

$$\begin{split} \lambda_1 C_7' &= c_7', \\ \lambda_2 C_{10} &= -c_\ell^{V,LL} + c_\ell'^{V,LR}, \\ \lambda_2 C_{10}' &= -c_\ell^{V,LR} + c_\ell^{V,RR}, \\ \lambda_2 C_P &= c_\ell^{S,RR} - c_\ell'^{S,RL}, \\ \lambda_2 C_P &= c_\ell^{S,RL} - c_\ell'^{S,RR}, \\ \lambda_2 C_{T5} &= -c_\ell'^{T,RR} + c_\ell^{T,RR}, \end{split}$$

Two options: Non-SMEFT NP • SMEFT: vanishing scalar operator

To be answered in SMEFT level Can all the old and new flavor problems be accommodated? 1. 2. What is the economic way?

CORRELATION WITHIN SMEFT

Feng-Zhi Chen, Qiaoyi Wen, FX, 2401.11552

LEFT DESCRIPTIONS

 $\mathcal{L}_{\text{eff}}^{b \to s \nu \bar{\nu}} = \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{\alpha}{4\pi} \sum_{\ell} \left(C_L^{\nu_{\ell}} \mathcal{O}_L^{\nu_{\ell}} + C_R^{\nu_{\ell}} \mathcal{O}_R^{\nu_{\ell}} \right) + \text{h.c.}$

$$\begin{split} \mathcal{B}(B^+ \to K^+ \nu \bar{\nu}) =& 3.46 \times 10^{-8} \left| \underbrace{C_L^{\nu_\ell}}_{L} + \underbrace{C_B^{\nu_\ell}}_{R} \right|^2, \\ \mathcal{B}(B^0 \to K^* \nu \bar{\nu}) =& 6.84 \times 10^{-8} \left| \underbrace{C_L^{\nu_\ell}}_{L} - \underbrace{C_R^{\nu_\ell}}_{R} \right|^2 + 1.36 \times 10^{-8} \left| \underbrace{C_L^{\nu_\ell}}_{L} + \underbrace{C_R^{\nu_\ell}}_{R} \right|^2 \\ \mathcal{L}_{\text{eff}}^{b \to s\ell^+ \ell^-} = \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{\alpha}{4\pi} \sum_{i=9}^{10} (C_i^{\ell} \mathcal{O}_i^{\ell} + C_i^{\ell'} \mathcal{O}_i^{\ell'}) + \text{h.c.} \\ \Delta C_9^e = \Delta C_9^{\mu} = -0.789^{+0.198}_{-0.210} \\ \text{Scenario II in our global fits} \end{split}$$

LEFT DESCRIPTIONS

 $\mathcal{L}_{\text{eff}}^{c \to u} = \frac{4G_F}{\sqrt{2}} \frac{\alpha}{4\pi} \Big[C_L^{U\nu_\ell} (\bar{u}\gamma_\mu P_L c) (\bar{\nu}_\ell \gamma^\mu P_L \nu_\ell) + C_L^{U\ell} (\bar{u}\gamma_\mu P_L c) (\bar{\ell}\gamma^\mu P_L \ell) \Big] + \text{h.c.}$

 $\mathcal{B}(D \to P\nu\bar{\nu}) = A_+^{DP} \left| \Delta C_L^{U\nu_\tau} \right|^2$

 $\mathcal{L}_{\text{eff}}^{d_j \to u_i \ell \nu_\ell} = -\frac{4G_F}{\sqrt{2}} V_{ij} (1 + \Delta C_L^{ij\ell}) (\bar{u}_i \gamma_\mu P_L d_j)$

 $R_D = R_D^{\rm SM} \left| 1 + \Delta C_L^{cb\tau} \right|^2 \qquad R_{D^*} = l$

 $\mathcal{B}(D_s^+ \to \tau^+ \nu_{\tau}) = \tau_{D_s^+} \frac{G_F^2}{8\pi} |V_{cs}|^2 f_{D_s^+}^2 m_{\tau}^2 m_{T}$

$$)(ar{\ell}\gamma^{\mu}P_L
u_\ell)+{
m h.c.}$$

$$R_{D^*}^{\rm SM} \left| 1 + \Delta C_L^{cb\tau} \right|^2$$

$$D_{s}^{+}\left(1-\frac{m_{\tau}^{2}}{m_{D_{s}^{+}}^{2}}\right) ||1+\Delta C_{L}^{cs\tau}|^{2}$$

29

MATCHING LEFT TO SMEFT

 $\mathcal{L}_{\text{SMEFT}} \supset \frac{1}{\Lambda^2} \bigg\{ [C_{\ell d}]_{prst} \Big[(\bar{\nu}_{Lp} \gamma^{\mu} \nu_{Lr}) (\bar{d}_{Rs} \gamma_{\mu} d_{Rt}) + (\bar{\ell}_{Lp} \gamma^{\mu} \nu_{Lr}) \Big] \bigg\} \bigg\} = 0$ $+ [C_{\ell q}^{(1)}]_{prst} \Big[(\bar{\nu}_{Lp} \gamma^{\mu} \nu_{Lr}) (\bar{d}_{Ls} \gamma_{\mu} d_{Lt}) + (\bar{\ell}_{Lp} \gamma^{\mu} \ell_{Lr}) \Big]$ $+V_{is}V_{jt}^* \left[(\bar{\nu}_{Lp}\gamma^{\mu}\nu_{Lr})(\bar{u}_{Li}\gamma_{\mu}u_{Lj}) + (\bar{\ell}_{Lp}\gamma^{\mu}\ell_{Lr})(\bar{u}_{Li}\gamma_{\mu}u_{Lj}) \right]$ $+ [C_{\ell q}^{(3)}]_{prst} \Big[- (\bar{\nu}_{Lp} \gamma^{\mu} \nu_{Lr}) (\bar{d}_{Ls} \gamma_{\mu} d_{Lt}) + (\bar{\ell}_{Lp} \gamma^{\mu} \ell_{Lr}) \Big] \Big]$ $+2V_{is}(\bar{\ell}_{Lp}\gamma^{\mu}\nu_{Lr})(\bar{u}_{Li}\gamma_{\mu}d_{Lt})+2V_{it}^{*}(\bar{\nu}_{Lp}\gamma^{\mu}\ell_{Lr})(\bar{d}_{Lr}\gamma^{\mu}\ell_{Lr})(\bar{d}_{Lr}\gamma^{\mu}\ell_{Lr})(\bar{d}_{Lr}\gamma^{\mu}\ell_{Lr})(\bar{d}_{Lr}\gamma^{\mu}\ell_{Lr})$ $+V_{is}V_{jt}^*((\bar{\nu}_{Lp}\gamma^{\mu}\nu_{Lr})(\bar{u}_{Li}\gamma_{\mu}u_{Lj})-(\bar{\ell}_{Lp}\gamma^{\mu}\ell_{Lr})(\bar{u}_{Li}\gamma_{\mu}u_{Lj})-(\bar{\ell}_{Lp}\gamma^{\mu}\ell_{Lr})(\bar{u}_{Li}\gamma_{\mu}u_{Lj})-(\bar{\ell}_{Lp}\gamma^{\mu}\ell_{Lr})(\bar{u}_{Li}\gamma_{\mu}u_{Lj})-(\bar{\ell}_{Lp}\gamma^{\mu}\ell_{Lr})(\bar{u}_{Li}\gamma_{\mu}u_{Lj})-(\bar{\ell}_{Lp}\gamma^{\mu}\ell_{Lr})(\bar{u}_{Li}\gamma_{\mu}u_{Lj})-(\bar{\ell}_{Lp}\gamma^{\mu}\ell_{Lr})(\bar{u}_{Li}\gamma_{\mu}u_{Lj})-(\bar{\ell}_{Lp}\gamma^{\mu}\ell_{Lr})(\bar{u}_{Li}\gamma_{\mu}u_{Lj})-(\bar{\ell}_{Lp}\gamma^{\mu}\ell_{Lr})(\bar{u}_{Li}\gamma_{\mu}u_{Lj})-(\bar{\ell}_{Lp}\gamma^{\mu}\ell_{Lr})(\bar{u}_{Li}\gamma_{\mu}u_{Lj})-(\bar{\ell}_{Lp}\gamma^{\mu}\ell_{Lr})(\bar{u}_{Li}\gamma_{\mu}u_{Lj})-(\bar{\ell}_{Lp}\gamma^{\mu}\ell_{Lr})(\bar{u}_{Li}\gamma_{\mu}u_{Lj})-(\bar{\ell}_{Lp}\gamma^{\mu}\ell_{Lr})(\bar{u}_{Li}\gamma_{\mu}u_{Lj})-(\bar{\ell}_{Lp}\gamma^{\mu}\ell_{Lr})(\bar{u}_{Li}\gamma_{\mu}u_{Lj})-(\bar{\ell}_{Lp}\gamma^{\mu}\ell_{Lr})(\bar{u}_{Li}\gamma_{\mu}u_{Lj})-(\bar{\ell}_{Lp}\gamma^{\mu}\ell_{Lr})(\bar{u}_{Li}\gamma_{\mu}u_{Lj})-(\bar{\ell}_{Lp}\gamma^{\mu}\ell_{Lr})(\bar{u}_{Li}\gamma_{\mu}u_{Lj})-(\bar{\ell}_{Lp}\gamma^{\mu}\ell_{Lr})(\bar{u}_{Li}\gamma_{\mu}u_{Lj})-(\bar{\ell}_{Lp}\gamma^{\mu}\ell_{Lr})(\bar{u}_{Li}\gamma_{\mu}u_{Lj})-(\bar{\ell}_{Lp}\gamma^{\mu}\ell_{Lr})(\bar{u}_{Li}\gamma_{\mu}u_{Lj})-(\bar{\ell}_{Lp}\gamma^{\mu}\ell_{Lr})(\bar{u}_{Li}\gamma_{\mu}u_{Lj})-(\bar{\ell}_{Lp}\gamma^{\mu}\ell_{Lr})(\bar{u}_{Li}\gamma_{\mu}u_{Lj})-(\bar{\ell}_{Lp}\gamma^{\mu}\ell_{Lr})(\bar{u}_{Li}\gamma_{\mu}u_{Lj})-(\bar{\ell}_{Lp}\gamma^{\mu}\ell_{Lr})(\bar{u}_{Li}\gamma_{\mu}u_{Lj})-(\bar{\ell}_{Lp}\gamma^{\mu}\ell_{Lr})(\bar{u}_{Li}\gamma_{\mu}u_{Lj})-(\bar{\ell}_{Lp}\gamma^{\mu}\ell_{Lr})(\bar{u}_{Li}\gamma_{\mu}u_{Lj})-(\bar{\ell}_{Lp}\gamma^{\mu}\ell_{Lr})(\bar{u}_{Li}\gamma_{\mu}u_{Lj})-(\bar{\ell}_{Lp}\gamma^{\mu}\ell_{Lr})(\bar{u}_{Li}\gamma_{\mu}u_{Lj})-(\bar{\ell}_{Lp}\gamma^{\mu}\ell_{Lr})(\bar{u}_{Li}\gamma_{\mu}u_{Lj})-(\bar{\ell}_{Lp}\gamma^{\mu}\ell_{Lr})(\bar{u}_{Li}\gamma_{\mu}u_{Lj})-(\bar{\ell}_{Lp}\gamma^{\mu}\ell_{Lr})(\bar{u}_{Li}\gamma_{\mu}u_{Lj})-(\bar{\ell}_{Lp}\gamma^{\mu}\ell_{Lr})(\bar{u}_{Li}\gamma_{\mu}u_{Lj})-(\bar{\ell}_{Lp}\gamma^{\mu}\ell_{Lr})(\bar{u}_{Li}\gamma_{\mu}u_{Lj})-(\bar{\ell}_{Lp}\gamma^{\mu}\ell_{Lr})(\bar{u}_{Li}\gamma_{\mu}u_{Lj})-(\bar{\ell}_{Li}\gamma_{\mu}$

Scalar interaction has been excluded from previous fits.

$$\begin{split} \frac{8G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{\alpha}{4\pi} \Delta C_L^{\nu_\ell} &= \frac{[C_{\ell q}^{(1)}]_{\ell \ell 23} - [C_{\ell q}^{(3)}]_{\ell \ell 23}}{\Lambda^2} \\ \frac{8G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{\alpha}{4\pi} \Delta C_R^{\nu_\ell} &= \frac{[C_{\ell d}]_{\ell \ell 23}}{\Lambda^2} , \\ \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{\alpha}{4\pi} (\Delta C_9^{\ell} - \Delta C_{10}^{\ell}) &= \frac{[C_{\ell q}^{(1)}]_{\ell \ell 23} + [C_{\ell q}^{(3)}]_{\ell \ell 23}}{\Lambda^2} \\ \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{\alpha}{4\pi} (\Delta C_9^{\ell} - \Delta C_{10}^{\ell}) &= \frac{[C_{\ell d}]_{\ell \ell 23}}{\Lambda^2} , \\ &- \frac{4G_F}{\sqrt{2}} \frac{V_{ib}}{2V_{is}} \Delta C_L^{ib\ell*} &= \frac{[C_{\ell q}^{(3)}]_{\ell \ell 23}}{\Lambda^2} , \\ &- \frac{4G_F}{\sqrt{2}} \frac{V_{js}}{2V_{jb}} \Delta C_L^{js\ell} &= \frac{[C_{\ell q}^{(3)}]_{\ell \ell 23}}{\Lambda^2} , \\ &\frac{4G_F}{\sqrt{2}} \frac{\alpha}{4\pi} \frac{1}{V_{is}V_{jb}^*} \Delta C_L^{U\nu_\ell} &= \frac{[C_{\ell q}^{(1)}]_{\ell \ell 23} + [C_{\ell q}^{(3)}]_{\ell \ell 23}}{\Lambda^2} \\ \\ &\frac{4G_F}{\sqrt{2}} \frac{\alpha}{4\pi} \frac{1}{V_{is}V_{jb}^*} \Delta C_L^{U\ell} &= \frac{[C_{\ell q}^{(1)}]_{\ell \ell 23} - [C_{\ell q}^{(3)}]_{\ell \ell 23}}{\Lambda^2} \end{split}$$

$$\left\{ egin{aligned} & u^{\mu}\ell_{Lr})(ar{d}_{Rs}\gamma_{\mu}d_{Rt}) \ & (ar{d}_{Ls}\gamma_{\mu}d_{Lt}) \ & U_{Lr})(ar{d}_{Ls}\gamma_{\mu}u_{Lj}) \end{bmatrix} \end{bmatrix} \ & U_{Lr}(ar{d}_{Ls}\gamma_{\mu}u_{Lj}) \ & U_{Ls}\gamma_{\mu}u_{Lj}) \ & U_{Li}\gamma_{\mu}u_{Lj}) \end{bmatrix} \end{aligned}$$

RUNNING FROM SMEFT TO LEFT

small QED anomalous dimension dominates evolution:

$\frac{dC_{L(R)}^{\nu_{\ell}}}{d\log\mu} = 0,$	$\frac{dC_{L(R)}^{D\ell}}{d\log\mu} = (\frac{4}{3}q_e^2 + (-)12q_dq_e)$
$\frac{dC_L^{U\nu_\ell}}{d\log\mu} = 0,$	$\frac{dC_L^{U\ell}}{d\log\mu} = (\frac{4}{3}q_e^2 + 12q_uq_e)$

RGE effect is negligible

 $(q_e)rac{lpha}{4\pi}C^{D\ell}_{L(R)}, \qquad rac{dC^{ij\ell}_L}{d\log\mu} = 6q_uq_erac{lpha}{4\pi}C^{ij\ell}_L,$

 $(e) \frac{\alpha}{4\pi} C_L^{U\ell}$

CONSTRAINTS ON SMEFT COEFFICIENTS

$$\chi^{2}(\vec{ heta}) = (\mathcal{O}_{\text{the.}}(\vec{ heta}) - \mathcal{O}_{ ext{exp.}})^{ op} V^{-1} (\mathcal{O}_{ ext{the.}}(\vec{ heta}) - \mathcal{O}_{ ext{exp.}})$$

 $\vec{ heta} = \left([C_{\ell q}^{(1)}]_{2223}, [C_{\ell q}^{(1)}]_{3323}, [C_{\ell q}^{(3)}]_{3323}, [C_{\ell d}]_{3323}
ight)$
 $\mathcal{O} = \left(\mathcal{B}(B^{+} \to K^{+}
u ar{
u}), \ \mathcal{B}(B^{0} \to K^{*0}
u ar{
u}), \ R_{D}, \ R_{D^{*}}, \ \Delta C_{9}^{\mu}
ight)$

$$\begin{split} & [C_{\ell q}^{(1)}]_{2223} = 6.50^{+1.76}_{-1.73} \times 10^{-4} , \\ & [C_{\ell q}^{(3)}]_{3323} = 4.75^{+1.15}_{-1.16} \times 10^{-2} , \end{split}$$

 $[C_{\ell q}^{(1)}]_{3323} = 5.57^{+1.37}_{-1.37} \times 10^{-2},$ $[C_{\ell d}]_{3323} = 1.87^{+0.63}_{-0.74} \times 10^{-2},$

CONSTRAINTS ON SMEFT COEFFICIENTS

Wilson coefficient	$[C_{\ell q}^{(1)}]_{2223}$	$[C_{\ell q}^{(1)}]_{3323}$
This work	$(6.50^{+1.76}_{-1.73}) \times 10^{-4}$	$(5.57^{+1.34}_{-1.37}) \times 10$
HLY[74]		
CFFPSV[75]	$[4.78, 9.33] \times 10^{-4}$	
Drell-Yan tails[76]	[-0.066, 0.071]	
$b \to q \ell \ell [$ 76 $]$	$[7.71, 51.86] \times 10^{-5}$	
$b \to q \nu \nu [$ 76 $]$	$\left[-0.038, 0.017 ight]$	
95% C.L. LHC[77]	[-0.14, 0.12]	$\left[-0.30, 0.27\right]$
ABPRS muon-specific[10]	$\left[0.0129, 0.0134 ight]$	
ABPRS flavor universal[10]	[0.012, 0.013]	[0.012, 0.013]
ABPRS tau-specific[10]		

[10] L. Allwicher, D. Becirevic, G. Piazza, S. Rosauro-Alcaraz, and O. Sumensari, Understanding the first measurement of $\mathcal{B}(B \to K \nu \bar{\nu})$, Phys. Lett. B 848 (2024) 138411, [arXiv:2309.02246].

Recently, Belle II reported on the first measurement of $\mathcal{B}(B^{\pm} \to K^{\pm}\nu\bar{\nu})$ which appears to be almost 3σ larger than predicted in the Standard Model. We point out the important correlation with $\mathcal{B}(B \to K^*\nu\bar{\nu})$ so that the measurement of that decay mode could help restrain the possible options for building the model of New Physics. We interpret this new experimental result in terms of physics beyond the Standard Model by using SMEFT and find that a scenario with coupling only to τ can accommodate the current experimental constraints but fails in getting a desired $R_{D^{(*)}}^{\exp}/R_{D^{(*)}}^{\mathrm{SM}}$, unless one turns the other SMEFT operators that are not related to $b \to s\ell\ell$ or/and $b \to s\nu\nu$.

[76] A. Greljo, J. Salko, A. Smolkovič, and P. Stangl, Rare b decays meet high-mass Drell-Yan, JHEP 05 (2023) 087, [arXiv:2212.10497].

PREDICTIONS ON OBSERVABLES

Observable	prediction with NP	Experiment
$\mathcal{B}(B^+ \to K^+ \nu \bar{\nu})$	$(2.06\pm0.69) imes10^{-5}$	$(2.3\pm0.7) imes10^{-5}$
${\cal B}(B^0 o K^{*0} u ar u)$	$(1.42\pm0.74) imes10^{-5}$	$< 1.8 imes 10^{-5}$
R_D	0.339 ± 0.010	0.358 ± 0.028
R_{D^*}	0.289 ± 0.009	0.285 ± 0.013
ΔC_9^μ	-0.782 ± 0.212	$-0.789\substack{+0.198\\-0.210}$
$\mathcal{B}(B^+ \to \tau^+ \nu)$	$(1.02 \pm 0.08) \times 10^{-4}$	$(1.09 \pm 0.24) \times 10^{-1}$
$\mathcal{B}(B_c^+ \to \tau^+ \nu)$	$(2.64\pm 0.23) imes 10^{-2}$	
$\mathcal{B}(B_s \to \tau^+ \tau^-)$	$(4.26 \pm 2.85) imes 10^{-4}$	$< 6.8 imes 10^{-3}$
$\mathcal{B}(D_s^+ \to \tau^+ \nu_{\tau})$	$(5.39\pm0.18) imes10^{-2}$	$(5.37\pm0.23) imes10^-$
${\cal B}(D^0 o \pi^0 u ar u)$	$(2.21 \pm 1.05) imes 10^{-11}$	$< 2.1 imes 10^{-4}$
${\cal B}(D^+ o \pi^+ u ar u)$	$(8.83 \pm 4.19) imes 10^{-11}$	
$\mathcal{B}(D_s^+ \to K^+ \nu \bar{\nu})$	$(1.72\pm0.82) imes10^{-11}$	

SUMMARY

- further needed.
- More low energy observables can be correlated within SMEFT.
- - prediction consistent with measured value: $B^+ \rightarrow \tau^+ \nu$, $D_s \rightarrow \tau^+ \nu_{\tau}$

• NP opportunity in $b \rightarrow s\ell^+\ell^-$ exists in C_0 . Efforts from both QCD and experiment are

• The recent tension in $b \to s \nu \bar{\nu}$, 10-year-old $R_{D^{(*)}}$, not-yet-disappeared $b \to s \ell^- \ell^+$ anomaly can be accommodated by 3 SMEFT operators (3 tau flavor + 1 muon flavor).

Based on stringent constraints for SMEFT operators, other predictions can be made:

• forecast for anticipated process yet to be measured: $B_c^+ \rightarrow \tau^+ \nu$, $B_s^- \rightarrow \tau^+ \tau^-$

