XYZ states at BESIII

Zhi-yong Wang (on behalf of the BESIII Collaboration) IHEP,CAS wangzy@ihep.ac.cn

> The KIAS-IBS joint Workshop on Particle, String and Cosmology Jan.21-Jan.27, 2024, High-1

Outline

- Introduction
- BESIII Detector
- X(3872)
 - Productions: $e^+e^- \rightarrow \gamma X(3872)$, $\omega X(3872)$, X(3872)
 - Decays: X(3872) $\rightarrow \pi^0 \chi_{c0}, \pi \pi \chi_{c0}$
 - A coupled channel analysis of the X(3872) line shape
- Y states with the exclusive process measurements
 - $e^+e^- \rightarrow \pi^+\pi^- J/\psi$, $\pi^+\pi^-\psi(2S)$, $\pi\pi\psi(3823)$, KKJ/ ψ , $\phi\chi_{c1,2}$
 - $e^+e^- \rightarrow D^{(*+)}D^{(*-)}, D_s^{*+}D_s^{*-}, D^0D^{*-}\pi^+, D^{*0}D^{*-}\pi^+, D^+D^-\pi^+\pi^-$
- $Z_{cs}(3985)$
- Summary

Hadrons

Conventional hadrons

Hadro-quarkonium

CZY & S.L. Olsen, Nature Reviews Physics 1, 480 (2019)

Glueball

Tetraquark

Charmonium(-like) Spectrum

- The charmonium spectrum is calculated with the potential model.
- Good agreement between theory and experiment below the open-charm threshold.
- Exotic candidates are observed above the open-charm thresholds.

BEPCII and BESIII

beam energy: 1.0 - 2.3(2.45) GeV

- 1989-2004 (BEPC):
 L_{peak}=1.0x10³¹ /cm²s
- 2004: started BEPCII upgrade, BESIII construction

LINAC

- 2008: test run
- 2009-now (BEPCII): L_{peak}= 1.0 x10³³/cm²(4/5/2016) 2020: energy upgrade to 2.45 GeV & top-up mode

BEPCII and BESIII

Data Samples at BESIII

XYZ Data Samples at BESIII

X(3872)

 $e^+e^- \rightarrow \gamma X(3872)$

- Study the line shape of e⁺e⁻ $\rightarrow \gamma$ X(3872) with the decays X(3872) $\rightarrow \pi^{+}\pi^{-}$ J/ ψ and ω J/ ψ
- A single Breit-Wigner function to describe the line shape PRL 112, 092001 (2014)

 $M = 4200.6^{+7.9}_{-13.3} \pm 3.0 \text{ MeV}/c^2$ $\Gamma = 115^{+38}_{-26} \pm 12 \text{ MeV}$

• Agree with ψ (4230) parameters, and support the radiative transition ψ (4230) $\rightarrow \gamma$ X (3872)

a^+a^-	V	(207	1)
e e -		(30/	' ' ' '

 $e^+e^- \rightarrow \omega X(3872)$

$e^+e^- \rightarrow X(3872)$

 For X(3872): J^{PC}=1⁺⁺, C-even states can be observed with two-photon fusion process in e⁺e⁻ collision

• Search for $e^+e^- \rightarrow X(3872) \rightarrow \pi^+\pi^- J/\psi$ $\Gamma_{ee} \times \mathcal{B}(X(3872) \rightarrow \pi^+\pi^- J/\psi) < 7.5 \times 10^{-\overline{3}} \,\mathrm{eV}$

PRD 107, 032007 (2023)

X(3872) Decays

Chunhua Li & CZY, *PRD 100, 094003 (2019)*

Index (i)	Parameters	Values	Experiments
	$X(3872) \rightarrow \pi^+ \pi^- J/\psi$	(×10 ⁻⁶)	
1 2 3 4	$B^+ \to X(3872)K^+$ $B^0 \to X(3872)K^0$	$\begin{array}{c} 8.61 \pm 0.82 \pm 0.52 \\ 8.4 \pm 1.5 \pm 0.7 \\ 4.3 \pm 1.2 \pm 0.4 \\ 3.5 \pm 1.9 \pm 0.4 \end{array}$	Belle [14] BABAR [15] Belle [14] BABAR [15]
5 6 7 8	$X(3872) \rightarrow \gamma J/\psi$ $B^+ \rightarrow X(3872)K^+$ $B^0 \rightarrow X(3872)K^0$	$\begin{array}{c} (\times 10^{-6}) \\ 1.78^{+0.48}_{-0.44} \pm 0.12 \\ 2.8 \pm 0.8 \pm 0.1 \\ 1.24^{+0.76}_{-0.61} \pm 0.11 \\ 2.6 \pm 1.8 \pm 0.2 \end{array}$	Belle [22] BABAR [23] Belle [22] BABAR [23]
9 10 11 12	$X(3872) \rightarrow \gamma \psi(3686)$ $B^+ \rightarrow X(3872)K^+$ $B^0 \rightarrow X(3872)K^0$	$\begin{array}{c} (\times 10^{-6}) \\ 0.83^{+1.98}_{-1.83} \pm 0.44 \\ 9.5 \pm 2.7 \pm 0.6 \\ 1.12^{+3.57}_{-2.90} \pm 0.57 \\ 11.4 \pm 5.5 \pm 1.0 \end{array}$	Belle [22] BABAR [23] Belle [22] BABAR [23]
	$X(3872) \to D^{*0}\bar{D}^0$	(×10 ⁻⁴)	
13 14 15 16	+c.c. $B^+ \rightarrow X(3872)K^+$ $B^0 \rightarrow X(3872)K^0$	$\begin{array}{c} 0.77 {\pm} 0.16 {\pm} 0.10 \\ 1.67 {\pm} 0.36 {\pm} 0.47 \\ 0.97 {\pm} 0.46 {\pm} 0.13 \\ 2.22 {\pm} 1.05 {\pm} 0.42 \end{array}$	Belle [16] BABAR [17] Belle [16] BABAR [17]
17 18	$X(3872) \rightarrow \omega J/\psi$ $B^+ \rightarrow X(3872)K^+$ $B^0 \rightarrow X(3872)K^0$ Retice	$(\times 10^{-6})$ $6\pm 2\pm 1$ $6\pm 3\pm 1$	BABAR [18] BABAR [18]
19	$\frac{\mathcal{B}(X(3872) \rightarrow \gamma J/\psi)}{\mathcal{B}(X(3872) \rightarrow \pi^+ \pi^- J/\psi)}$	0.79 ± 0.28	BESIII [19]
20	$\frac{\mathcal{B}(X(3872) \rightarrow D^{*0}\bar{D}^0 + \text{c.c.})}{\mathcal{B}(X(3872) \rightarrow \pi^+\pi^- J/w)}$	14.81 ± 3.80	BESIII [19]
21	$\frac{\mathcal{B}(X(3872) \rightarrow \omega J/\psi)}{\mathcal{B}(X(3872) \rightarrow \pi^+ \pi^- J/\psi)}$	$1.6^{+0.4}_{-0.3}\pm0.2$	BESIII [20]
22	$\frac{\mathcal{B}(X(3872) \rightarrow \pi^0 \chi_{c1})}{\mathcal{B}(X(3872) \rightarrow \pi^+ \pi^- J/\psi)}$	$0.88^{+0.33}_{-0.27}\pm0.10$	BESIII [21]
23	$\frac{\mathcal{B}(X(3872) \rightarrow \gamma \psi(3686))}{\mathcal{B}(X(3872) \rightarrow \gamma J/\psi)}$	$2.46 \pm 0.64 \pm 0.29$	LHCb [24]
24 25	$B^+ \to X(3872)K^+$	$(\times 10^{-4})$ 2.1±0.6±0.3 1.2±1.1±0.1	BABAR [27] Belle [26]

 Determination of X(3872) absolute branching fractions by globally analyzing all experimental measurements

Parameter	index Decay mode	Branching fraction
1	$X(3872) \to \pi^+\pi^- J/\psi$	$(4.1^{+1.9}_{-1.1})\%$
2	$X(3872) \to D^{*0}\bar{D}^0 + c$	c.c. $(52.4^{+25.3}_{-14.3})\%$
3	$X(3872) \rightarrow \gamma J/\psi$	$(1.1^{+0.6}_{-0.3})\%$
4	$X(3872) \rightarrow \gamma \psi(3686)$	$(2.4^{+1.3}_{-0.8})\%$
5	$X(3872) \to \pi^0 \chi_{c1}$	$(3.6^{+2.2}_{-1.6})\%$
6	$X(3872) \rightarrow \omega J/\psi$	$(4.4^{+2.3}_{-1.3})\%$
7	$B^+ \to X(3872)K^+$	$(1.9 \pm 0.6) \times 10^{-4}$
8	$B^0 \to X(3872)K^0$	$(1.1^{+0.5}_{-0.4}) \times 10^{-4}$
	$X(3872) \rightarrow \text{unknown}$	$(31.9^{+18.1}_{-31.5})\%$

X(3872) Decays at BESIII

PRD 105, 072009 (2022)

Theoretical predictions [PRD 77, 014013 (2008)]

		0
Interpretation	$\frac{\mathcal{B}(X(3872) \rightarrow \pi^0 \chi_{c0})}{\mathcal{B}(X(3872) \rightarrow \pi^+ \pi^- J/\psi)}$	$\frac{\mathcal{B}(X(3872) \to \pi^0 \chi_{c0})}{\mathcal{B}(X(3872) \to \pi^0 \chi_{c1})}$
Four-quark/molecule	NA	2.97
$\chi_{c1}(2P)$	0.0	0.0

EFT predictions [PRD 79, 094013 (2009), PRD 78, 094019 (2008)]

 $\frac{\mathcal{B}(X(3872) \to \pi \pi \chi_{c0})}{\mathcal{B}(X(3872) \to \pi^0 \chi_{c0})} \approx \mathcal{O}(10^{-3}) \text{ Or } \mathcal{O}(10^{-5})$

• Search for X(3872) $\rightarrow \pi^0 \chi_{c0}$ and $\pi \pi \chi_{c0}$ with 9.9fb⁻¹ between 4.15-4.30 GeV

$$\frac{\mathcal{B}(X(3872) \to \pi^{0} \chi_{c0})}{\mathcal{B}(X(3872) \to \pi^{+} \pi^{-} J/\psi)} < 3.6$$

$$\frac{\mathcal{B}(X(3872) \to \pi^{0} \chi_{c0})}{\mathcal{B}(X(3872) \to \pi^{0} \chi_{c1})} < 4.5$$

$$\frac{\mathcal{B}(X(3872) \to \pi^{0} \chi_{c0})}{\mathcal{B}(X(3872) \to \pi^{+} \pi^{-} J/\psi)} < 1.7$$

$$\frac{\mathcal{B}(X(3872) \to \pi^{+} \pi^{-} J/\psi)}{\mathcal{B}(X(3872) \to \pi^{+} \pi^{-} J/\psi)} < 0.56$$

.85 3.90 3.95 4.00 Mass $(\pi^{\dagger}\pi^{\dagger}\chi_{c0})$ [GeV/ c^2]

A coupled channel analysis of the X(3872) line shape

Line shape parameterization

arXiv:2309.01502

$$\frac{d\mathrm{Br}(D^0\overline{D}^0\pi^0)}{dE} = \mathbf{B}\frac{1}{2\pi} \times \frac{\mathbf{g} \ast k_{\mathrm{eff}}(E)}{|D(E)|^2} \times \mathrm{Br}(D^{\ast 0} \to D^0\pi^0)$$
$$\frac{d\mathrm{Br}(\pi^+\pi^- J/\psi)}{dE} = \mathbf{B}\frac{1}{2\pi} \times \frac{\Gamma_{\pi^+\pi^-} J/\psi}{|D(E)|^2}$$

$$D(E) = E - \frac{E_X}{2} + \frac{1}{2}g * \left(\kappa_{\text{eff}}(E) + ik_{\text{eff}}(E) + \kappa_{\text{eff}}^c(E) + ik_{\text{eff}}^c(E)\right) + \frac{i}{2}\Gamma_0$$

$$k_{eff}(E) = \sqrt{\mu_p} \sqrt{\sqrt{(E - E_R)^2 + \Gamma^2/4} + E - E_R}$$

$$\kappa_{eff}(E) = -\sqrt{\mu_p} \sqrt{\sqrt{(E - E_R)^2 + \Gamma^2/4} - E + E_R}$$

$$+\sqrt{\mu_p} \sqrt{\sqrt{(E_X - E_R)^2 + \Gamma_X^2/4} - E_X + E_R}$$

$$\Gamma_0 = \Gamma_{\pi^+\pi^- J/\psi} + \Gamma_{known} + \Gamma_{unknown}$$

$$E_X = M_X - (m_{D^0} + m_{\overline{D}^0} + m_{\pi^0})$$

B: the global normalization

* superscript c: charged $D^{*+}D^{-}$

* Due to the limited statistics, $\Gamma_{unknown}/\Gamma_{\pi^+\pi^- J/\psi}$ is fixed [Chunhua Li, Chang-Zheng Yuan, PRD 100, 094003 (2019)]

[C. Hanhart, PRD 81, 094028 (2010)] D* Γ(Ε)

Key features:

- Model independent
- Including the $D^*\overline{D}$ self energy terms
- Including the width of D^*
- Including the coupled channel effect
- Fit parameters: g, $\Gamma_{\pi^+\pi^- J/\psi}$, M_X

A coupled channel analysis of the X(3872) line shape at BESIII

Fit results

BESIII Preliminary

Parameters	g	$\Gamma_0 ({ m MeV})$	$M_X \ ({\rm MeV})$
Fit results	0.16 ± 0.10	2.67 ± 1.77	3871.63 ± 0.13
g	1.00	0.89	-0.60
Γ_0		1.00	-0.29
M_X			1.00

 $\mu_{X(3872)}^{prod} = (9.8 \pm 3.9) \times 10^4$ Large systematic uncertainty from $\Gamma_{unknow}/\Gamma_{\pi^+\pi^-J/\psi}$

Y States

Y States

$$e^+e^- \rightarrow \pi^+\pi^-\psi(3686)$$

- Measure the
 s-dependent cross section of exclusive processes with high precision.
- Model the line shape of cross section with a coherent sum of multiple Breit-Wigner functions together with the continuum and near threshold components.

cont

$$\sigma^{\text{dressed}}(\sqrt{s}) = \left| \sum_{k} e^{i\phi_{k}} \cdot BW_{k}(s) + e^{i\phi_{\text{cont}}} \cdot \psi \right|$$
$$BW_{k}(s) = \frac{M_{k}}{\sqrt{s}} \frac{\sqrt{12\pi\Gamma_{k}^{\text{tot}}\Gamma_{k}^{ee}B_{k}}}{\sqrt{s} - M_{k}^{2} + iM_{k}\Gamma_{k}^{\text{tot}}} \sqrt{\frac{\Phi(\sqrt{s})}{\Phi(M_{k})}}, \quad \bigoplus_{k=1}^{100} \frac{100}{40} \frac{100}{20} \frac{100}{40} \frac{100}{20} \frac{100}{40} \frac{100}{20} \frac{100}{40} \frac{100}{40}$$

• Fit gives multiple solutions with different magnitudes but the same mass and width for a resonance.

 $e^+e^- \rightarrow \pi^+\pi^- J/\psi$

- First vector charmonium-like state Y(4260) was observed by BaBar in 2005.
- Fine structure around 4.26 GeV appear precise measurement in 2017, Y(4260)→ Y(4230)+Y(4320)
- Update measurement with more datasets in 2022 confirm the fine structure.

Named as $\psi(4230)$ in PDG, also known as Y(4220), Y(4260)

$$e^+e^- \rightarrow \pi^+\pi^-h_c(1P), \pi^+\pi^-\psi(2S)$$

- Precisely determine the line shape of $e^+e^- \rightarrow \pi^+\pi^-h_c$ cross section, benefit from both the unique datasets and excellent reconstruction of h_c at BESIII.
- $\pi^+\pi^-\psi$ (2S) line shape confirms the ψ (4390) announced in $e^+e^- \rightarrow \pi^+\pi^-h_c$. Also clear ψ (4660) $\rightarrow \pi^{+}\pi^{-}\psi$ (2S)
- ψ (4230) $\rightarrow \pi^+\pi^-h_c$ and $\pi^+\pi^-\psi$ (2S)

 $e^+e^- \rightarrow \pi^+\pi^-h_c$

$e^+e^- \rightarrow K^+K^-J/\psi$, KsKs J/ ψ

- Observations of ψ (4230) \rightarrow K + K J/ Ψ , KsKs J/ ψ
- Two new structures ψ (4500) and ψ (4710) are needed to describe the line shape. $e^+e^- \rightarrow K_S K_S J/\psi$

$e^+e^- \rightarrow \pi^+\pi^-\psi_2(3823), \pi^0\pi^0\psi_2(3823)(1^3D_2),$ $\psi_2(3823) \rightarrow \gamma \chi_{c1}, \chi_{c1} \rightarrow \gamma J/\psi$

Observation of $e^+e^- \rightarrow \pi^0 \pi^0 \psi_2(3823)$

 $\frac{\sigma[e^+e^- \to \pi^0 \pi^0 \psi_2(3823)]}{\sigma[e^+e^- \to \pi^+ \pi^- \psi_2(3823)]} = 0.57 \pm 0.14 \pm 0.05$

Consistent with the isospin symmetry

- Update the measurement of $e^+e^- \rightarrow \pi^+\pi^-\psi_2(3)$
 - More datasets
 - Partial reconstruction to improve the reconstruction efficiency
- First observation of vector Y-states coupling to D-wave charmonium

^N ⁶⁰ JHEP 02,171 (2023) → Data

 $e^+e^- \rightarrow \gamma \phi J/\psi$

JHEP 01, 132 (2023)

- Why is $e^+e^- \rightarrow \gamma \phi J/\psi$
 - Search for hadronic decay $e^+e^- \rightarrow \phi \chi_{c1,2} \rightarrow \phi[\gamma J/\psi]$
 - LHCb reports X (4140)/X (4274)/X (4500)/X (4700) $\rightarrow \phi J/\psi$ in the full amplitude analysis of $B + \rightarrow \phi J/\psi K +$
- No significant $X \rightarrow \phi J/\psi$ signals
- No obvious ψ /Y states in the line-shape of e⁺e⁻ \rightarrow $\phi \chi_{c1,2}$

$e^+e^- \rightarrow \omega \chi_{c1,2}$ (preliminary)

- Search for the potential charmonium(-like) state in the line-shape
- A clear structure around 4410 MeV is observed in $e^+e^- \rightarrow \omega \chi_{c2}$ line-shape, which corresponds to the conventional charmonium states, $\psi(4415)$.

 $e^+e^-\rightarrow open charm (2,3,4-body)$

Z_{cs}(3985)

Z_{cs}(3985)⁺ (open charm)

PRL 126,102001 (2021)

$$e^+e^- \to K^+(D_s^-D^{*0} + D_s^{*-}D^0)$$

 $Z_{cs}(3985)$ • 5.3 σ significance

$$\mathbf{M} = (3982.5^{+1.8}_{-2.6} \pm 2.1) \text{ MeV}/c^2$$
$$\mathbf{\Gamma} = (12.8^{+5.3}_{-4.4} \pm 3.0) \text{ MeV}$$

Z_{cs}(3985)⁰ (open charm)

PRL 129, 112003 (2022)

$$e^+e^- \to K_S(D_s^-D^{*+} + D_s^{*-}D^+)$$

 $Z_{cs}(3985)^0$

- 4.6 σ significance
- Isospin partner of Z_{cs}(3985)

$$M = (3992.2 \pm 1.7 \pm 1.6) \text{ MeV/c}^2$$
$$\Gamma = (7.7^{+4.1}_{-3.8} \pm 4.3) \text{ MeV}$$

Zcs search (hidden charm)

PRL 131, 211902 (2023)

Significance: ~2.3 σ $M = 4708^{+17}_{-15} \pm 21 \text{ MeV}$ $\Gamma = 126^{+27}_{-23} \pm 30 \text{ MeV}$

Search for Z'cs

CPC 47, 033001 (2023)

$$Z'_{cs}$$
 in $e^+e^- \to K^+(D_s^{*-}D^{*0})$

2.1 σ significance

 $M = (4123.5 \pm 0.7_{\text{stat.}} \pm 4.7_{\text{syst.}}) \text{MeV}/c^2$

Summary

- BESIII keeps making contributions to the XYZ physics
 - Investigate the X(3872) in productions, decays and line shape.
 - Vector Y states
 - A series of \sqrt{s} -dependent cross sections of exclusive processes are measured with high precision using the BESIII unique XYZ data.
 - A series of vector resonances are reported.
 - Global analysis of these measurements is essential to explore the correlation between these structures.
 - Observations of the tetraquark states with containing s-quark.
- BEPCII Upgrade (BEPCII-U) in this year
 - Beam energy up to 2.8 GeV

Thanks!

• 3x BEPCII luminosity above 4 GeV

