High1 workshop on Particle, String and January 21 \sim 27, 2024 Cosmology

The status of Geant4 simulation tool kit

2024. 1. 23

Kihyeon CHO (KISTI)

Working with

- Dr. Kyungho Kim
- Dr. Alexei Sytov
- Kihong Park

Contents

- Geant4?
- Geant4 @ KISTI
 - 1. Profiling
 - 2. Beam simulation
 - 3. Channeling in Crystal
 - 4. Plan and Outreach
- Summary

Geant4?

Geant4

- Toolkit for the simulation of the passage of particles through matter
- History
 - Dec 1994 Project start
 - Dec 1998 First Geant4 public release
 - Latest version Geant4 version 11.2 (December 2023)
- Features
 - Object-oriented technology based on C++
 - Particle: γ, e-/e+, n, p, muon, ion, neutrino, etc.
 - Energy range
 - From thermal energy up to 1 PeV (hadronic)
 - From 250 eV to 1 PeV (EM interaction)
- Homepage:

http://geant4.web.cern.ch

Geant4 Collaboration

6

- Geant4 is not upgrade version of GEANT3, but totally different simulation tool kit.
- Korean institutes: KISTI, NCC, IBS
- KISTI is the leading institute of Geant4 in Korea since 2012.

Geant4 Collaboration

Ref. Makoto Asai

Physics models in Geant4

- Geant4 offers
 - Electromagnetic processes
 - Hadronic and nuclear processes
 - Photon/lepton-hadron processes
 - Optical photon processes
 - Decay processes
 - Shower parameterization
 - Event biasing techniques
 - And you can plug-in more
- Geant4 provides sets of alternative physics models so that the user can freely choose appropriate models according to the type of his/her application.
 - For example, some models are more accurate than others at a sacrifice of speed.

Hadronic Model Inventory

Ref. Makoto Asai

Application Examples

• Detector simulation in high energy physics

• Space Science

Application Examples

• Medical physics

• Etc.

Geant4 @ KISTI

Geant4 @ KISTI (2012~2018)

1. Geant4 Collaboration

- 1-1. Physics List and Validation Tool Kit Group (Chair: Gunter)
 - 1-1-1. Porting @Tachyon2 & Test
 - 1-1-2. Validation @ Tachyon2 (CPU 제공: 200,000 CPU*h) Andrea
 - 1-1-3. Physics List using Beam (FKPPL) Chanyoung Lee
- 1-2. Quality and Assurance Group (Group: Soon Jun) Insung Yeo
 - 1-2-1. Profiling and Benchmark for Medical Physics (cf. SimpliCarlo)
- 2. Fermilab (Parallel/Vector) W/ Soon
 - 2-1. Performance Test using GPU (cf. 1-2-1) Jangho Kim
 - 2-2. Hadron Physics Parallelization (cf. EM Physics)

Geant4 @ KISTI (2020~)

1. Geant4 Collaboration

1-1. Physics List and Validation Tool Kit Group (Chair: Gunter) – Kyungho Kim

1-1-1. Porting @ nurion & Test

1-1-2. Validation @ nurion => CPU 제공: 10*3200시간*노드 (1노드=68core)

1-1-3. Physics List using Beam (FKPPL)

1-2. Quality and Assurance Group (Group: Soon Jun)

1-2-1. Profiling and Benchmark for Medical Physics (cf. CMSExp)

1-3. Electro Magnetic Physics (Group: Vladimir) => 1.0 FTE (Alexei)

1-3-1. Steering and radiation effects in oriented crystals and their applications

- 2. Fermilab (Parallel/Vector) W/ Soon
 - 2-1. Performance Test using GPU (cf. 1-2-1)
 - 2-2. Hadron Physics Parallelization (cf. EM Physics)

1. Profiling

- Why profiling?
 - HL-LHC(BSM) needs upgrade of simulation tool
 - Evolving computing also needs upgrade of simulation tool
 - \Rightarrow Needs profiling system to check upgrade of simulation tool
- Current status
 - High energy physics profiling (Fermilab)
 - SimpliCarlo (Sequential)
 - CMSExp (Multi-Thread)
 - Low energy physics profiling (KISTI)
 - Brachytherapy code (Sequential)
 - KISTI-4 vs. KISTI-5 (KNL and SKL)
 - CPU time and Memory

Profiling for low energy physics

- Profiling system using brachytheray simulation (Low energy physics)
- cf. Brachytherapy(MeV) vs. SimplifiedCarlo(TeV)

• Results (Brachytherapy v.10.02 & Geant4 v.10.04)

1) CPU

- 2) Memory size
- 3) Version dependency
- 4) Event number dependency
- 5) KISTI-4 machine dependency

Computer Physics Communications 226 (2018) 180-186

Performance profiling for brachytherapy applications®

Wonqook Choi⁴, Kihyeon Cho^{4,b,*}, Insung Yeo⁴

* National Institute of Computing and Networking, Korean Institute of Science and Technology Information, Darjoon 34147, Republic of Kore * University of Science and Technology, Darjoon 34113, Republic of Korea

ARTICLE INFO ABSTRACT

Article Notory: Becrived 21 November 2016 Recrived in revised form 9 August 2017 Accepted 22 December 2017 Austable online 11 January 2018

Ardical physic

eputational physic

Particle physics

In many physics applications, a significant arrows of software (e.g. R) ROOT and Gravetti in developed enorest computing achievators, and sums deforts in expended to ensure the software in efficient in terms of contral processing unit (CPU) time and enzoney usage. Profiling tools are used during the evaluation process to evaluate the efficiency, businewer, flow such tools and het to accommodate low-energy physics projects. To address this limitation, we developed a low-energy duptics profiling system in Gravet A too profile the CPU time and memory of voltawar applications in backprotecy applications in Gravet A too software and evaluates pacefil; models that are applied to backprotecy applications in Gravet A too SoCOP BELUE/OCSP BELEMAR. and GOSP BELEMAR in the physics range in this toot allows to be used to generate live energy profiles in brackprotecy applications. This was a limitation in generism studies, which cannot be notedown areas methodized too blackprotecy applications in the Northware and the software applications. This was a limitation in generism studies, and believanced to the observed studies applications. This was a limitation in generism studies,

KISTI-4 vs. KISTI-5

Specification	KISTI-4	KISTI-5		
Name	Tachyon2	Nurion KNL	Nurion Skylake	
Model	SUN Blade 6275	Cray (25500	
Process	Intel Xeon X5570 (Nehalem) 2.93GHz	Intel Xeon Phi 7250 (KNL) 3.0464 TFlops/CPU	Intel Xeon 6148 (Skylake) 1.536 TFLops/CPU	
Architecture	multicore	many-core	multicore	
Node	8core/node	68core/CPU 1CPU/node 8 305 pode	20core/CPU 2CPU/node	
-	5,200 Houe	8,505 Houe	152 11000	
Core	25,408	564,740	5,280	
Rpeak	0.3 Pflops	25.3 Pflops	0.4 Pflops	
Memory	DDR3/1333MHz 76.8TB	16GBx6,6Ch/CPU 96GB/node 778.6 TB	16GBx12,6Ch/CPU 192GB/node 24.8 TB	
Storage	234 TB disk 2.3 PB disk	21 PB disk 0.8 PB SSD		
	2.1 PB Tape	10 PB Tape		
Interconnect	Infiniband 40G 4XQDR	OPA@12.3GB/s Fat-Tree, 50% Blocking		
Service date	2010.8~2018.11	2018.10~		

Profiling system

Content	Brachytherapy				
Geant4 Version	10.02	10.03	10.03p02	10.03p03	10.04
Brachy version	10.02				

- Macro file
 - IodiumSourceMacro.mac (endocavitary brachytherapy)
 - IridiumSourceMacro.mac (interstitial brachytherapy)
 - LeipzigSourceMacro.mac (superficial brachytherapy)
- Physics list
 - QGSP_BIC_LIV
 - QGSP_BIC_EMZ
 - QGSP_BIC_EMY
- Supercomputer
 - KISTI-4 (Tachyon2)
 - KISTI-5 (Nurion KNL)
 - KISTI-5 (Nurion Skylake)
- 1 sequential core to compare with KISTI-4

Summary of profiling

- As computing architectures evolve, the Geant4 simulation tool kit requires optimization for CPU time and memory size.
- \Rightarrow The role of profiling system is important.
- The results will provide Geant4 users of HEP and medical physics with experiences of many-core processors of HPC.

2. Beam simulation

- The last few years have seen a rise in the number of particle accelerators built in Korea.
 - Confirmed
 - RAON, 2023 (Scientific)
 - Yonsei severance hospital, 2023 (Medical)
 - Seoul national university hospital, 2025 (Medical,
 - Consideration
 - Asan medical center (Medical)
 - Sejong city (Medical)
 - .. And so on.

But there has been relatively little focus on accelerator-based study of secondary particles. ⇒ Planning heavy ion beam simulation

1) Validation of physics list

hydrogen 12.5mm

Schematic of simulation

Simulation	Geant4 Beam		Target		
	Particle	Energy (MeV/u)	Materials	Thickness (mm)	
U → Liquid Hydrogen	U	1000	Liquid Hydro gen	12.5	

Beam & target conditions for validation

Physics List

- Considered physics list in Geant4
 - FTFP_BERT, FTFP_BERT_HP, FTFQGSP_BERT, QGSP_FTFP_BERT
 - FTF_BIC, QGSP_BERT, QGSP_BERT_HP, QGSP_BIC

High pr neutro	ecision n: HP					
The L ie	ege In tranuc	lear C ascade:	INCL	Γ	Quark Gluon Strir	ng: QGS
	Bi nar	y C ascade: B	с			
				FRI	TIOF string: FTF	
	BERT INI c	ascade model	BERT			
1 MeV	10 MeV	100 MeV	1 GeV	10 Ge	V 100 GeV	1 TeV

Distribution: Atomic Mass

Distribution of A

Distribution: Atomic Mass

Validation compared with experiments

Cost effective CPU time

- Excluding 'Shielding' for our suitable list (due to long runtime)
 CPU time with physics lists
- Others look same.
 - Any physics list (except Shielding) would be OK.
- The best
 => FTFP_INCLXX(_HP)

2) Production of secondary particles

- Conditions of experiments
 - FTFP_INCLXX
 - Geant4 version: 11.0.2
 - 1 million events per each condition

Simulation	Geant4 Beam		Target		
	Particle	Energy (MeV/u)	Materials	Thickness (mm)	
Proton → U	Proton	100, 200, 500, 1000	Uranium	6	
Proton → U	Proton	100	Uranium	1, 2, 5, 6, 10	

Amount of Secondary Particles

Amount of Secondary Particles

*J. Stark, Zs. Phys. 13, 973–977 (1912); J. A. Davies, J. Friesen, J. D. McIntyre, Can J. Chem. 38, 1526–1534 (1960) **M.A. Kumakhov, Phys. Lett. A 57(1), 17–18 (1976) ***B. Ferretti, Nuovo Cimento 7, 118 (1950); M. Ter-Mikaelian, Sov. Phys. JETP 25, 296 (1953).

Marie Sklodowska-Curie Action Global Individual Fellowships by A. Sytov in 2021-2024, Project TRILLION GA n. 101032975

Main goal: The implementation of both physics of electromagnetic processes i n oriented crystals and the design of specific applications of crystalline effects int o Geant4 simulation toolkit as Extended Examples to bring them to a large scient ific and industrial community and under a free Geant4 license.

Group:

- A. Sytov project coordinator
- L. Bandiera INFN supervisor
- K. Cho KISTI supervisor
- G. Kube DESY supervisor
- I. Chaikovska IJCLab Orsay supervisor

Location:

- 2 years at KISTI (partner organization)
- 1 year at INFN Section of Ferrara (host organization)
- I month of secondment at DESY (partner organization)
- I month of secondment at IJCLab Orsay (partner organization)

Applications

4. Plan and Outreach

- We studied heavy ion beam simulation on Geant4.
 - We found the optimized physics lists among Geant4 reference physics lists.
 - The most optimized physics list is FTFP_INCL++(_HP).
- Next, we will test ¹³²Sn/²³⁸U beam emission to ⁹Be target with various target thickness => RAON experiment

Fig. 9. Schematic diagram of the simulation setup.

10th International Geant4 Tutorial in Korea 2023

- Date: 2023. 11.06~10
- Place: Jeju National University
- https://hep0.kisti.re.kr/event/6/

Summary

Particle physics leads IT.

- Beyond Standard Model
- Simulation
- Evolving computing architecture

Summary

- Computing needs solutions for the evolving architecture (KISTI-5 and KISTI-6).
- To fulfill the gap between physics and computing, we also need to focus on simulation R&D.
- Geant4 is the most accurate simulation tool kit. Therefore we focus on it.
- \Rightarrow Physics goes beyond standard model.

Acknowledgement

- National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2021R1F1A1064008)
- The major institutional R&D program, KISTI (No. K-24-L02-C04-S01) and National Supercomputing Center with supercomputing resources including technical support (KSC-2023-CHA-0005)
- A. Sytov acknowledges support by the European Commission through the H2020-MSCA-IF TRILLION project (GA. 101032975)

