On 2d CFTs and **Cvitanovich-Deligne Series of Exceptional Lie Groups**

Kaiwen Sun, Haowu Wang, 2306.09230

Kimyeong Lee **KIAS** High 1 Workshop on Particle, String and Cosmology Jan 22, 2024

"A man who is tired of group theory is a man who is tired of life." – Sidney Coleman

Conformal Field Theory

- Theory of Identical Particles
 - Special Relativity
 - **Quantum Mechanics**
- The theoretical foundation of
- the Standard Model of elementary particles and forces

- perturbative approach: free particles + small interactions
- non-perturbative effect: chiral condensation and confinement in QCD

Quantum Field Theory

Maxwell Theory Lagrangian: $\mathscr{L} = -\frac{1}{4\rho^2} F_{\mu\nu} F^{\mu\nu} = \frac{1}{2\rho^2} (E_i^2 - B_i^2)$

- Poincare Symmetry: Lorentz Symmetry+ ST translation
- Discrete Symmetries: parity, time-reversal, charge conjugation
 - Gauge symmetry
 - Electro-Magnetic Duality: $(E, B) \rightarrow (B, -E)$

Symmetries:

Maxwell Theory

$$\partial_{\mu}F^{\mu\nu} = 0, \ \partial_{\mu}*F^{\mu\nu} = 0, \quad *F^{\mu\nu} = \frac{1}{2}\epsilon^{\mu\nu\rho\sigma}F_{\rho\sigma}$$

conformal symmetry:

$$x^{\mu} \to \frac{x^{\mu} - a^{\mu} x^2}{1 - 2a \cdot x + a^2 x^2} : \quad x^{\mu} \to \frac{x^{\mu}}{x^2} - a^{\mu}$$

- Additional Symmetries:
- electric and magnetic 1-form symmetries

Noether

- Symmetry leads to the Conserved Charge
- Conserved Charge leads to the Symmetry Generator:
 - Poincare + Conformal Symmetry

 - $P_{\mu}, M_{\mu\nu}, D, K_{\mu}$ $[P_{\mu}, P_{\nu}] = 0, \ [K_{\mu}, K_{\nu}] = 0$ $[K_{\mu}, P_{\nu}] = \eta_{\mu\nu}D - iM_{\mu\nu}$
 - $[D, P_{\mu}] = P_{\mu}, [D, K_{\mu}] = -K_{\mu}$

2d Conformal Field Theory

2d Conformal Symmetry

Euclidean Space-time

infinite dimensional:

- Virasoro Algebr
- $[L_m, L_n] = (m n)L_n$

$$\ell_n = z^{n+1}\partial_z, \ \bar{\ell}_n = \bar{z}^{n+1}\partial_{\bar{z}}$$

Quantization

ra of
$$L_m, \bar{L}_m, m \in \mathbb{Z}$$

 $L_{m+n} + \frac{c}{12}(m^3 - m)\delta_{m+n,0}$

c: central charge

Representation Theory

- Highest Weight state $|h\rangle$: $L_{n>0}|h\rangle = 0$, $L_0|h\rangle = h|h\rangle$
 - Virasoro Descendants: $L_{-n_1}L_{-n_2}\cdots L_{-n_k}|h\rangle$
 - $0 < n_1 \leq n_2 \leq \cdots \leq n_k, k \geq 0$
 - Rational: finite number of primary states
 - For 0 < c < 1, the minimal models are only possible. $c = 1 - \frac{6(p-q)^2}{2}$ with $p > q \ge 2$ coprime

Representation Theory

$$c = 1 - \frac{6}{m(m+1)}$$
$$h = h_{r,s}(c) + \frac{((m+1)r - ms)^2}{4m(m+1)}$$

Rational Unitary Representation: p = m + 1, q = m, m = 2,3,...

 $\frac{1}{2} = \left\{ \begin{array}{c} 0, \frac{1}{2}, \frac{7}{10}, \frac{4}{5}, \cdots \right\}$ $r^{2} - 1$. r = 1, 2, ..., m - 1, s = 1, 2, ..., r

Ising model: $c = \frac{1}{2}, h = 0, \frac{1}{2}, \frac{1}{16}$

Representation Theory

$$c = 1 - \frac{6}{m(m+1)}$$
$$h = h_{r,s}(c) + \frac{((m+1)r - ms)^2}{4m(m+1)}$$

Rational Unitary Representation: p = m + 1, q = m, m = 2,3,...

 $\frac{1}{2} = \left\{ \begin{array}{c} 0, \frac{1}{2}, \frac{7}{10}, \frac{4}{5}, \cdots \right\}$ $r^{2} - 1$. r = 1, 2, ..., m - 1, s = 1, 2, ..., r

Ising model: $c = \frac{1}{2}, h = 0, \frac{1}{2}, \frac{1}{16}$

Operator-State correspondence

- **Conformal Field Theory:**
- $ds^2 = dx^2 + dy^2 = dr^2 + r^2 d\phi^2$
 - $r = e^{\tau}, ds^2 = e^{2\tau}(d\tau^2 + d\phi^2)$
- Operator at the origin of R^2 = the in-state at $\tau = -\infty$
- Primary operator $\phi(z)$ and primary state $|\phi\rangle = \phi(0)|0\rangle$
 - Ising Model: 1,

Radial quantization

$$\epsilon_{\frac{1}{2}\frac{1}{2}}(z,\bar{z}), \ \sigma_{\frac{1}{16}\frac{1}{16}}(z,\bar{z})$$

Hilbert space of Ising Model

- Hilbert space is a product of Hilbert space of two Virasoro algebras L_n , \overline{L}_n
 - Consider only the chiral part: L_n with c and h
 - The character of a primary operator or state:

$$\chi_{h} = \operatorname{Tr}_{\mathcal{H}_{h}} q^{L_{0}-c/24}, \ q = e^{2\pi i \tau}$$
Ising model:
$$+\sqrt{\theta_{4}}, \ \chi_{\frac{1}{2}} = \frac{\sqrt{\theta_{3}} - \sqrt{\theta_{4}}}{2\sqrt{\eta}}, \ \chi_{\frac{1}{16}} = \frac{\sqrt{\theta_{2}}}{2\sqrt{\eta}}$$

$$\chi_{h} = \operatorname{Tr}_{\mathcal{H}_{h}} q^{L_{0}-c/24}, \ q = e^{2\pi i \tau}$$

Ising model:
$$\chi_{0} = \frac{\sqrt{\theta_{3}} + \sqrt{\theta_{4}}}{2\sqrt{\eta}}, \ \chi_{\frac{1}{2}} = \frac{\sqrt{\theta_{3}} - \sqrt{\theta_{4}}}{2\sqrt{\eta}}, \ \chi_{\frac{1}{16}} = \frac{\sqrt{\theta_{2}}}{2\sqrt{\eta}}$$

 $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_{\varepsilon} \oplus \mathcal{H}_{\sigma}$

Hilbert space of Ising Model

- Hilbert space is a product of Hilbert space of two Virasoro algebras L_n , \overline{L}_n
 - Consider only the chiral part: L_n with c and h
 - The character of a primary operator or state:

$$\chi_h = \operatorname{Tr}_{\mathcal{H}_h} q^{L_0 - c/24}, \ q = e^{2\pi i \tau}$$

$$\chi_0 = \frac{\sqrt{\theta_3} + \sqrt{\theta_4}}{2\sqrt{\eta}}, \quad \chi_{\frac{1}{2}}$$

 $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_{\epsilon} \oplus \mathcal{H}_{\sigma}$

Ising model:

WZW model

conformal weights: $h = \frac{j(j+2)}{4(k+2)}, j = 0, 1, ..., k$ for SU(2) $4(\kappa \pm \angle J)$

- Lie algebra G
 - level k

Nodular Property

- Rational Conformal Field Theory:
- central charge c, weight h_i , i = 0, ..., r

characters:
$$\chi_i(\tau) = \text{Tr}_{\mathcal{H}_i} q^{L_0 - c/2}$$

- Under the SL(2,Z) transform $\tau \rightarrow \tau' = \frac{a\tau + b}{c\tau + d}$,
 - $\chi_i(\tau) \rightarrow \chi_i$
 - weight zero vector valued modular forms

- $^{24} = q^{-c/24 + h_i}(a_0 + a_1q + a_2q^2 + \cdots)$
- $a_i \in \mathbb{Z}_+$

$$\gamma_i(\tau') = S_{ij}\chi_j(\tau)$$
:

Modular Linear Differential Equation

For rank two RCFT, the character χ_0, χ_1 satisfies a quadratic MLDE.

$$(D^2 + \mu E_4)\chi = 0, \ D = q\partial_q - \frac{n}{12}E_2$$

- $E_{2k}(\tau)$: Eisenstein series of weight 2k
- Solutions with non-negative coefficients: Mathur-Mukhi-Sen 1977

LY	SU(2)	SU(3)	G2	SO(8)	F4	E6	E7	?	E8
2/5	1	2	14/5	4	26/5	6	7	38/5	8

l	μ	m_1	с.	h
96	<u>11</u> 900	1	2 5	<u>1</u> 5
90	<u>5</u> 144	3	1	1 1
80	$\frac{1}{12}$	8	2	$\frac{1}{3}$
72	<u>119</u> 900	14	<u>14</u> 5	$\frac{2}{5}$
60	2 9	28	4	$\frac{1}{2}$
48	<u>299</u> 900	52	<u>26</u> 5	<u>3</u> 5
40	<u>5</u> 12	78	6	2 3
30	77 144	133	7	<u>3</u> 4
24	<u>551</u> 900	190	<u>38</u> 5	<u>4</u> 5
20	<u>2</u> 3	248	8	<u>5</u> 6

Identification

$$c = -\frac{22}{5}$$
 minimal model ($c \leftrightarrow c - 24$)

- k = 1 SU(2) WZW model
- k = 1 SU(3) WZW model
- $k = 1 G_2$ WZW model
- k = 1 SO(8) WZW model
- $k = 1 F_4$ WZW model
- $k = 1 E_{\mathfrak{s}}$ WZW model
- $k = 1 E_7$ WZW model

?

 $\supset k = 1 E_8$ WZW model

Of

Deligne Series Exceptional Lie Groups

Deligne Exceptional Series

- classical lie algebra: SU(N), SO(N), Sp(N) = USp(2N)
- Deligne Series: SU(2), SU(3), G_2 , SO(8), F_4 , E_6 , E_7 , E_8
 - Dual Coxeter number: h_G^{\vee}
 - Single instanton zero modes: $4h_G^{\vee}$

SU(N)	SO(N)	Sp(N)	E6	E7	E8	F4	G2
Ν	N-2	N+1	12	18	30	9	4

Cvitanovic- Exceptional Series

- dimens

parameter:
$$\lambda = -6/h_G^{\vee}$$

sion of group: $d_{\theta} = \frac{2(h^{\vee} + 1)(5h^{\vee} - 6)}{h^{\vee} + 6}$
 $d_{2\theta} = \frac{5(h^{\vee})^2(2h^{\vee} + 3)(5h^{\vee} - 6)}{(h^{\vee} + 6)(h^{\vee} + 12)}$

Dual Coxeter number: h_G^{\vee}

For $h^{\vee} = 24$, the above dimension becomes $d_{\theta} = 190$, $d_{2\theta} = 15504$

- **248**= **190**+**57**+**1** of $E_{7+1/2}$
- **190=133**+56+1, 57=56+1 of E_7
 - $[D^2 \frac{55}{3600}E_4]\chi = 0$
- $\chi_0 = q^{-\frac{19}{60}} (1 + 190q + 2831q^2 + 22306q^3 + 129276q^4 + \dots),$
- $\chi_{\frac{4}{5}} = q^{\frac{29}{60}} (57 + 1102q + 9367q^2 + 57362q^3 + 280459q^4 + \dots).$

 - $(E_{7+1/2})_1 = \frac{(E_7)}{M(5)}$

 $E_7 \subset E_{7+\frac{1}{2}} \subset E_8$

RCFT with c = 38/5, h = 0, 4/5

$$(\overline{E_7})_1 = (E_7)_1 \otimes M_{
m eff}(5,3).$$

 $(E_{7+1/2})_1 = T_{19} M_{eff}(5,2)$

$$\begin{split} \chi_0 &= \phi_1^{19} + 171 \phi_1^{14} \phi_2^5 + 247 \phi_1^9 \phi_2^{10} - 57 \phi_1^4 \phi_2^{15}, \\ \chi_{\frac{4}{5}} &= \phi_2^{19} - 171 \phi_2^{14} \phi_1^5 + 247 \phi_2^9 \phi_1^{10} + 57 \phi_2^4 \phi_1^{15}, \text{ with} \\ \phi_1 &= q^{-\frac{1}{60}} \prod_{n=0}^\infty \frac{1}{(1-q^{5n+1})(1-q^{5n+4})}, \qquad \phi_2 = q^{\frac{11}{60}} \prod_{n=0}^\infty \frac{1}{(1-q^{5n+2})(1-q^{5n+3})}. \end{split}$$

 $E_7 \subset E_{7+\frac{1}{2}} \subset E_8$

Hecke Image of M(5,2) (Harvey-Wu 18)

The characters can be written in terms of those of LY

$$(E_{7+1/2})_2 =$$

- central charge c = 190/23
- weights: h= 0, 10/13, 12/13, 18/13, 19/13, 21/13

 $E_{7+\frac{1}{2}}$

Rank 2: Duan, Lee, Sun 2022

 $= T_{19} M_{eff}(13,2)$

 $\chi_0 = q^{-\frac{95}{156}} (1 + \frac{190}{9}q + 18335q^2 + 448210q^3 + 6264585q^4 + \dots),$ $\chi_{\frac{10}{12}} = q^{\frac{25}{156}} (57 + 10830q + 321575q^2 + 4979330q^3 + 53025295q^4 + \dots),$ $\chi_{\frac{12}{13}} = q^{\frac{49}{156}} (190 + 20596q + 537890q^2 + 7761500q^3 + 79066030q^4 + \dots),$ $\chi_{\frac{18}{13}} = q^{\frac{121}{156}} (1045 + 48070q + 910955q^2 + 10983690q^3 + 99272435q^4 + \dots),$ $\chi_{\frac{19}{13}} = q^{\frac{133}{156}} (2640 + 109155q + 1979610q^2 + 23245740q^3 + 206319480q^4 + \dots),$ $\chi_{\frac{21}{13}} = q^{\frac{157}{156}} (1520 + 51395q + 860890q^2 + 9606457q^3 + 82347710q^4 + \dots).$

- Possible only up to rank $1 \le k \le 5$
- Weyl dimension formula is known partially
- Most of higher weight representations are not known yet
 - k = -5 theory is related to 4d N=2 theory
- Additional surprises on the dimension of fermionic representations

 $E_{7+\frac{1}{2}}$

Conclusion

A \ B	\mathbb{R}	\mathbb{C}
\mathbb{R}	A ₁	A ₂
\mathbb{C}	A ₂	$A_2 \times A_2$ $\bigcirc - \bigcirc$ $\bigcirc - \bigcirc$
\mathbb{H}	C₃ ⊖ ≓≎ ⊸≎	A ₅
\mathbb{O}	F₄ ⊶≎ ≓ ≎⊸≎	

Freudenthal Magic Square

Freudenthal, Tits, Vinberg, (54~64) Cvitanovich

New Magic Square

Borsten and Marrani 2017, KL and Sun Work in Progress

	0	\mathbb{R}	$\mathbb C$	T	\mathbb{H}	S	\mathbb{O}	series
0								
R	0	\mathfrak{a}_1	\mathfrak{a}_2	$\mathfrak{a}_{2\frac{1}{4}}$	$\mathfrak{c}_{3}^{(21,4)}$	$\mathfrak{c}_{3\frac{1}{2}}^{(36,13/2)}$	$\mathfrak{f}_{4}^{(52,9)}$	
C	0	\mathfrak{a}_2	$\mathfrak{a}_2\oplus\mathfrak{a}_2$	$[\mathfrak{a}_2\oplus\mathfrak{a}_2]_{rac{1}{4}}$	$\mathfrak{a}_{\scriptscriptstyle 5}^{\scriptscriptstyle (35,6)}$	$\mathfrak{a}_{5rac{1}{2}}^{(56,9)}$	$\boldsymbol{\mathfrak{e}}_{6}^{(78,12)}$	Severi
T		$\mathfrak{a}_{2\frac{1}{4}}$	$[\mathfrak{a}_2\oplus\mathfrak{a}_2]_{rac{1}{4}}$	$[\mathfrak{a}_2\oplus\mathfrak{a}_2]_{rac{1}{4}+rac{1}{4}}$	$\mathfrak{a}_{5\frac{1}{4}}^{(45,22/3)}$	$\mathfrak{a}_{5(rac{1}{4}+rac{1}{2})}^{(70,32/3)}$	$e_{6\frac{1}{2}}^{(96,14)}$	subsub
H		$\mathfrak{c}_{3}^{(21,4)}$	$\mathfrak{a}_{\scriptscriptstyle 5}^{\scriptscriptstyle (35,6)}$	$\mathfrak{a}_{5rac{1}{4}}^{(45,22/3)}$	$\mathfrak{d}_{6}^{(66,10)}$	$\mathfrak{d}_{6rac{1}{2}}^{(99,14)}$	$\hat{\mathfrak{e}}_{7}^{(133,18)}$	subexception
S	$AD_{3\frac{1}{2}}^{(18,4)}$	$\mathfrak{c}_{3\frac{1}{2}}^{(36,13/2)}$	$\mathfrak{a}_{5\frac{1}{2}}^{(56,9)}$	$\mathfrak{a}_{5(rac{1}{4}+rac{1}{2})}^{(70,32/3)}$	$\mathfrak{d}_{6rac{1}{2}}^{(99,14)}$	$\mathfrak{d}_{6(rac{1}{2}+rac{1}{2})}^{(144,19)}$	$\mathfrak{e}_{7rac{1}{2}}^{(190,24)}$	IES
O	\mathfrak{d}_4	$\bar{\mathfrak{f}_{4}^{(52,9)}}$	$\mathfrak{e}_{6}^{(78,12)}$	$\mathfrak{e}_{6rac{1}{2}}^{(96,14)}$	$\hat{\mathfrak{e}}_{7}^{(133,18)}$	$\mathfrak{e}_{7rac{1}{2}}^{(190,24)}$	$\mathfrak{e}_{8}^{(248,30)}$	Deligne-C

 $m_{1} = - c = 1 = 0 = 0 = 0$

