Right-handed charged gauge bosons at the Large Hadron Collider

Adil Jueid Institute for Basic Science

Based on 2312.08521

w/ Mariana Frank, Benjamin Fuks, Stefano Moretti, and Ozer Ozdal

High1 Workshop 25 January 2024

1. Introduction

Parity violation in the Standard Model

- The weak sector of the SM maximally breaks the parity symmetry.
- This feature does not exist in electromagnetic, gravitational or strong interactions.
- For W-boson decays, only right-handed antineutrinos or left-handed neutrinos are produced.
 - \implies Left-handed and right-handed fermions transform differently under the SM
 - gauge group.
 - \implies Neutrinos are naturally massless in the Standard (NOT OK with experimental data).

New physics beyond the SM may shed some lights on parity violation.

2. Model

The minimal left-right symmetric model

The minimal left-right symmetric model (mLRSM) extends the SM gauge group by another $SU(2)_R$

G. Senjanović, R. N. Mohapatra, PRD 12 (1975); G. Senjanović, PRL 44 (1980)

The resulting gauge group is $SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L}$

(See V. Tello, 2012; J. Chakrabottry et al., PRD 89 (2014) 9; A. Maeizza et al., PRD 94 (2016) 3 for more details)

 \implies Matter fields: q_I, q_R, ℓ_I, ℓ_R

 \implies There are five gauge bosons: $W_{L,R}^{\pm}$, $Z_{L,R}^{0}$ and γ

 \implies Gauge couplings are denoted by g_L, g_R, g_{B-L}

At the scale of mLRSM, parity is conserved \implies the Lagrangian is invariant under the following symmetry: $\{W_R, f_R\} \longleftrightarrow \{W_L, f_L\} \implies g_L = g_R \equiv g$

¹There is a possibility to use the charge symmetry instead of parity. Here, the Lagrangian is invariant under $\{W_R, f_R\} \longleftrightarrow \{W_L^{\dagger}, f_L^c\}$

mLRSM: Symmetry breaking

Minimum three scalar multiplets are required to achieve electroweak symmetry breaking

$$\Phi \equiv \begin{pmatrix} \phi_1^0 & \phi_2^+ \\ \phi_1^- & \phi_2^0 \end{pmatrix}_{(\mathbf{2},\mathbf{2},0)} \qquad \Delta_L \equiv \begin{pmatrix} \frac{\delta_L^+}{\sqrt{2}} & \delta_L^{++} \\ \frac{\delta_L^0}{\sqrt{2}} & -\frac{\delta_L^+}{\sqrt{2}} \\ \frac{\delta_L^0}{\sqrt{2}} & -\frac{\delta_L^+}{\sqrt{2}} \end{pmatrix}_{(\mathbf{3},\mathbf{1},2)} \qquad A_L = \begin{pmatrix} \frac{\delta_L^+}{\sqrt{2}} & \delta_L^{++} \\ \frac{\delta_L^0}{\sqrt{2}} & -\frac{\delta_L^+}{\sqrt{2}} \\ \frac{\delta_L^0}{\sqrt{2}} & -\frac{\delta_L^0}{\sqrt{2}} \end{pmatrix}_{(\mathbf{3},\mathbf{1},2)} \qquad A_L = \begin{pmatrix} \frac{\delta_L^0}{\sqrt{2}} & \delta_L^{++} \\ \frac{\delta_L^0}{\sqrt{2}} & -\frac{\delta_L^0}{\sqrt{2}} \\ \frac{\delta_L^0}{\sqrt{2}} & -\frac{\delta_L^0}{\sqrt{2}} \end{pmatrix}_{(\mathbf{3},\mathbf{1},2)} \qquad A_L = \begin{pmatrix} \frac{\delta_L^0}{\sqrt{2}} & \delta_L^{++} \\ \frac{\delta_L^0}{\sqrt{2}} & -\frac{\delta_L^0}{\sqrt{2}} \\ \frac{\delta_L^0}{\sqrt{2}} & -\frac{\delta_L^0}{\sqrt{2}} \end{pmatrix}_{(\mathbf{3},\mathbf{1},2)} \qquad A_L = \begin{pmatrix} \frac{\delta_L^0}{\sqrt{2}} & \frac{\delta_L^0}{\sqrt{2}} \\ \frac{\delta_L^0}{\sqrt{2}} & -\frac{\delta_L^0}{\sqrt{2}} \\ \frac{\delta_L^0}{\sqrt{2}} & -\frac{\delta_L^0}{\sqrt{2}} \end{pmatrix}_{(\mathbf{3},\mathbf{1},2)} \qquad A_L = \begin{pmatrix} \frac{\delta_L^0}{\sqrt{2}} & \frac{\delta_L^0}{\sqrt{2}} \\ \frac{\delta_L^0}{\sqrt{2}} & -\frac{\delta_L^0}{\sqrt{2}} \\ \frac{\delta_L^0}{\sqrt{2}} & -\frac{\delta_L^0}{\sqrt{2}} \end{pmatrix}_{(\mathbf{3},\mathbf{1},2)} \qquad A_L = \begin{pmatrix} \frac{\delta_L^0}{\sqrt{2}} & \frac{\delta_L^0}{\sqrt{2}} \\ \frac{\delta_L^0}{\sqrt{2}} & -\frac{\delta_L^0}{\sqrt{2}} \\ \frac{\delta_L^0}{\sqrt{2}} & -\frac{\delta_L^0}{\sqrt{2}} \end{pmatrix}_{(\mathbf{3},\mathbf{1},2)} \qquad A_L = \begin{pmatrix} \frac{\delta_L^0}{\sqrt{2}} & \frac{\delta_L^0}{\sqrt{2}} \\ \frac{\delta_L^0}{\sqrt{2}} & -\frac{\delta_L^0}{\sqrt{2}} \\ \frac{\delta_L^0}{\sqrt{2}} & -\frac{\delta_L^0}{\sqrt{2}} \end{pmatrix}_{(\mathbf{3},\mathbf{1},2)} \qquad A_L = \begin{pmatrix} \frac{\delta_L^0}{\sqrt{2}} & \frac{\delta_L^0}{\sqrt{2}} \\ \frac{\delta_L^0}{\sqrt{2}} & -\frac{\delta_L^0}{\sqrt{2}} \\ \frac{\delta_L^0}{\sqrt{2}} & -\frac{$$

The symmetry breaking of the mLRSM is done in two stages:

$$\begin{split} & SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L} \xrightarrow{\langle \Delta_R \rangle} SU(2)_L \otimes U(1)_Y \overset{\langle \Phi \rangle}{\underset{\langle \Delta_L \rangle}{\langle \Delta_L \rangle}} \\ & \langle \Phi \rangle \equiv \text{diag} \left(v_1, \ -v_2 e^{-i\alpha} \right) \quad \langle \Delta_{L,R} \rangle \equiv v_{L,R} \\ & v \equiv \sqrt{v_1^2 + v_2^2} \text{ (same as the 2HDM)} \end{split} \qquad \begin{aligned} & \text{Experimental data} \\ & M_{W_L}^2 \approx \frac{1}{2} g v^2 \end{split}$$

Right-handed charged gauge bosons at the Large Hadron Colliders

mLRSM: Neutrino mass

- Neutrino mass through Seesaw mechanism G. Senjanović, V. Tello, PRL 119 (2017), PRD 100 (2019)
- The mLRSM connects the high-energy (M_N) and low-energy (M_L) sectors.
- Such correlations can be disentangled using various phenomena: lepton-flavor violation and lepton-number violation for example.
- Since neutrinos are Majorana particles \implies breaks lepton number by two units \implies Neutrinoless double beta decays ($0\nu\beta\beta$) \implies Keung-Senjanovic process at hadron colliders.

 $M_{\nu} = \frac{\upsilon_L}{\upsilon_R} U_e^T M_N^* U_e - M_D^T \frac{1}{M_N} M_D$

The Keung-Senjanovic process

 \sim Smoking gun for the production of W_R and N_R in the mLRSMs

W. Y. Keung and G. Senjanovic, PRL 50 (1983)

- \bigcirc Produce a W_R (on-shell or off-shell) through a Drell-Yan type process. The W_R subsequently decays into a charged lepton (ℓ) and N_R which undergoes the threebody decay: $N_R \rightarrow \ell j j$ (j is a jet initiated from a light quark).
- If the two charged leptons have the same electric charge \implies this process violates lepton number by two units.

High-energy analog of $0\nu\beta\beta$

3. Bounds

Low-energy bounds

- Lepton flavour violation V. Cirigliano et al. PRD 70 (2004)
- Electroweak Precision Observables K. Ksieh et al., PRD 82 (2010); V. Bernard et al., JHEP 09 (2020) 088
- $B^0 \bar{B}^0$ and $K^0 \bar{K}^0$ oscillations and $(\varepsilon'/\varepsilon)$
 - S. Bertolini et al., PRD 89 (2014), A. Maeizza et al. PRD 82 (2010), Y. Zhang et al., NPB 802
- **Electric Dipole Moments (EDMs)** F. Xu et al., JHEP 03 (2010) 088, M. Ramsey-Musolf et al., PLB 815 (2021)
- $0\nu\beta\beta$ decays
 - V. Cirigliano et al., JHEP 12 (2018).

A comprehensive global analysis using low-energy data has been done by W. Dekens et al., JHEP 11 (2021) 127

LHC searches of W_R bosons

•
$$pp \rightarrow W_R X \rightarrow \ell N_R \ (E_T^{\text{miss}}) + X$$
:
ATLAS ($M_{W_R} > 6 \text{ TeV}$ **) and CMS (** $M_{W_R} > 5$.'

•
$$pp \rightarrow W_R \rightarrow \ell N_R \rightarrow \ell \ell j j$$
:
ATLAS ($M_{W_R} > 3.8 - 5$ TeV) and CMS (M_{W_R}

•
$$pp \rightarrow W' \rightarrow tb$$
:
 $M_{W'} > 4.4 \text{ TeV}$

7 TeV)

$_{V_{R}} > 4.7 - 5$ TeV)

Reinterpretation of the CMS search of W_R

• Main focus for this study is on the search of W_R through the Keung-Senjanovic process

$$pp \rightarrow W_R \rightarrow N_R (\rightarrow \ell j j) \ell (\ell = e, \mu)$$
 CMS,

- The final state consists of two charged leptons (SF) and two jets with large transverse momentum. Bounds on $M_{W_{R}}$ depends on the channel (electron or muon) and the mass splitting ($\Delta \equiv M_{W_P} - M_{N_P}$)
- The CMS search used theory calculations at Leading Order and applied global K-factors — M. Mitra et al., PRD 94 (2016) —.
- We do not extract the bounds from official CMS result but we perform our own reinterpretation of the search in MadAnalysis 5.
- Bounds are estimated with theory predictions at Next-to-Leading Order (NLO) in QCD.

JHEP 04 (2022) 047

CMS, JHEP 04 (2022) 047

Reinterpretation of the CMS search of W_R

Validation

Our analysis is validated against the official results published by CMS on HepData (https://www.hepdata.net/record/ins1986733) for six benchmark points in both the electron and muon channels (More details can be found in 2312.08521).

	CM	IS	MadA	NALYSIS			$\mathbf{C}\mathbf{M}$	IS	MadA	NALYSIS	
$\{M_{W_R}, M_{N_R}\} = (3000, 1400) { m GeV}$	Events	ε	Events	ε	$\delta~[\%]$	$\{M_{W_R}, M_{N_R}\} = (3000, 1400) { m GeV}$	Events	ε	Events	ε	$\delta~[\%]$
Initial	1175.4	-	1174.4	-	-	Initial	586.6	-	587.2	-	-
$N_{\ell} \geq 2$ with $p_T^{\ell} > 60$ (53) GeV	379.5	0.323	363.5 ± 3.0	0.309	4.1	$N_\ell \ge 2$ with $p_T^\ell > 60~(53)~{ m GeV}$	494.5	0.843	498.6 ± 1.9	0.849	0.7
≥ 2 AK4 jets with $p_T > 40$ GeV	363.1	0.957	363.0 ± 3.0	0.999	4.4	≥ 2 AK4 jets with $p_T > 40$ GeV	473.2	0.957	450.6 ± 2.2	0.904	5.6
$\Delta R > 0.4$ between all pairs of objects	355.4	0.979	363.0 ± 3.0	1.000	2.2	$\Delta R > 0.4$ between all pairs of objects	443.1	0.936	450.6 ± 2.2	1.000	6.8
$m_{\ell\ell}>200~{\rm GeV}$	335.6	0.944	358.3 ± 3.0	0.987	4.5	$m_{\ell\ell}>200~{ m GeV}$	420.8	0.950	447.3 ± 2.2	0.993	4.5
$m_{\ell\ell jj}$ > 800 GeV ee	335.6	1.000	357.1 ± 3.0	0.997	0.3	$m_{\ell\ell jj} > 800 \; { m GeV} \qquad \qquad$	420.7	1.000	447.2 ± 2.2	1.000	0.0
$m_{\ell\ell} > 400~{\rm GeV}$	324.1	0.966	339.5 ± 2.9	0.951	1.6	$m_{\ell\ell} > 400 { m ~GeV}$	407.3	0.968	431.6 ± 2.2	0.965	0.3

Implementation of a search for right-handed W-boson and heavy neutrino in the dilepton+dijet channel (138 fb-1; 13 TeV; CMS-EXO-20-002)

Cite Dataset

Jueid, Adil; Fuks, Benjamin, 2023, "Implementation of a search for right-handed W-boson and heavy neutrino in the dilepton+dijet channel (138 fb-1; 13 TeV; CMS-EXO-20-002)", https://doi.org/10.14428/DVN/UMGIDL, Open Data @ UCLouvain, V1

Learn about Data Citation Standards

Dataset Metrics 40,472 Download

Right-handed charged gauge bosons at the Large Hadron Colliders

ss Dataset 🗸					
	Share				
s 🕄					

Keung-Senjanovic process: the role of precision

- The results were shown for the process with signal events simulated at LO in QCD. \implies Large uncertainties due to scale variations.
 - \implies Poor PDF fits at LO may imply unstable results for heavy W_R .
- Differences with respect to LO when considering NLO calculations
 - \implies Smaller uncertainties due to scale and PDF variations.
 - \implies Better agreement between the different PDF sets C. Borchensky et al., JHEP 11 (2022) 006, C. Borchensky et al., JHEP 02 (2022) 157.
 - \implies Nontrivial impact on the kinematic distributions of the physical objects.
- Since we consider the regime where $M_{N_R} \leq M_{W_R}$, we can factorise the whole process into a production part and a decay part, i.e.

$$\sigma(pp \to \ell \ell j j)^{\text{NLO}} \equiv \sigma(pp \to N_R \ell)^{\text{NLO}} \times \text{BR}(\ell)$$

Valid since $\Gamma_{N_{P}} < \mathcal{O}(10)$ MeV

$N_R \to \ell j j)^{\rm LO}$

The Keung-Senjanovic process: the role of precision

The results of the cross sections show that the K-factors are very large for heavy W_R . The bounds will be estimated therefore using the signal events at NLO in QCD.

Results of the reinterpretation

4. A novel search strategy

Introduction

Let us consider top and bottom quarks instead of light quarks

$$pp \rightarrow W_R \rightarrow N_R (\rightarrow \ell t \bar{b}) \ell + h.c.$$

This channel has advantages with respect to conventional Keung-Senjanovic process

 \implies Lower backgrounds.

 \implies Complementary information.

Process	$\sigma_{ m LO}~[{ m fb}]$	$\sigma_{ m NLO}~[{ m fb}]$	$K\equiv\sigma_{ m NLO}/\sigma_{ m LO}$
$pp \rightarrow t \ \bar{t} \ H$	345.5	503.8	1.45
$pp \to t \ \bar{t} \ Z$	519.1	838.9	1.61
$pp ightarrow t \; ar{t} \; W^{\pm}$	434.0	670.2	1.54
$pp \rightarrow t \ Zj + \text{c.c.} \ [100]$	821.4	903.5	1.10
$pp \rightarrow t \ W^- \overline{b} + \text{c.c.} \ [101]$	976.4	1331.5	1.36

Benchmark points

Twelve benchmark points (BPe1-BPe6; $BP\mu1$ - $BP\mu6$)

Electron channel Muon channel $M_{W_P} = 4800, 5500 \text{ GeV}$

For each choice of M_{W_R} we select three values of M_{N_P} :

$$M_{N_R} \in \left\{ \frac{M_{W_R}}{5}, \frac{M_{W_R}}{2}, M_{W_R} - 400 \text{ GeV} \right\}$$

Characteristics of these benchmark points:

- Signal cross sections: $\sigma \approx 10^{-3} 10^{-1}$ fb.
- Width-to-mass ratios: $\Gamma_{W_R}/M_{W_R} \approx 3\%$ and $\Gamma_{N_R}/M_{N_P} \approx 10^{-6} 10^{-5}$

$M_{W_P} = 5100, 5500 \text{ GeV}$

Description of the analysis

Final state (top quark is boosted for most of the cases)

- Exactly two charged leptons with $p_T > 25$ GeV and $|\eta| < 2.4$
- At least one b-tagged jet with $p_T > 30$ GeV and $|\eta| < 2.5$
- One fat jet (Cambridge-Aachen with R = 1.5) with $p_T > 200$ GeV and $|\eta| < 2$
- To enhance the visibility we use the HEPTopTagger algorithm (T. Plehn et al., JHEP 10 (2010) 078)

Event selection

- The leading and subleading charged leptons must satisfy $p_T > 60$, 53 GeV respectively.
- The invariant of the top quark candidate ($M_{\rm HTT}$) must fall in the window]145, 210[GeV.
- The invariant mass of the two leading leptons must satisfy: $M_{\ell\ell} > 200 \text{ GeV}$ (similar to CMS)

After this selection we get

$$\begin{split} \epsilon_{t+X} &\approx 10^{-4} \\ \epsilon_{t\bar{t}+X} &\approx 10^{-3} \end{split} \qquad \epsilon_S \in [3\,\%\,,\,18\%] \end{split}$$

Right-handed charged gauge bosons at the Large Hadron Colliders

How to improve the significance?

Kinematics features

Correlations between $M_{\ell\ell}$ and $M_{\ell\ell tb}$ give useful information on the best search strategy without:

- Relying on the mass hypothesis for N_R .
- Using advanced Machine Learning techniques.

Signal regions will be based on $M_{\ell\ell}$ and $M_{\ell\ell\ell tb}$

Signal regions

$M_{\ell\ell}$	$]400,\infty)$	$]600,\infty)$
IVILLEb		
$]1200,\infty)$	SRa1	$\operatorname{SRb1}$
$]1400,\infty)$	SRa2	$\operatorname{SRb2}$
$]1600,\infty)$	SRa3	SRb3
$]1800,\infty)$	SRa4	$\mathbf{SRb4}$
$]2000,\infty)$	SRa5	$\mathbf{SRb5}$
$]2500,\infty)$	SRa6	SRb6
$]3000,\infty)$	SRa7	$\operatorname{SRb7}$

$]800,\infty)$

SRc1 SRc2 SRc3 SRc4 SRc5 SRc6 SRc7

Event yields in the SRs

Some observations:

- Some signal regions are background-free ($n_b = 0$).
- Event rates are higher in the muon channel than in the electron channel.

Significance

$$S = \sqrt{2} \left[(n_s + n_b) \log \left(\frac{(n_s + n_b)(n_b + \delta_b^2)}{n_b^2 + (n_s + n_b)\delta_b^2} \right) - \frac{n_b^2}{\delta_b^2} \log \left(1 + \frac{\delta_b^2 n_s}{n_b(n_b + \delta_b^2)} \right) \right]^{1/2}$$

To be conservative:

- We assume that $n_b = 1$ for all Lumi.
- Add a 20 % flat uncertainty on n_b .

Characterization

- Our analysis is able to reconstruct the mass of N_R . \bigcirc
- Correlations between $M_{\ell tb}$ (N_R) and $M_{\ell\ell tb}$ in one of the populated SRs \bigcirc are very good tools for post-discovery studies.

5. Conclusions

Conclusions

- We have suggested a novel search strategy for right-handed charged gauge bosons at the Large Hadron Collider.
- The search is inspired from the Keung-Senjanovic process but top and bottom jets instead of light ones.
- For phenomenologically viable benchmark points, we found very good sensitivity reach especially for the muon channel.
- Improvements can be made if one uses:
 - Better electron and muon identification efficiencies can increase the fiducial signal rates.
 - More sophisticated jet substructure techniques to further reduce the backgrounds.
 - Machine Learning techniques can further find better correlations between the kinematical variables.
- This search can also be used for flavour number violating and lepton number violating cases for which the backgrounds are even much smaller.

