Exploring the Synergy of Kinematics and Dynamics for Collider Physics

Myeonghun Park

(Seoultech)

 Based on arXiv:2311.16674 with Kayoung Ban, Kyoungchul Kong and Seong Chan Park

Search for a "signal" at Colliders

 Kinematic variables to utilize a different phase-space structures (signal, v.s. backgrounds)

Extracting phase-space "features" of a signal

 Kinematic variables to utilize a different phase-space structures (signal, v.s. backgrounds)

$$\theta = \{m_A\} \longrightarrow X = \{p_b^{\mu}, p_c^T\}$$

3: 3-Momentum from visible particle

2: Transverse Momentum from imbalanced situation

$$\dim(X) = 3 + 2 \rightarrow \dim(V) = 1$$

• A human-engineered feature variable, M_T which estimates m_A with an endpoint of its distribution

(highly singular behavior due to its Jacobian peak)

Constructing an "observable" from a multi-dimensional phase space

is **non-trivial.**

- Kink-Structure in an observable: Won Sang Cho, Kiwoon Choi, Yeong Gyun Kim, Chan Beom Park (PRL 2008)
- Generic algorithm to find a Singularity observable: lan-Woo Kim (PRL 2010)
- The LHC-robust observable: Konstantin Matchev, MP (PRL 2011)
- Detalled investigation on singularity observables: Chan Beom Park (JHEP 2021)
- For a recent review, "Kinematic variables and feature engineering for particle phenomenology" in Rev. Mod. Phys. 95 (2023) by Doojin Kim, **MP** et.al.

Kinematics: Global information

- Differences in kinematics are from "high P_T " region, i.e. reconstructed level
 - Telling us about the structure of "Feynman-diagram" (Event-topology, Mass spectrum)
- We can further utilize $|\mathcal{M}|^2$ differences (Density bounded by phase-space)

Extracting "features" utilizing Machine Learning

A Neural-Network can design an event-variable (by enforcing information-bottleneck to NN)

oojin Kim, KC Kong, Konstantin Matchev, Prasanth, MP. (PRD 2023)

A NN with enforcing a relativistic kinematics

M. Erdmann, E. Geiser, Y. Rath and M. Rieger (2019)

Orthogonal information to the Kinematics

- Differences in radiation patterns of a Gauge charge are coming from "soft P_T " region
 - eg) Telling us about the state under a gauge group
- : In a **chiral** case, the **longitudinal** component of a dark photon couples to a dark matter

soft energy deposits

- Minho Kim, Hye-Sung Lee, MP, Mengchao Zhang (2018)
- Junmou Chen, Pyungwon Ko, Hsiang-Nan Li, Jinmian Li, Hiroshi Yokoya (2019)

boosted (accelerated) DM

Case of the Standard Model Gauge group

In many cases, the **soft QCD radiation patterns** from signals are different from Backgrounds. (e.g.: rapidity gap)

FIG. 1: Possible color connections for signal $(pp \to H \to b\bar{b})$ and for background $(pp \to g \to b\bar{b})$.

$$gg \rightarrow h \rightarrow b\bar{b}$$

$$Tr[T^AT^B]Tr[T^CT^D]$$

$$gg \rightarrow bb$$

$$Tr[T^{A}T^{C}]Tr[T^{B}T^{D}]$$

$$Tr[T^{A}T^{D}]Tr[T^{B}T^{C}]$$

Utilizing localized information

One can design a QCD variable, for example a pull-vector

$$\vec{t} \equiv \sum \frac{p_T^i |r_i|}{p_T^{\text{jet}}} \vec{r}_i$$

(Jason Gallicchio, Matthew D. Schwartz 2010)

provides an one-dimensional feature

Or one can get two-dimensional features,

(Frederic A. Dreyer, Gavin P. Salam, Gregory Soyez 2018)

Fully utilizing localized information

 One needs to understand differences in "the full information"

(Charanjit K. Khosa, Simone Marzani, 2021)

- A new pre-process

 convolutional layer dense layer

 quark jet

 gluon jet
 - A **neural network** can tell differences in soft-patterns
 - Leandro G. Almeida, Mihailo Backović, Mathieu Cliche, Seung J. Lee, Maxim Perelstein (JHEP 2015)
 - Won Sang Cho, Hyung Do Kim, Dongsub Lee (PRD 2020)
 - Sung Hak Lim, Mihoko M. Nojiri (PRD 2020),

M. Schwartz et.al. (JHEP 2017)

Global and Local information

A Neural Network for "Global" information

A Neural Network for "localized" information

- Jeong Han Kim, Minho Kim, Kyoungchul Kong, Konstantin T. Matchev, MP (JHEP 2019)
- Thomas Flacke, Jeong Han Kim, Manuel Kunkel, Pyungwon Ko, Jun Seung Pi (JHEP 2023)
- Daohan Wang, Jin-Hwan Cho, Jinheung Kim, Soojin Lee, Prasenjit Sanyal, Jeonghyeon Song (PRD 2024)

Multi-modal Network

• In the commercial applications of Machine Learning, various sources of information (for example, different images, text) are utilized to interpret a situation in a consistent way.

Multi-modal Network in collider physics

 In the collider physics, "kinematics" and "localized pattern (for example QCD) are orthogonal information, so that we need to take a complementary approach.

- For example,
 - similar kinematics (distance between two jets if $m_h \simeq m_\sigma$)
 - totally different soft QCD patterns with color singlet (h) v.s. color octet (σ)

Combining two different information

• Are we sure that our combination is the optimized one?

Attentions are on hot cores

 Possibility to shadow information from soft radiations by distinct differences in kinematics from jets.

Decorrelating localized information from kinematics

Decorreation using a Kernel trick

- Soft radiations which are inside of a circle → Southern hemisphere (H) outside of a circle → North hemisphere (Backgrounds)
- Consider only angular positions, totally independent from a radius which is proportional to $P_T(jj)$.

- Does a Neural Network learn both from kinematics and QCD in the equal basis (without mostly relying on "Easy" part) ?

- What about the "combination part"?
 - Does a Neural Network learn both from kinematics and QCD in the equal basis (without mostly relying on "Easy" part) ?
- I have suffered from this problem more than a year...
 - Above question is related to the core question of ML
 : How do you know what a Machine does learn ?

The explainable A.I.

- Sunghoon Jung, Dongsub Lee, Ke-Pan Xie (Eur. Pys, 2020)
- Jin Choi, Un-Ki Yang (progress)

Fortunately, I have a chance to discuss with Kayoung Ban

I have a simple solution

 In Machine learning, a simple solution is always welcomed as it provides the better convergence! (with a few training data)

Method - Attention Layer

- * Minh-Thang Luong, Hieu Pham, and Christopher D. Manning, "Effective approaches to attention-based neural machine translation," (2015), arXiv:1508.04025 [cs.CL].
- * Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio, "Neural machine translation by jointly learning to align and translate," arXiv preprint arXiv:1409.0473

An innovative network for Natural language

Attention score
$$\rightarrow a(z) = \frac{e^{f_{attn}(z)}}{\sum_{j=1}^{2M} e^{f_{attn}(z)_j}}$$

where the layer $z = [z_{1:M} : z_{M+1:2M}]$ which is the concatenated layer from CNN and FCN respectively, and $f_{attn}(x) = W_{attn}x + b_{attn}$ is a trainable linear transformation.

Attention value $\rightarrow z \odot a$

- ✓ The attention values are computed as Hadamard product between the attention score (a) and the concatenated layer (z).
- ✓ We can interpret how much the model concentrates the two base models to classify signal and background.
- ✓ Attention values are then connected with a fully connected layer for classification.

• With an attention layer, we can observe that

Black-box NN

Network with the conventional combination focus mostly on the easier material to study. (kinematics)

Regularization term =
$$l_2 \times \sum_{k=1}^{M} W_k^2$$

Actually, this is related to the core of ML - protecting overfitting

 With complicated networks, the overfitting can occur!

$$y(x,\omega) = \omega_0 + \omega_1 x + \omega_2 x^2 + \dots + \omega_M x^M$$

	M=0	M = 1	M = 6	M = 9
$\overline{w_0^\star}$	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^\star			-25.43	-5321.83
w_3^\star			17.37	48568.31
w_4^\star				-231639.30
w_5^\star				640042.26
w_6^\star				-1061800.52
w_7^\star				1042400.18
w_8^\star				-557682.99
w_9^\star				125201.43

• Utilize a regularizer, a"Lagrangian Multiplier" in ML

Regularization term =
$$l_2 \times \sum_{k=1}^{M} W_k^2$$

 this simple technique works to balance information between local and global information!

Eureka! I have missed this simple solution.
 This is an universal method.

- AUC score is the area under the ROC curve.
 Perfect discrimination = AUC score=1
- We get the improvement in the performance as a result.

Conclusion

- There have been "huge" wave in applying machine learning methods in a particle phenomenology.
- So far, there was no serious study how to maximize the combination of two different types of information.
- To maximize the performance of collider analysis, one needs to utilize both "global" (= full phase space) information and "localized" activities (= soft radiation patterns).
- We present a simple but universal / effective method to achieve the balanced training to maximize the performance.
 - This issue has not been taken seriously in the commercial advanced machine learning (as they take a consistent approach)