Bellell excess, Muon g-2 & Thermal WIMP DM in U(1) $_{L_{\mu}-L_{\tau}}$ Model

Jongkuk Kim

Based on arXiv: 2401.10112 In collaboration with Shu-Yu Ho (KIAS), Pyungwon Ko (KIAS)

High1Workshop 2024. 1. 23

Evidences – Dark Matter

• There are undeniable evidences for dark matter in a wide range of distance scales

Evidences – muon g-2

Muon g-2 collaboration, PRL 2023
 Muon g-2 experiment improves the precision of their previous result by a factor of 2

Evidences – Hubble tension

- Large difference between early and late H_0 measurement
 - $H_0 = 73.2 \pm 1.3 \text{ kms}^{-1} \text{Mpc}^{-1}$
 - $H_0 = 67.4 \pm 0.5 \text{ kms}^{-1} \text{Mpc}^{-1}$
- The discrepancy either arises because
 - Our distance measurements are incorrect
 - · Cosmological model we use to fit all those distances is incorrect

 $U(1)_{L_{\mu}-L_{\tau}}$ -charged DM

• $U(1)_{dark} \equiv U(1)_{L_{\mu}-L_{\tau}}$

• Let's call Z', $U(1)_{L_{\mu}-L_{\tau}}$ gauge boson, dark photon since it couple to DM

Leptophilic Z' model

- Possible to gauge one of the differences of two lepton-flavor numbers
 X. G. He et al, PRD 1991
 - $L_e L_{\mu}$, $L_{\mu} L_{\tau}$: anomaly free without extension of fermion contents
 - Symmetry including L_e is strongly constrained
 - The simplest anomaly free U(1) extension that couple to the SM fermions directly
- No kinetic mixing between Z' and B @ high-energy
 - Kinetic mixing is generated through

Leptophilic Z' model

Hubble tension

M. Escudero et al, JHEP 2019

- Tension between early and late-time determinations of Hubble constant
- 10 20 MeV Z' reached thermal equilibrium in the early Universe and decays, heating the neutrino population
- Delay the process of neutrino decoupling
- $0.2 < \Delta N_{eff} < 0.5$: substantially relaxes the tension

$$U(1)_{L_{\mu}-L_{\tau}}$$
-charged DM model

• Simplest $U(1)_{L_{\mu}-L_{\tau}}$ -charged fermion DM model

$$\mathcal{L} \supset \mathcal{L}_{\rm SM} - \frac{1}{4} Z'_{\alpha\beta} Z'^{\alpha\beta} + \frac{1}{2} m_{Z'}^2 Z'_{\alpha} Z'^{\alpha} + i\bar{\chi}\gamma^{\alpha}\partial_{\alpha}\chi - m_{\chi}\bar{\chi}\chi + g_X Q_{\chi} Z'_{\alpha}\bar{\chi}\gamma^{\alpha}\chi + g_X Z'_{\alpha} \sum Q_{\ell}\bar{\ell}\gamma^{\alpha}\ell$$

- New gauge boson Z' plays a role of messenger particle between DM and the SM leptons
- New parameters: $\{g_X, m_{Z'}, m_{\chi}, Q_X\}$
- Consider Z' boson only & $g_X \sim (3-5) \times 10^{-4}$ for the muon g-2
 - $\chi \bar{\chi}(X\bar{X}) \rightarrow f_{SM} \bar{f}_{SM}$: dominant annihilation channels
 - $g_X \sim 10^{-4}$ is too small to get $\Omega_{\chi} h^2 = 0.12$

$U(1)_{L_{\mu}-L_{\tau}}$ -charged DM model

- $\chi \bar{\chi}(X\bar{X}) \to Z'^* \to \nu \bar{\nu}$: dominant annihilation channels
 - $m_{Z'} \sim 2m_{\chi}$ with the s-channel Z' resonance only gives the correct relic density

• Large DM charges Asai, Okawa, Tsumura, JHEP 2021

$U(1)_{L_{\mu}-L_{\tau}}$ -charged DM model

• Complex scalar DM (Here X. complex scalar DM)

- $g_X \sim 10^{-4}$ is too small to get $\Omega h^2 = 0.12$
- $m_{Z'} \sim 2m_{\chi}$ with the s-channel Z' resonance
- sub-GeV DM
- No direct detection bound

Tight correlation between DM mass and Z' mass

, ℓ^-, ν_ℓ

 $\ell^+, \bar{
u}_\ell$

$U(1)_{L_{\mu}-L_{\tau}}$ -charged DM + Dark Higgs

- $U(1)_{dark} \equiv U(1)_{L_{\mu}-L_{\tau}}$
 - Let's call $Z', U(1)_{L_{\mu}-L_{\tau}}$ gauge boson, dark photon since it couple to DM

- UV complete $U(1)_{L_{\mu}-L_{\tau}}$ -charged scalar DM model
- Dark photon Z' gets massive through $U(1)_{L_{\mu}-L_{\tau}}$ breaking
- A new singlet scalar (Dark Higgs), which mixes with the SM Higgs

$$U(1)_{L_{\mu}-L_{\tau}}$$
-charged DM + Dark Higgs

Scalar potential

$$V = \lambda_H \left(H^{\dagger} H - \frac{v_H^2}{2} \right)^2 + \lambda_\Phi \left(\Phi^{\dagger} \Phi - \frac{v_\Phi^2}{2} \right)^2 + \lambda_{\Phi H} \left(\Phi^{\dagger} \Phi - \frac{v_\Phi}{2} \right) \left(H^{\dagger} H - \frac{v_\Phi}{2} \right)$$

- If dark symmetry is spontaneously broken, $\Phi(x) = \frac{1}{\sqrt{2}} (v_{\Phi} + \phi(x))$ Dark photon Z' gets massive: $m_{Z'} = g_X |Q_{\Phi}| v_{\Phi}$

• Two CP-even neutral scalar bosons
•
$$\begin{pmatrix} \phi \\ h \end{pmatrix} = \mathcal{O} \begin{pmatrix} H_1 \\ H_2 \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} H_1 \\ H_2 \end{pmatrix}$$
 $\tan 2\theta = \frac{\lambda_{\Phi H} v_{\Phi} v_H}{\lambda_{H} v_{H}^2 - \lambda_{\Phi} v_{\Phi}^2}$
• $\begin{pmatrix} 2\lambda_{\Phi} v_{\Phi}^2 & \lambda_{\Phi H} v_{\Phi} v_H \\ \lambda_{\Phi H} v_{\Phi} v_H & 2\lambda_{H} v_{H}^2 \end{pmatrix} = \begin{pmatrix} m_{H_1}^2 \cos^2 \theta + m_{H_2}^2 \sin^2 \theta & (m_{H_2}^2 - m_{H_1}^2) \cos \theta \sin \theta \\ (m_{H_2}^2 - m_{H_1}^2) \cos \theta \sin \theta & m_{H_1}^2 \sin^2 \theta + m_{H_2}^2 \cos^2 \theta \end{pmatrix}$
• 3 independent parameters: m_{H_1} , m_{H_2} , sin θ

SIVI HIGGS

$U(1)_{L_{\mu}-L_{\tau}}$ -charged DM + Dark Higgs

- After spontaneous symmetry breakings
 - Additional interactions with the dark Higgs

$$\mathcal{L}_{\phi} \supset \frac{1}{2} g_X^2 Q_{\Phi}^2 Z^{\prime \mu} Z^{\prime}_{\mu} \phi^2 \bigg| + g_X^2 Q_{\Phi}^2 v_{\Phi} Z^{\prime \mu} Z^{\prime \mu}_{\mu} \phi - \lambda_{\Phi} v_{\Phi} \phi^3 - \lambda_H v_H h^3 - \frac{\lambda_{\Phi H}}{2} v_{\Phi} \phi h^2 - \frac{\lambda_{\Phi H}}{2} v_H \phi^2 h \bigg|$$

- Constraint from Neff @ TCMB
 - If light dark Higgs masses are lighter than $T^{\nu}_{dec} \sim 1$ MeV, the light dark Higgs mainly decays into $e^{\pm} \rightarrow \Delta N_{eff} \neq 0$
 - The dark Higgs decay before 1sec

$U(1)_{L_{\mu}-L_{\tau}}$ -charged DM + Dark Higgs

• Simplest $U(1)_{L_{\mu}-L_{\tau}}$ -charged scalar DM model

$$\mathcal{L}_{\text{int}} = ig_X Z'_{\mu} \left(X^* \partial^{\mu} X - X \partial^{\mu} X^* \right)_{+} g_X Z'_{\alpha} \sum Q_{\ell} \bar{\ell} \gamma^{\alpha} \ell$$

• Free parameters: $\{m_{Z'}, g_X, m_X, Q_X = 1\}$

$$U(1)_{L_{\mu}-L_{\tau}}$$
-charged DM + Dark Higgs

• UV-complete $U(1)_{L_{\mu}-L_{\tau}}$ -charged scalar DM model Baek, JK, Ko, 2204.04889

$$\mathcal{L}_{\rm DM} = |D_{\mu}X|^2 - m_X^2 |X|^2 - \lambda_{\Phi X} |X|^2 \left(|\Phi|^2 - \frac{v_{\Phi}^2}{2} \right) - \lambda_{HX} |X|^2 \left(H^2 - \frac{v_H^2}{2} \right)$$

• Free parameters: $\{m_{Z'}, g_X, \sin \theta, m_X, m_{H_1}, Q_{\Phi}, \lambda_{\Phi X}\}$

$$U(1)_{L_{\mu}-L_{\tau}}$$
-charged DM + Dark Higgs

• UV-complete $U(1)_{L_{\mu}-L_{\tau}}$ -charged scalar DM model Baek, JK, Ko, 2204.04889

Measurement of $B^+ \to K^+ \nu \bar{\nu}$

- The $B^+ \rightarrow K^+ \nu \bar{\nu}$ process is known with high accuracy in the SM:
 - $Br(B^+ \to K^+ \nu \bar{\nu}) = (4.97 \pm 0.37) \times 10^{-6}$

$$\cdot \mathcal{L}_{b \to s \nu \bar{\nu}} = -C_{\nu} \bar{s}_L \gamma^{\mu} b_L \bar{\nu} \gamma^{\mu} \nu$$

$$C_{\nu} = \frac{g_W^2}{M_W^2} \frac{g_W^2 V_{ts}^* V_{tb}}{16\pi^2} \left[\frac{x_t^2 + 2x_t}{8(x_t - 1)} + \frac{3x_t^2 - 6x_t}{8(x_t - 1)^2} \ln x_t \right],$$

where $x_t = m_t^2 / M_W^2$.

HPQCD, PRD 2023

Measurement of $B^+ \to K^+ \nu \bar{\nu}$

• $Br(B^+ \to K^+ \nu \bar{\nu}) = (2.4 \pm 0.7) \times 10^{-5}$

- Significance of observation is 3.6σ
- 2.8 σ tension with the SM prediction
- $Br(B^+ \to K^+ E_{\text{mis}})_{NP} = (1.9 \pm 0.7) \times 10^{-5}$
- Indicate not only the presence of NP in the $b \rightarrow sv\bar{v}$ transitions but even the presence of new light states (particles in dark sector?)

Solutions: EFT-approach

Scalar DM

X. He et al, 2309.12741

 $\mathcal{O}_{q\phi}^{S,sb} = (\overline{s}b)(\phi^{\dagger}\phi),$

$$\mathcal{O}_{q\phi}^{V,sb} = (\overline{s}\gamma^{\mu}b)(\phi^{\dagger}i\overleftrightarrow{\partial_{\mu}}\phi), \ (\times)$$

Solutions: EFT-approach

• Fermion DM

Solutions: EFT-approach

Vector DM

X. He et al, 2309.12741

Solutions: 2-body decay

W. Altmannshofer et al, 2311.14629

- Belle II provides information on the q^2 spectrum
 - A peak localized around $q^2 = 4 \text{GeV}^2$
 - \rightarrow Two-body decay $(B \rightarrow KX), m_X = 2 \text{ GeV}$

Solutions: 3-body decay

• Singlet scalar DM model ($m_s \leq 2.3 \text{GeV}$)

$$-\mathcal{L}_{S} = \frac{\lambda_{S}}{4}S^{4} + \frac{m_{0}^{2}}{2}S^{2} + \lambda S^{2}H^{\dagger}H$$
$$= \frac{\lambda_{S}}{4}S^{4} + \frac{1}{2}(m_{0}^{2} + \lambda v_{EW}^{2})S^{2} + \lambda v_{EW}S^{2}h + \frac{\lambda}{2}S^{2}h^{2},$$

• Belle
$$\Rightarrow \frac{C_{DM}}{C_{\nu}} \simeq \frac{4.4 \lambda M_W^2}{g_W^2 m_h^2}$$

• Relic density
$$\sigma_{ann}v_{rel} = \frac{8v_{EW}^2\lambda^2}{m_h^4}(\lim_{m_{\tilde{h}}\to 2m_s}m_{\tilde{h}}^{-1}\Gamma_{\tilde{h}X})$$

- λ should be large to fit the relic as well as Belle II
- $m_s \leq 1$ GeV is already excluded by BABAR limits (2004 data).

. 0

Bird et al, PRL 2004

Solutions: 3-body decay

- For $m_{\chi} \lesssim 10 \text{GeV}$, CMB bound (DM annihilation @ $T \sim \text{eV}$) excludes the thermal DM freeze-out determined by <u>s-wave</u> annihilation
 - DM annihilation should be mainly in **p-wave**
 - Forbidden DM channel
 - Asymmetric DM

Planck 2018, R. K. Leane et al, PRD 2018

 $\langle \sigma v \rangle \sim \mathbf{a} + b v^2$

Solutions: 3-body decay

• Singlet scalar DM model ($m_s \leq 2.3 \text{GeV}$)

$$-\mathcal{L}_{S} = \frac{\lambda_{S}}{4}S^{4} + \frac{m_{0}^{2}}{2}S^{2} + \lambda S^{2}H^{\dagger}H$$
$$= \frac{\lambda_{S}}{4}S^{4} + \frac{1}{2}(m_{0}^{2} + \lambda v_{EW}^{2})S^{2} + \lambda v_{EW}S^{2}h + \frac{\lambda}{2}S^{2}h^{2},$$

• Belle
$$\Rightarrow \frac{C_{DM}}{C_{\nu}} \simeq \frac{4.4\lambda M_W^2}{g_W^2 m_h^2}$$

• Polic donsity $8v_{EW}^2 \lambda^2$

• Relic density
$$\sigma_{ann}v_{rel} = \frac{\sigma \sigma_{EW} \pi}{m_h^4} (\lim_{m_{\tilde{h}} \to 2m_s} m_{\tilde{h}}^{-1} \Gamma_{\tilde{h}X}).$$

- λ should be large to fit the relic as well as Bellell
- $m_s \leq 1$ GeV is already excluded by BABAR limits (2004 data).
- At that time, the authors did not consider the CMB bounds.
 - This model does not work anymore.

Bird et al, PRL 2004

Can we find the integrated solution of Δa_{μ} , DM relic density, Hubble tension and $B^+ \rightarrow K^+ \nu \bar{\nu}$ at Belle II?

Can we find the integrated solution of Δa_{μ} , DM relic density, Hubble tension and $B^+ \rightarrow K^+ \nu \bar{\nu}$ at Belle II?

Baek, JK, Ko, 2204.04889

• When $m_{H_1} < m_B - m_K$, two-body decay

- When $m_{H_1} > m_B m_K$, H_2 is off-shell \rightarrow three-body decay
 - Two-body decay: $m_X \lesssim 10 \text{GeV} \ (m_{H_1} \lesssim m_B m_K)$
 - Three-body decay: 20MeV < $m_X \lesssim 60$ MeV ($m_{H_1} > m_B m_K$)

 $m_{Z'} = 11.5 \,\mathrm{MeV}, g_X = 5 \times 10^{-4}, \mathcal{Q}_{\Phi} = 0.4, s_{\theta} = 6 \times 10^{-3}$

High1 workshop (2024-01-23)

- When $m_{H_1} > m_B m_K$, H_2 is off-shell \rightarrow three-body decay
 - Two-body decay: $m_X \lesssim 10 {
 m GeV} \ (m_{H_1} \lesssim m_B m_K)$
 - Three-body decay: 20MeV < $m_X \lesssim 60$ MeV ($m_{H_1} > m_B m_K$)

 $m_{Z'} = 11.5 \,\mathrm{MeV}, g_X = 5 \times 10^{-4}, \mathcal{Q}_{\Phi} = 0.4, s_{\theta} = 6 \times 10^{-3}$

- When $m_{H_1} > m_B m_K$, H_2 is off-shell \rightarrow three-body decay
 - Two-body decay: $m_X \lesssim 10 {
 m GeV} \ (m_{H_1} \lesssim m_B m_K)$
 - Three-body decay: 20MeV < $m_X \leq 60$ MeV ($m_{H_1} > m_B m_K$)

31

- When $m_{H_1} > m_B m_K$, H_2 is off-shell \rightarrow three-body decay
 - Two-body decay: $m_X \lesssim 10 \text{GeV} \ (m_{H_1} \lesssim m_B m_K)$
 - Three-body decay: 20MeV < $m_X \lesssim 60$ MeV ($m_{H_1} > m_B m_K$)

High1 workshop (2024-01-23)

High1 workshop (2024-01-23)

High1 workshop (2024-01-23)

High1 workshop (2024-01-23)

CMB constraints

- Dominant DM annihilation channel
 - $XX^* \rightarrow Z'Z'$, H_1H_1 : **s-wave** annihilation
 - $XX^* \rightarrow Z'H_1$: **p-wave** annihilation
- H_1 decays
 - A pair of DM (open when $m_{H_1} > 2m_X$)
 - A pair of Z'
 - SM particles
- Z' decay
 - A pair of ν ($m_{Z^\prime} = 11.5 \,\mathrm{MeV}, \, g_X = 5 imes 10^{-4})$

CMB constraints

- Dominant DM annihilation channel
 - $XX^* \rightarrow Z'Z'$, H_1H_1 : **s-wave** annihilation
 - $XX^* \rightarrow Z'H_1$: **p-wave** annihilation
- H_1 decays
 - A pair of DM (open when $m_{H_1} > 2m_X$)
 - A pair of $Z' (Z' \rightarrow \nu \nu)$
 - SM particles (suppressed due to small Yukawa coupling & $\sin \theta$)
- Z' decay
 - A pair of ν ($m_{Z'} = 11.5 \text{MeV}, g_X = 5 \times 10^{-4}$)
 - $Br(Z' \rightarrow e^+e^-) \simeq 10^{-5}$ due to smallness of kinetic mixing ($\epsilon \equiv -g_X/70$)
- We can naturally avoid the stringent CMB bound thanks to invisible decay of both H_1 and Z'

Conclusions

 New physics beyond the Standard Model shows up through 80% dark matter

 DM physics with massive dark photon cannot be complete without including dark gauge symmetry breaking mechanism which have been largely ignored by DM community

• We shows the importance of the dark Higgs in DM phenomenology via Muon g-2 anomaly, Bellell excess

