On 2d CFTs and Cvitanovich-Deligne Series of Exceptional Lie Groups

Kimyeong Lee
KIAS
High 1 Workshop on Particle, String and Cosmology Jan 22, 2024

Kaiwen Sun, Haowu Wang, 2306.09230
"A man who is tired of group theory is a man who is tired of life." - Sidney Coleman

Conformal Field Theory

Quantum Field Theory

Theory of Identical Particles
Special Relativity
Quantum Mechanics
The theoretical foundation of
the Standard Model of elementary particles and forces
perturbative approach: free particles + small interactions non-perturbative effect: chiral condensation and confinement in QCD

Maxwell Theory

Lagrangian: $\mathscr{L}=-\frac{1}{4 e^{2}} F_{\mu \nu} F^{\mu \nu}=\frac{1}{2 e^{2}}\left(E_{i}^{2}-B_{i}^{2}\right)$

Symmetries:
Poincare Symmetry: Lorentz Symmetry+ ST translation
Discrete Symmetries: parity, time-reversal, charge conjugation Gauge symmetry

Electro-Magnetic Duality: $(E, B) \rightarrow(B,-E)$

Maxwell Theory

Additional Symmetries:
electric and magnetic 1-form symmetries

$$
\partial_{\mu} F^{\mu \nu}=0, \partial_{\mu} * F^{\mu \nu}=0, \quad * F^{\mu \nu}=\frac{1}{2} \epsilon^{\mu \nu \rho \sigma} F_{\rho \sigma}
$$

conformal symmetry:

$$
x^{\mu} \rightarrow \frac{x^{\mu}-a^{\mu} x^{2}}{1-2 a \cdot x+a^{2} x^{2}}: \quad x^{\mu} \rightarrow \frac{x^{\mu}}{x^{2}}-a^{\mu}
$$

Noether

Symmetry leads to the Conserved Charge

Conserved Charge leads to the Symmetry Generator:
Poincare + Conformal Symmetry

$$
\begin{gathered}
P_{\mu}, M_{\mu \nu}, D, K_{\mu} \\
{\left[P_{\mu}, P_{\nu}\right]=0,\left[K_{\mu}, K_{\nu}\right]=0} \\
{\left[D, P_{\mu}\right]=P_{\mu},\left[D, K_{\mu}\right]=-K_{\mu}} \\
{\left[K_{\mu}, P_{\nu}\right]=\eta_{\mu \nu} D-i M_{\mu \nu}}
\end{gathered}
$$

2d Conformal Field Theory

2d Conformal Symmetry

Euclidean Space-time

infinite dimensional: $\ell_{n}=z^{n+1} \partial_{z}, \bar{\ell}_{n}=\bar{z}^{n+1} \partial_{\bar{z}}$

Quantization

$$
\begin{gathered}
\text { Virasoro Algebra of } L_{m}, \bar{L}_{m}, m \in \mathbb{Z} \\
{\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{c}{12}\left(m^{3}-m\right) \delta_{m+n, 0}} \\
\text { c: central charge }
\end{gathered}
$$

Representation Theory

Highest Weight state $|h\rangle: L_{n>0}|h\rangle=0, L_{0}|h\rangle=h|h\rangle$
Virasoro Descendants: $L_{-n_{1}} L_{-n_{2}} \cdots L_{-n_{k}}|h\rangle$

$$
0<n_{1} \leq n_{2} \leq \cdots \leq n_{k}, k \geq 0
$$

Rational: finite number of primary states
For $0<c<1$, the minimal models are only possible.

$$
c=1-\frac{6(p-q)^{2}}{p q} \text { with } p>q \geq 2 \text { coprime }
$$

Representation Theory

Rational Unitary Representation: $p=m+1, q=m, m=2,3, \ldots$

$$
\begin{gathered}
c=1-\frac{6}{m(m+1)}=\left\{0, \frac{1}{2}, \frac{7}{10}, \frac{4}{5}, \cdots\right\} \\
h=h_{r, s}(c)+\frac{((m+1) r-m s)^{2}-1}{4 m(m+1}, r=1,2 \ldots, m-1, s=1,2, . ., r
\end{gathered}
$$

Ising model: $c=\frac{1}{2}, \quad h=0, \frac{1}{2}, \frac{1}{16}$

Representation Theory

Rational Unitary Representation: $p=m+1, q=m, m=2,3, \ldots$

$$
\begin{gathered}
c=1-\frac{6}{m(m+1)}=\left\{0, \frac{1}{2}, \frac{7}{10}, \frac{4}{5}, \cdots\right\} \\
h=h_{r, s}(c)+\frac{((m+1) r-m s)^{2}-1}{4 m(m+1}, r=1,2 \ldots, m-1, s=1,2, . ., r
\end{gathered}
$$

Ising model: $c=\frac{1}{2}, \quad h=0, \frac{1}{2}, \frac{1}{16}$

Operator-State correspondence

Conformal Field Theory:
Radial quantization

$$
\begin{aligned}
d s^{2} & =d x^{2}+d y^{2}=d r^{2}+r^{2} d \varphi^{2} \\
r & =e^{\tau}, d s^{2}=e^{2 \tau}\left(d \tau^{2}+d \varphi^{2}\right)
\end{aligned}
$$

Operator at the origin of $R^{2}=$ the in-state at $\tau=-\infty$
Primary operator $\phi(z)$ and primary state $|\phi\rangle=\phi(0)|0\rangle$ Ising Model: $1, \epsilon_{\frac{1}{2} \frac{1}{2}}(z, \bar{z}), \sigma_{\frac{1}{16} \frac{1}{16}}(z, \bar{z})$

Hilbert space of Ising Model

$$
\mathscr{H}=\mathscr{H}_{1} \oplus \mathscr{H}_{\epsilon} \oplus \mathscr{H}_{\sigma}
$$

Hilbert space is a product of Hilbert space of two Virasoro algebras L_{n}, \bar{L}_{n}
Consider only the chiral part: L_{n} with c and h
The character of a primary operator or state:

$$
\chi_{h}=\operatorname{Tr}_{\mathscr{H}_{h}} q^{L_{0}-c / 24}, q=e^{2 \pi i \tau}
$$

Ising model:

$$
\chi_{0}=\frac{\sqrt{\theta_{3}}+\sqrt{\theta_{4}}}{2 \sqrt{\eta}}, \chi_{\frac{1}{2}}=\frac{\sqrt{\theta_{3}}-\sqrt{\theta_{4}}}{2 \sqrt{\eta}}, \chi_{\frac{1}{16}}=\frac{\sqrt{\theta_{2}}}{2 \sqrt{\eta}}
$$

Hilbert space of Ising Model

$$
\mathscr{H}=\mathscr{H}_{1} \oplus \mathscr{H}_{\epsilon} \oplus \mathscr{H}_{\sigma}
$$

Hilbert space is a product of Hilbert space of two Virasoro algebras L_{n}, \bar{L}_{n}
Consider only the chiral part: L_{n} with c and h
The character of a primary operator or state:

$$
\chi_{h}=\operatorname{Tr}_{\mathscr{H}_{h}} q^{L_{0}-c / 24}, q=e^{2 \pi i \tau}
$$

Ising model:

$$
\chi_{0}=\frac{\sqrt{\theta_{3}}+\sqrt{\theta_{4}}}{2 \sqrt{\eta}}, \chi_{\frac{1}{2}}=\frac{\sqrt{\theta_{3}}-\sqrt{\theta_{4}}}{2 \sqrt{\eta}}, \chi_{\frac{1}{16}}=\frac{\sqrt{\theta_{2}}}{2 \sqrt{\eta}}
$$

WZW model

> Lie algebra G level k central charge $c=\frac{k d_{G}}{k+h_{G}^{\vee}}: h_{G}^{\vee}$ dual Coxeter number
conformal weights: $h=\frac{j(j+2)}{4(k+2)}, j=0,1, \ldots k$ for $S U(2)$

Modular Property

Rational Conformal Field Theory:
central charge c , weight $h_{i}, i=0, \ldots, r$
characters: $\chi_{i}(\tau)=\operatorname{Tr}_{\mathscr{H}_{i}} q^{L_{0}-c / 24}=q^{-c / 24+h_{i}}\left(a_{0}+a_{1} q+a_{2} q^{2}+\cdots\right)$

$$
a_{i} \in \mathbb{Z}_{+}
$$

Under the $S L(2, Z)$ transform $\tau \rightarrow \tau^{\prime}=\frac{a \tau+b}{c \tau+d}$,

$$
\chi_{i}(\tau) \rightarrow \chi_{i}\left(\tau^{\prime}\right)=S_{i j} \chi_{j}(\tau)
$$

weight zero vector valued modular forms

Modular Linear Differential Equation

For rank two RCFT, the character χ_{0}, χ_{1} satisfies a quadratic MLDE.

$$
\left(D^{2}+\mu E_{4}\right) \chi=0, D=q \partial_{q}-\frac{n}{12} E_{2}
$$

$E_{2 k}(\tau)$: Eisenstein series of weight 2 k
Solutions with non-negative coefficients: Mathur-Mukhi-Sen 1977

LY	SU(2)	SU(3)	G2	SO(8)	F4	E6	E7	$?$	E8
$2 / 5$	1	2	$14 / 5$	4	$26 / 5$	6	7	$38 / 5$	8

l	μ	m_{1}	c	h	Identification
96	$\frac{11}{900}$	1	$\frac{2}{5}$	$\frac{1}{5}$	$c=-\frac{22}{5}$ minimal model ($\left.c \leftrightarrow c-24\right)$
90	$\frac{5}{144}$	3	1	$\frac{1}{4}$	$k=1 \mathrm{SU}(2) \mathrm{WZW}$ model
80	$\frac{1}{12}$	8	2	$\frac{1}{3}$	$k=1 \mathrm{SU}(3) \mathrm{WZW}$ model
72	$\frac{119}{900}$	14	$\frac{14}{3}$	$\frac{2}{5}$	$k=1 G_{2} \mathrm{WZW}$ model
60	$\frac{2}{9}$	28	4	$\frac{1}{2}$	$k=1 \mathrm{SO}(8) \mathrm{WZW}$ model
48	$\frac{299}{900}$	52	$\frac{28}{5}$	$\frac{3}{5}$	$\hat{k}=1 F_{4}$ WZW model
40	$\frac{3}{12}$	78	6	$\frac{2}{3}$	$k=1 E_{0} \mathrm{~W} \mathrm{WW}$ model
30	$\frac{77}{141}$	133	7	$\frac{3}{4}$	$k=1 E_{7} \mathrm{~W} Z \mathrm{~W}$ model
24	$\frac{551}{900}$	190	$\frac{38}{3}$	$\frac{4}{5}$?
20	$\frac{2}{3}$	248	8	$\frac{3}{6}$	$\supset k=1 E_{8}$ WZW model

Deligne Series

of

Exceptional Lie Groups

Deligne Exceptional Series

classical lie algebra: $\operatorname{SU}(N), S O(N), S p(N)=U S p(2 N)$
Deligne Series: $S U(2), S U(3), G_{2}, S O(8), F_{4}, E_{6}, E_{7}, E_{8}$
Dual Coxeter number: h_{G}^{\vee}
Single instanton zero modes: $4 h_{G}^{\vee}$

$\mathrm{SU}(\mathrm{N})$	$\mathrm{SO}(\mathrm{N})$	$\mathrm{Sp}(\mathrm{N})$	E 6	E 7	E 8	F 4	G 2
N	$\mathrm{~N}-2$	$\mathrm{~N}+1$	12	18	30	9	4

Cvitanovic- Exceptional Series

Dual Coxeter number: h_{G}^{\vee}

$$
\text { parameter: } \lambda=-6 / h_{G}^{\vee}
$$

$$
\begin{gathered}
\text { dimension of group: } d_{\theta}=\frac{2\left(h^{\vee}+1\right)\left(5 h^{\vee}-6\right)}{h^{\vee}+6} \\
d_{2 \theta}=\frac{5\left(h^{\vee}\right)^{2}\left(2 h^{\vee}+3\right)\left(5 h^{\vee}-6\right)}{\left(h^{\vee}+6\right)\left(h^{\vee}+12\right)}
\end{gathered}
$$

For $h^{\vee}=24$, the above dimension becomes $d_{\theta}=190, d_{2 \theta}=15504$

$E_{7} \subset E_{7+\frac{1}{2}} \subset E_{8}$

$$
\begin{gathered}
\mathbf{2 4 8}=190+57+1 \text { of } E_{7+1 / 2} \\
\mathbf{1 9 0}=133+56+1,57=56+1 \text { of } E_{7} \\
{\left[D^{2}-\frac{55}{3600} E_{4}\right] \chi=0} \\
\chi_{0}=q^{-\frac{19}{60}}\left(1+190 q+2831 q^{2}+22306 q^{3}+129276 q^{4}+\ldots\right), \\
\chi_{\frac{4}{5}}=q^{\frac{29}{60}}\left(57+1102 q+9367 q^{2}+57362 q^{3}+280459 q^{4}+\ldots\right) .
\end{gathered}
$$

RCFT with $\mathrm{c}=38 / 5, \mathrm{~h}=0,4 / 5$

$$
\left(E_{7+1 / 2}\right)_{1}=\frac{\left(E_{7}\right)_{1}}{M(5,3)}=\left(E_{7}\right)_{1} \otimes M_{\mathrm{eff}}(5,3)
$$

$E_{7} \subset E_{7+\frac{1}{2}} \subset E_{8}$

Hecke Image of $\mathrm{M}(5,2)$ (Harvey-Wu 18)

$$
\left(E_{7+1 / 2}\right)_{1}=\mathrm{T}_{19} M_{\mathrm{eff}}(5,2)
$$

The characters can be written in terms of those of LY

$$
\begin{gathered}
\chi_{0}=\phi_{1}^{19}+171 \phi_{1}^{14} \phi_{2}^{5}+247 \phi_{1}^{9} \phi_{2}^{10}-57 \phi_{1}^{4} \phi_{2}^{15} \\
\chi_{\frac{4}{5}}=\phi_{2}^{19}-171 \phi_{2}^{14} \phi_{1}^{5}+247 \phi_{2}^{9} \phi_{1}^{10}+57 \phi_{2}^{4} \phi_{1}^{15}, \text { with } \\
\phi_{1}=q^{-\frac{1}{60}} \prod_{n=0}^{\infty} \frac{1}{\left(1-q^{5 n+1}\right)\left(1-q^{5 n+4}\right)}, \quad \phi_{2}=q^{\frac{11}{60}} \prod_{n=0}^{\infty} \frac{1}{\left(1-q^{5 n+2}\right)\left(1-q^{5 n+3}\right)} .
\end{gathered}
$$

$E_{7+\frac{1}{2}}$

Rank 2: Duan, Lee, Sun 2022

$$
\left(E_{7+1 / 2}\right)_{2}=\mathrm{T}_{19} M_{\mathrm{eff}}(13,2)
$$

$$
\text { central charge } c=190 / 23
$$

weights: $h=0,10 / 13,12 / 13,18 / 13,19 / 13,21 / 13$

$$
\begin{aligned}
\chi_{0} & =q^{-\frac{95}{156}}\left(1+190 q+18335 q^{2}+448210 q^{3}+6264585 q^{4}+\ldots\right), \\
\chi_{\frac{10}{13}} & =q^{\frac{25}{156}}\left(57+10830 q+321575 q^{2}+4979330 q^{3}+53025295 q^{4}+\ldots\right), \\
\chi_{\frac{12}{13}} & =q^{\frac{49}{156}}\left(190+20596 q+537890 q^{2}+7761500 q^{3}+79066030 q^{4}+\ldots\right), \\
\chi_{\frac{18}{13}} & =q^{\frac{121}{156}}\left(1045+48070 q+910955 q^{2}+10983690 q^{3}+99272435 q^{4}+\ldots\right), \\
\chi_{\frac{19}{13}} & =q^{\frac{133}{156}}\left(2640+109155 q+1979610 q^{2}+23245740 q^{3}+206319480 q^{4}+\ldots\right), \\
\chi_{\frac{21}{13}} & =q^{\frac{157}{156}}\left(1520+51395 q+860890 q^{2}+9606457 q^{3}+82347710 q^{4}+\ldots\right) .
\end{aligned}
$$

$E_{7+\frac{1}{2}}$

Possible only up to rank $1 \leq k \leq 5$
Weyl dimension formula is known partially
Most of higher weight representations are not known yet

$$
k=-5 \text { theory is related to } 4 \mathrm{~d} N=2 \text { theory }
$$

Additional surprises on the dimension of fermionic representations

Conclusion

Freudenthal Magic Square

Freudenthal, Tits, Vinberg, (54~64) Cvitanovich

A \B	\mathbb{R}	\mathbb{C}	\mathbb{H}	(0)
\mathbb{R}	$\begin{gathered} \mathrm{A}_{1} \\ \end{gathered}$	$\begin{gathered} \mathrm{A}_{2} \\ -\bigcirc \end{gathered}$	$\begin{gathered} \mathrm{C}_{3} \\ \rightarrow 0-0 \end{gathered}$	$\begin{gathered} \mathrm{F}_{4} \\ -\infty-\infty-0 \end{gathered}$
C	$\begin{gathered} \mathrm{A}_{2} \\ \mathrm{O}-\mathrm{O} \end{gathered}$	$\begin{gathered} \mathrm{A}_{2} \times \mathrm{A}_{2} \\ 0-0 \\ 0-\mathrm{O} \end{gathered}$	$\begin{gathered} \mathrm{A}_{5} \\ 0-0 \\ 0-\infty \end{gathered}$	$\xrightarrow[0-0]{\mathrm{E}_{6}}$
\mathbb{H}	$\begin{gathered} \mathrm{C}_{3} \\ \stackrel{\rightarrow 0-0}{ } \end{gathered}$	$\begin{gathered} \mathrm{A}_{5} \\ 0-0-0-0 \end{gathered}$	$\begin{gathered} D_{6} \\ -0-0-0 \end{gathered}$	$\frac{\mathrm{E}_{7}}{-0-0-0-0}$
(1)	$\begin{gathered} \mathrm{F}_{4} \\ -0=0-0 \end{gathered}$	$\begin{gathered} E_{6} \\ 0-0-0-0 \end{gathered}$	$\begin{gathered} \mathrm{E}_{7} \\ 0-0-0-0-0 \end{gathered}$	$\begin{gathered} E_{8} \\ 0-0-0-0-0-0 \end{gathered}$

New Magic Square

Borsten and Marrani 2017, KL and Sun Work in Progress

	0	\mathbb{R}	\mathbb{C}	\mathbb{T}	\mathbb{H}	S	(1)	series
0								
R	0	\mathfrak{a}_{1}	\mathfrak{a}_{2}	$\mathfrak{a}_{2 \frac{1}{4}}$	$\mathfrak{C}_{3}^{(21,4)}$	$\mathfrak{c}_{3 \frac{1}{2}}^{(36,13 / 2)}$	$\mathfrak{f}_{4}^{(52,9)}$	
\mathbb{C}	0	\mathfrak{a}_{2}	$\mathfrak{a}_{2} \oplus \mathfrak{a}_{2}$	$\left[\mathfrak{a}_{2} \oplus \mathfrak{a}_{2}\right]_{\frac{1}{4}}$	$\mathfrak{a}_{5}^{(35,6)}$	$\mathfrak{a}_{5 \frac{1}{2}}^{(56,9)}$	$\mathfrak{e}_{6}^{(78,12)}$	Severi
\mathbb{T}		$\mathfrak{a}_{2 \frac{1}{4}}$	$\left[\mathfrak{a}_{2} \oplus \mathfrak{a}_{2}\right]_{\frac{1}{4}}$	$\left[\mathfrak{a}_{2} \oplus \mathfrak{a}_{2}\right]_{\frac{1}{4}+\frac{1}{4}}$	$\mathfrak{a}_{5 \frac{1}{4}}^{(45,22 / 3)}$	$\mathfrak{a}_{5\left(\frac{1}{4}+\frac{1}{2}\right)}^{(70,32 / 3)}$	$\mathfrak{e}_{6 \frac{1}{2}}^{(96,14)}$	subsub
\mathbb{H}		$\mathfrak{c}_{3}^{(21,4)}$	$\mathfrak{a}_{5}^{(35,6)}$	$\mathfrak{a}_{5 \frac{1}{4}}^{(45,22 / 3)}$	$\mathfrak{d}_{6}^{(66,10)}$	$\mathfrak{d}_{6 \frac{1}{2}}^{(99,14)}$	$\mathfrak{e}_{7}^{(133,18)}$	subexceptional
\mathbb{S}	$A D_{3 \frac{1}{2}}^{(18,4)}$	$\mathfrak{c}_{3 \frac{1}{2}}^{(36,13 / 2)}$	$\mathfrak{a}_{5 \frac{1}{2}}^{(56,9)}$	$\mathfrak{a}_{5\left(\frac{1}{4}+\frac{1}{2}\right)}^{(70,32 / 3)}$	$\mathfrak{d}_{6 \frac{1}{2}}^{(99,14)}$	$\mathfrak{d}_{6\left(\frac{1}{2}+\frac{1}{2}\right)}^{(144,19)}$	$\mathfrak{e}_{7 \frac{1}{2}}^{(190,24)}$	IES
(1)	\mathfrak{d}_{4}	$\mathfrak{f}_{4}^{(52,9)}$	$\mathfrak{e}_{6}^{(78,12)}$	$\mathfrak{e}_{6 \frac{1}{2}}^{(96,14)}$	$\mathfrak{e}_{7}^{(133,18)}$	$\mathfrak{e}_{7 \frac{1}{2}}^{(190,24)}$	$\mathfrak{e}_{8}^{(248,30)}$	Deligne-C

