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Outline

* Quantum cosmology ( Euclidean path integral approach & No Boundary Proposal)

e Fuclidean wormholes
e Bunch Davies limit in closed Universe

 Summary

(Many pretty pictures and some slides in the talk are credited to Dong-han)



Why quantum cosmology?

big—bang singularity




Inflationary spacetimes
are not past-complete
(BGV-theorem) (2003)

big—bang singularity




Quantum Cosmology (No Boundary proposal)

Geometries are smoothly
rounded off and have no
boundary 1n the past.

The singularity at a=0 is
replace by the south pole

of the regular Euclidean geometry
regular Euclidean geometry



The Wheeler-DeWitt equation is the Schrodinger
equation
The gives a probability
distribution for a certain stage of our universe, e.g., a

probability before inflation



Euclidean path integral approach
(Hartle and Hawking, 1983)
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Euchdean path integral approach
Hartle and Hawking, 1983)
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A figure from Lehners (2023)



Background solutions (Euclidean regime)
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Sp = | v/Fgd*x —+ <()MCI>> + U(D)],

[ =—11
dsz = o* (dz'z + Clz(T)dQ%), 0% = 8nU,/3 with a constant U,

dQ3 = dy* + sin® y(d6* + sin” Odgp?)

After redefining ¢ = \/47[/3CI) and V = U/U,,

one can derive the equations of motion for the background geometry:

a’—1+a? (—q52+v(gb)) =0,
a+2ad* +aV =0,

$+3a$ 1dvV
a’ 2dp

0 regular Euclidean geometry



dS instanton / Wick—-rotated

[Lorentzian dS

Regularity at a(0) = O requires Tie—moiiaifom
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Euclidean on—shell solution




Turn on perturbations Halliwell and Hawking (1985)
Laflamme (1987)
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The wave function 1s Gaussian-like. This 1s a kind of
vacua, but this 1s not guaranteed whether this
vacuum 1S the Euclidean vacuum.



Turn on perturbations
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- Wick-rotate the wave function
to the Lorentzian time t It is of the form of the usual

Quantization in the Schrédinger picture

By defining f, ;.. = v,;,,/a and dn = dt/a
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where ' denotes differentiation with respect to



No Boundary proposal and the Euclidean vacuum

dS instanton

gvies vacuum

;o a . n®—1 o,
fn 3 fn+ 7 ]s,l
fit=0)=0 and Jus2t=0)=0 at 7=0

a(t) = A~ sin(A7)

Must impose regularity
+

Euclidean vacuum



Regularity at a(0) = O

Perturbations frozen
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Euclidean Wormholes

Background

P -1+a (- +V(g)) =0,
a+2a¢d* +aV =0,
=

C) A C
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[f there exists this correction term,

then we can obtain a wormbhole.




Euclidean Wormholes

[f there exists this correction term,

- then we can obtain a wormbhole.
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There is no restriction 3 A C

forcing us to impose
the Euclidean vacuum

[f there exists this correction term,

- then we can obtain a wormbhole.

Must impose regularity ~
: Vavav

Euclidean vacuum
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The wave function 1s Gaussian-like.

There was no reason to exclude
the second solution of the Deq of f ;.

Like the NBP.

The mixing of two solutions
gives alpha vacua

o/

There Is no restriction

forcing us to impose
the Euclidean vacuum

[f there exists this correction term,

- then we can obtain a wormbhole.




Bunch Davies limit in closed Universe

The analytic study Iin the massless scalar field

A warm-up: the mode function of a massless scalar field
in a flat universe (de Sitter space with flat slicing):
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The mode function of BD vacuum



Bunch Davies limit in closed Universe

The analytic study in the massless scalar field

A warm-up: the mode function of a massless scalar field
in a flat universe (de Sitter space with flat slicing):
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Since y is proportional to 7, a plane wave in 7 remains as a plane wave iny.



Bunch Davies limit in closed Universe

The analytic study in the massless scalar field

A warm-up: the mode function of a massless scalar field
in a flat universe (de Sitter space with flat slicing):

2 1 i
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Since y is proportional to 7, a plane wave in 7 remains as a plane wave iny.

| I 1
So one has two > 1 : The sub-horizon limit ~ v'(») +v(y)=0. V(1) ~ e” = e
' ) Vk v

special regimes

—ikn

< 1: -hori imi
y The super-horizon limit This (in terms of y) should be the precise

def. of BD state that can be generalized
to other topologies!



In a closed universe (de Sitter space with closed slicing), ] "
the mode function of a massless scalar field: a(t) = —- cosh(4r)

v'i(n) + [nz — 1+ %(008(277) — 3)8602(77)] v(n) = 0.

n n

Defining y=— = ., 0<pn<al2
alH tanpg
y2 n2
(1+ ﬁ) ((n* + y* "' (y) + 20v'(y)] [y2 (y*—2)=2|v(y) = 0.

The solution can be written as

VT = DI(n + 2) (14 Dy

v gp(7s 1) = (n+ Dn! ;



In a closed universe (de Sitter space with closed slicing),

_ . a(t) = l cosh(Ar)
the mode function of a massless scalar field: A

v'(n) + [n2 — 1+ %(008(2;7) — 3)8602(77)] v(n) = 0.

n n

Definin = — = ]
g aH  tann 0<n<nl2
y2 n2
(1+=) @ +y" ') + 2’| + |5 0% = 2) = 2|u(y) = 0.
n y

The solution can be written as

\/F(n — DI'(n + 2)
(n+ 1)n! . y

1 [ —inn Notice that the analytic continuation of this solution
( T —)e is regular in the Euclidean regime when a = 0.

V1,RP(77§ n) =



In a closed universe (de Sitter space with closed slicing),

_ . a(t) = l cosh(Ar)
the mode function of a massless scalar field: A

vi(n) + [n2 — 1+ %(008(277) — 3)8602(}7)] v(n) = 0.

n n

Definin = — = ,
g aH  tann 0<n<nl2
y2 n2
(1+=) @ +y" ') + 2’| + |5 0% = 2) = 2|u(y) = 0.
n y

In the spatially flat de Sitter:
The solution can be written as
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Is it the correct form of the mode solution?



In a closed universe (de Sitter space with closed slicing),

_ . a(t) = l cosh(Ar)
the mode function of a massless scalar field: A

1
vi(n) + [nz — 1+ 5<COS(277) — 3)8602(77)] v(n) = 0. A plane wave in 77 is NOT
n = arctan(ﬁ) necessary a plane wave in y
Defining y=—= : 0<n<xl2 y due to the non-linear
al  tany transformation!
y? 72
(1+5) [0 + 2" 0) + 29v')] + | 5% = 2) = 2[v(y) = 0.
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The solution can be written as
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In a closed universe (de Sitter space with closed slicing),

_ . a(t) = l cosh(Ar)
the mode function of a massless scalar field: A

|
vi(n) + [nz — 1+ 5(008(277) — 3)8602(77)] v(n) = 0. A plane wave in 77 is NOT
n = arctan(ﬁ) necessary a plane wave in y
Defining y=—= : 0<n<xl2 y due to the non-linear
all  tanp transformation!
y2 .
(1+ =) [+ ') + 2] + [502 =2 = 2]v(y) = 0.

n y

The solution can be written as

['(n— DI 2 / ['(n— DI 2 /
\/ Vet )n(l +i)e_i”’7 = \/ et )n(l +i)exp[—inarctan(£)].
(n+ 1)n! y (n+ 1)n! y y

V1,RP(77; n) =

We can consider (n,y) in different regimes:

y>n2>1: Anew regime (earliest)

This regime gives the wave

n>y>1: I
equation iny: v"(y) +v(y) = 0.

n>1>y: The super-horizon limit



In a closed universe (de Sitter space with closed slicing),

_ . a(t) = l cosh(Ar)
the mode function of a massless scalar field: A

|
vi(n) + [nz — 1+ 5(008(277) — 3)8602(77)] v(n) = 0. A plane wave in 77 is NOT
n = arctan(ﬁ) necessary a plane wave in y
Defining y=—= : 0<n<xl2 y due to the non-linear
all  tanp transformation!
y2 .
(1+ —) ((n* 4+ Yy V() + 2pv'(y)| 4 [y2 (y*=2)=2|v(y)=0

The solution can be written as
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We can consider (n,y) in different regimes: 2 n n 23 5
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This extra phase factor ¢~ 2 does not cause any effect
If we only have to consider the positive frequency mode



n(nz—l) n(nz—l)
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This extra phase factor ¢~2 does not cause any effect
If we only have to consider the positive frequency mode

An alpha vacuum can be represented as the mixing of the positive and negative frequency modes specified by
an complex alpha parameter:

|
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The convention from Bousso, Maloney, Strominger (2002)
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I'(n— DI'(n+2) i . ['(n—DI'(n+2) i . .
Vi gp(1s 1) = v n(l+—)e " = v n(1+ —)e_mmmn(?).
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VT = Dl(n +2)

VI = Dl(n + 2)
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Fictitious splitting of even and odd modes
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In the power spectrum
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In the closed universe, the extra n-dependent
phase factor always exists.

To have the mode solution without the phase

factor when n > y, we need to throw it back
to the y > n > 1 and the Euclidean regimes.

This means the correct initial condition for
numerical evaluation for the mode solutions in
a general scenario also must include this phase
factor:

INTT

fl(z) = ﬁsz, f(r) = ¢~ ex,



Summary

From the quantum cosmology setting, the Euclidean wormholes provide a
scenario in which the alpha vacua for matter perturbation are more general,
since the regularity condition is removed.

We discuss the no-trivial phase factor in the mode functions in the closed universe
whose effect appears if we consider the mixing of positive- and negative frequency
modes. We identity the suitable regime for the Bunch Davies limit in a closed
universe.
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since the regularity condition is removed.

We discuss the no-trivial phase factor in the mode functions in the closed universe
whose effect appears if we consider the mixing of positive- and negative frequency
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Bunch Davies limit in closed Universe

The analytic study Iin the massless scalar field

A warm-up: the mode function of a massless scalar field

in a flat universe (de Sitter space with flat slicing):
1

Vi) + (kz—%>V(f7) =0 v(n) = ﬁ(l —é)e_ik"

The mixing of positive and negative frequency modes ( Bogoluobov transformation ) of
the massless scalar field are not alpha vacua.

(since they don’t preserve the full continuous symmetry of de Sitter space).
However, the issue exists generally in a closed universe scenario.

When m?2>0, the Euclidean vacuum is defined by Bruce Allen (1985)

a=0. In the literature this vacuum state is also called the
Bunch-Davies'®!” or Birrell-Davies!?>!® vacuum. When
m*=0 the Euclidean vacuum state no longer exists. This
is because (1) this state is de Sitter invariant and (2) its
two-point function has only one singular point on S*.
However, the Bunch-Davies vacuum, defined by a=0 in
(4.19) and (4.20) does exist for m —-O It is sxmply no
longer de Sitter invariant.



