Toward fundamental building blocks of supersymmetric dualities

Chiung Hwang

University of Science and Technology of China

Advances in String Theory and Quantum Field Theory May 31, 2024, KIAS

Mainly based on

- CH, Sungjoon Kim, "S-confinement of 3d Argyres-Douglas theories and the Seiberg-like duality with an adjoint," to appear,
- CH, Sara Pasquetti, Matteo Sacchi, "Rethinking mirror symmetry as a local duality on fields," arXiv:2110.11362,
- CH, Piljin Yi, Yutaka Yoshida, "Fundamental Vortices, Wall-Crossing, and Particle-Vortex Duality," arXiv:1703.00213.

Introduction

• Part I: 3D Reduction of $D_p[SU(N)]$ Argyres-Douglas Theories and S-Confinement

Part II: Revisit Dualities for Adjoint SQCD

Conclusion

Example

3d U(1) gauge theory with F flavors

Aharony duality (Seiberg duality in 4d)

3d mirror symmetry

Aharony duality (Seiberg duality in 4d)

Kim-Park duality (Kutasov-Schwimmer duality in 4d)

And more...

- (Too) many UV descriptions
- Any organizing principle?
- Can we find the building block allowing the systematic construction of these dualities?

- (Too) many UV descriptions
- Any organizing principle?
- Can we find the building block allowing the systematic construction of these dualities?

►The fundamental mechanism of the dualities is universal.

Aharony duality (Seiberg duality in 4d)

Kim-Park duality (Kutasov-Schwimmer duality in 4d)

And more...

Building Blocks of 3D Mirror Symmetry

- Typical examples of 3d mirror symmetry are $\mathcal{N}=4$ quiver gauge theories consisting of **bifundamental** and **fundamental** hypers.
- If we know how to dualize bifundamental and fundamental hypers, we can reconstruct the mirror of quiver gauge theories consisting of them [(Bottini-)CH-Pasquetti-Sacchi 21].

- The 3d mirror symmetry of most quiver gauge theories (**good linear** quiver [CH-Pasquetti-Sacchi 21], **bad linear** quiver [Giacomelli-CH-Marino-Pasquetti-Sacchi 22, 23], **circular** quiver [work in progress]) can be constructed by gauging those relations between the bifundamenatal & fundamental hypers.
- More surprisingly, the dualization of those hypers to each other can be derived from the Aharony duality!

Aharony duality

(Seiberg duality in 4d)

Kim-Park duality (Kutasov-Schwimmer duality in 4d)

And more...

Aharony duality (Seiberg duality in 4d)

Today's topic

3d mirror symmetry

Kim-Park duality (Kutasov-Schwimmer duality in 4d)

And more...

Part I: 3D Reduction of $D_p[SU(N)]$ Argyres-Douglas Theories and S-Confinement

4D $D_p^b(G)$ $\mathcal{N}=2$ Superconformal Field Theories

• An infinite family of 4d $\mathcal{N}=2$ SCFTs with an ADE global symmetry can be engineered by compactifying type IIB string theory on threefold hypersurface singularities in $\mathbb{C}^3 \times \mathbb{C}^*$ [Giacomelli 17]:

$$F(x_1, x_2, x_3, z; G, b, p) = 0$$

$$D_p^b(G)$$

$$G = SU(N)$$
, $b = N$: $F = x_1^2 + x_2^2 + x_3^N + z^p$, $b = N - 1$: $F = x_1^2 + x_2^2 + x_3^N + x_3z^p$

4D $D_p^b(G)$ $\mathcal{N}=2$ Superconformal Field Theories

• An infinite family of 4d $\mathcal{N}=2$ SCFTs with an ADE global symmetry can be engineered by compactifying type IIB string theory on threefold hypersurface singularities in $\mathbb{C}^3 \times \mathbb{C}^*$ [Giacomelli 17]:

$$F(x_1, x_2, x_3, z; G, b, p) = 0$$

$$D_p^b(G)$$

$$G = SU(N),$$
 $b = N:$ $F = x_1^2 + x_2^2 + x_3^N + z^p,$ $\equiv D_p[SU(N)]$ $b = N - 1:$ $F = x_1^2 + x_2^2 + x_3^N + x_3 z^p$

• The $D_p[SU(N)]$ theories allow Lagrangian dual descriptions when N=mp [Cecotti-Del Zotto-Giacomelli 13].

• On the other hand, the $D_p[SU(N)]$ theories are non-Lagrangian when $\gcd(p,N)=1.$

The Maruyoshi-Nardoni-Song Duality

• Recently, an interesting 4d $\mathcal{N}=1$ duality involving $D_p[SU(N)]$ has been proposed for p< N satisfying $\gcd(p,N)=1$ [Maruyoshi-Nardoni-Song 23]:

- Deconfinement of the adjoint into a $D_p[SU(N)]$ tail
- Passing many nontrivial tests

The Maruyoshi-Nardoni-Song Duality

• Recently, an interesting 4d $\mathcal{N}=1$ duality involving $D_p[SU(N)]$ has been proposed for p< N satisfying $\gcd(p,N)=1$ [Maruyoshi-Nardoni-Song 23]:

- Deconfinement of the adjoint into a $D_p[SU(N)]$ tail
- Passing many nontrivial tests

3d version?

3D Reduction of $D_p[SU(N)]$ Theories

• Interestingly, the 3d reduction of 4d $D_p^b[SU(N)]$ theories always has UV Lagrangian descriptions [Giacomeeli-Mekareeya-Sacchi 21]; e.g., if b=N and $\gcd(p,N)=1$,

$$W = \sum_{i=1}^{p-1} \operatorname{Tr}_{i} \Phi^{(i)} Q_{i} \tilde{Q}_{i} + \sum_{i=1}^{p-2} \operatorname{Tr}_{i+1} \Phi^{(i+1)} \tilde{Q}_{i} Q_{i}$$

Confining deformation?

S-Confinement of 3D $\mathbb{D}_p[SU(N)]$

- Let's assume some simplifying conditions.
- 3d $\mathbb{D}_p[SU(N)]$ theories are either good or ugly in Gaiotto-Witten's sense.
- Focus on the good case, where each node satisfies

$$m_{j-1} + m_{j+1} - 2m_j \ge 0$$

$$N = \pm 1 \mod p$$

• Also assume p < N, simplifying the formulas.

• Proposal: The 3d $\mathbb{D}_p[SU(N)]$ theory with deformation ΔW is confined.

$$m_j = \lfloor jN/p \rfloor$$
, $j = 1,...,p-1$

$$\mathbb{D}_p[SU(N)]$$
 with

$$\Delta W = \eta \sum_{i=1}^{p-1} \operatorname{Tr} \Phi^{(i)} + \sum_{i=1}^{p-1} \hat{v}^{(i),+} + \hat{v}^{(1,p-1),-}$$

A matrix-valued chiral field
$$X$$
 with

$$W = \operatorname{Tr} X^{p+1}$$

$$\hat{v}^{(i),\pm} = \left(0^{i-1}, \pm 1, 0^{p-i-1}\right)$$
$$\hat{v}^{(1,p-1),\pm} = (\pm 1, \dots, \pm 1)$$

Evidence I

Superconformal index

$$I = \operatorname{tr}(-1)^F x^{R+2j}$$

$$I_{\mathbb{D}_p[SU(N)]+\Delta W} = PE \left[\frac{N^2 \left(x^{\frac{2}{p+1}} - x^{\frac{2p}{p+1}} \right)}{1 - x^2} \right] = I_{WZ}$$

• Precisely matching the spectrum of BPS states! (Tested for some $N\ \&\ p$)

Evidence II

• More powerfully, one can prove the confinement only assuming the **Aharony-BBP** dualities [Aharony 97, Benini-Benvenuti-Pasquetti 17]:

$$W_A = \begin{cases} \hat{V}^+ + \hat{V}^- \\ \hat{V}^+ \\ 0 \end{cases}$$

$$W_{B} = \begin{cases} \hat{v}^{+} + \hat{v}^{-} + M\tilde{q}q \\ \hat{v}^{+} + V^{-}\hat{v}^{-} + M\tilde{q}q \end{cases} \quad \alpha = \begin{cases} 2\\1\\0 \end{cases}$$

Evidence II

• More powerfully, one can prove the confinement only assuming the **Aharony-BBP** dualities [Aharony 97, Benini-Benvenuti-Pasquetti 17]:

Evidence II

• More powerfully, one can prove the confinement only assuming the **Aharony-BBP** dualities [Aharony 97, Benini-Benvenuti-Pasquetti 17]:

$$W_A = \begin{cases} \hat{V}^+ + \hat{V}^- \\ \hat{V}^+ \\ 0 \end{cases}$$

$$W_{B} = \begin{cases} \hat{v}^{+} + \hat{v}^{-} + M\tilde{q}q \\ \hat{v}^{+} + V^{-}\hat{v}^{-} + M\tilde{q}q \\ V^{+}\hat{v}^{+} + V^{-}\hat{v}^{-} + M\tilde{q}q \end{cases} \quad \alpha = \begin{cases} 2 \\ 1 \end{cases} \text{Mass def}$$

Derivation Using the BBP Dualities

• Let's consider the p=2 case. (Assume the gauge rank N is odd.)

Step 1

Step 2 (A)(E)MDual $\mathbb{D}_2[SU(2n+3)]:$ 2n+3|2n+3| $W_A = \tilde{Q}\Phi Q + \eta \operatorname{tr} \Phi + \hat{V}^+ + \hat{V}^-$ Step 3 (D)2n+3 2*n*+3 $W_B = \tilde{Q}\tilde{R}RQ + \eta \operatorname{tr}\tilde{R}R + \hat{v}^{(2),+} + \hat{v}^{(1,2),-} + \hat{v}^{(1),+} + \xi \hat{v}^{(1),-}$ (C) $\mathbb{D}_2[SU(2n+1)]$ Mconfinement $\begin{array}{c|c}
n \\
\widetilde{r}
\end{array} \begin{array}{c|c}
2n+1 \\
\widetilde{q}
\end{array} \begin{array}{c|c}
2n+3 \\
\end{array}$

Step 2 (A) $\mathbb{D}_{2}[SU(2n + 3)]$:

$$\overset{\mathrm{Dual}}{\Longleftrightarrow}$$

 $W_A = \tilde{Q}\Phi Q + \eta \operatorname{tr} \Phi + \hat{V}^+ + \hat{V}^-$

$$(B)$$
 $BBP_1^+ \downarrow$

(E)

$$X$$
 q
 $2n+1$
 \widetilde{q}
 $2n+3$

Step 3

$$\underbrace{n}_{\widetilde{R}} \underbrace{n+1}_{\widetilde{Q}} \underbrace{2n+3}_{2n+3}$$

$$W_B = \tilde{Q}\tilde{R}RQ + \eta \operatorname{tr}\tilde{R}R + \hat{v}^{(2),+} + \hat{v}^{(1,2),-} + \hat{v}^{(1),+} + \xi \hat{v}^{(1),-}$$

$$BBP_1^+$$

Step 2 (A)(E)MDual $\mathbb{D}_2[SU(2n+3)]:$ 2n+3|2n+3| $W_A = \tilde{Q}\Phi Q + \eta \operatorname{tr} \Phi + \hat{V}^+ + \hat{V}^ BBP_1^+$ (D)(B) \boldsymbol{q} 2*n*+3 $W_B = \tilde{Q}\tilde{R}RQ + \eta \operatorname{tr}\tilde{R}R + \hat{v}^{(2),+} + \hat{v}^{(1,2),-} + \hat{v}^{(1),+} + \xi \hat{v}^{(1),-}$ (C) $\mathbb{D}_2[SU(2n+1)]$ M BBP_1^+ confinement (2n+1)|2n+3|

 $\mathbb{D}_2[SU(2n+1)]$

Step 3

2*n*+3

Step 2 (A)

 $\mathbb{D}_{2}[SU(2n+3)]: \underbrace{n+1}_{\widetilde{Q}} \underbrace{2n+3}_{Q}$ $W_{A} = \widetilde{Q}\Phi Q + \eta \operatorname{tr} \Phi + \widehat{V}^{+} + \widehat{V}^{-}$

$$(B)$$
 $BBP_1^+ \downarrow$

$$W_B = \tilde{Q}\tilde{R}RQ + \eta \operatorname{tr}\tilde{R}R + \hat{v}^{(2),+} + \hat{v}^{(1,2),-} + \hat{v}^{(1),+} + \xi \hat{v}^{(1),-}$$

Dual

$$\mathbb{D}_2[SU(2n+1)]$$
 confinement

Step 3

(D.1)

Part II: Revisit Dualities for Adjoint SQCDs

Dualities for 3D Adjoint SQCDs

A variety of Seiberg-like dualities for adjoint SQCDs have been studied.

 $W = \operatorname{Tr} X^{p+1}$

• E.g., the Kim-Park duality for 3d U(N) gauge theories with a single adjoint [Kim-Park 13]:

$$W = \operatorname{Tr} x^{p+1} + \sum_{i=0}^{p-1} \left(M_{p-i-1} \tilde{q} x^i q + V_{p-i-1}^+ \hat{v}_i^+ + V_{p-i-1}^- \hat{v}_i^- \right)$$

Dualities for 3D Adjoint SQCDs

- A variety of Seiberg-like dualities for adjoint SQCDs have been studied.
- E.g., the Kim-Park duality for 3d U(N) gauge theories with a single adjoint [Kim-Park 13]:

Deconfined Kim-Park Duality

j = 1,...,p-1

$$W_{A} = \sum_{i=1}^{p-1} \operatorname{Tr}_{i} \Phi^{(i)} Q_{i} \tilde{Q}_{i} + \sum_{i=1}^{p-2} \operatorname{Tr}_{i+1} \Phi^{(i+1)} \tilde{Q}_{i} Q_{i}$$
$$+ \eta \sum_{i=1}^{p-1} \operatorname{Tr} \Phi^{(i)} + \sum_{i=1}^{p-1} \hat{V}^{(i),+} + \hat{V}^{(1,p-1),-}$$

 $\tilde{m}_i = \lfloor j(pF - N)/p \rfloor = jF + m_{p-i} - m_p,$

$$W_{B} = \sum_{i=1}^{p-1} \operatorname{Tr}_{i} \Phi^{(i)} Q_{i} \tilde{Q}_{i} + \sum_{i=1}^{p-2} \operatorname{Tr}_{i+1} \Phi^{(i+1)} \tilde{Q}_{i} Q_{i}$$

$$+ \eta \sum_{i=1}^{p-1} \operatorname{Tr} \Phi^{(i)} + \sum_{i=1}^{p-1} \hat{V}^{(i),+} + \hat{V}^{(1,p-1),-}$$

$$+ \dots$$

• Matching superconformal indices (tested for some N & p)

• E.g., the chiral ring generators for p=2:

Kim-Park A	Theory A	Theory A'	Theory B	Kim–Park B
$ ilde{Q}Q$	$ ilde{Q}Q$	M_0	M_0	M_0
$ ilde{Q}XQ$	$ ilde{Q} ilde{R}RQ$	$q' ilde{q}'$	M_1	M_1
$\operatorname{Tr} X$	$\eta \sim { m Tr} ilde{R} R$	η	$\eta \sim { m Tr} ilde r r$	$\operatorname{Tr} x$
\hat{V}_0^\pm	$\hat{V}^{(2),\pm}$	V_0^\pm	V_0^\pm	V_0^{\pm}
\hat{V}_1^\pm	$\hat{V}^{(1,2),\pm}$	$\hat{v}^{(1),\pm}$	V_1^\pm	V_1^\pm

Again, proved only assuming the Aharony duality

- The Aharony duality, or its monopole deformed cousin, is a **building block** of various supersymmetric 3d dualities, such as 3d U(N) mirror symmetry and the Seiberg-like duality with an adjoint matter.
- Furthermore, those underlying relations between different supersymmetric dualities provide **new proof of various special function identities** through the localization computation of supersymmetric partition functions (Spiridonov, Rains, ...)
- E.g., the partition function identities for the Aharony duality on S^3 [van de Bult 08], $S^2 \times S^1$ [CH-Yi-Yoshida 17] have been proven.
 - -> The identities for the (deconfined) Kim-Park duality are also implied.

Factorization of the 3d superconformal index

• 3d superconformal index

$$I = \operatorname{tr}(-1)^F x^{R+2j} e^{i\mu Q}$$

SUSY localization [Kim 09, Imamura-Yokoyama 11]

$$I(x;\mu) = \sum_{\mathbf{m} \in \mathbb{Z}^N/S^N} \frac{1}{W_{\mathbf{m}}} \oint \frac{d^N a}{(2\pi)^N} Z_{cl}(x;\mu,a;\mathbf{m}) Z_{1-loop}(x;\mu,a;\mathbf{m})$$

$$Z_{1-loop}^{chiral}(x; \mu, a; \mathbf{m}) = \prod_{\rho} \left(e^{i\rho(a+\mu)} x^{-1} \right)^{-\frac{\rho(m)}{2}} \frac{\left(e^{-i\rho(a+\mu)} x^{2-R+\rho(m)}; x^2 \right)}{\left(e^{i\rho(a+\mu)} x^{R+\rho(m)}; x^2 \right)}$$

Factorization [CH-Kim-Park 12] (Holomorhpic blocks, Higgs-branch localization)

$$I(x;\mu) = \sum_{\mathbf{m} \in \mathbb{Z}^N/S^N} \frac{1}{W_{\mathbf{m}}} \oint \frac{d^N a}{(2\pi)^N} Z_{cl}(x;\mu,a;\mathbf{m}) Z_{1-loop}(x;\mu,a;\mathbf{m})$$

$$I = \sum_{pert} Z_{pert} Z_{vortex} \overline{Z}_{pert} \overline{Z}_{vortex}$$
Higgs vacua

For the Aharony duality

$$Z_{pert} = \tilde{Z}_{pert} \tilde{Z}_{M}$$

$$Z_{vortex} = \tilde{Z}_{vortex} \tilde{Z}_{V}$$

Proved

Checked by series expansion up to a finite order

Factorization [CH-Kim-Park 12] (Holomorhpic blocks, Higgs-branch localization)

$$I(x;\mu) = \sum_{\mathfrak{m} \in \mathbb{Z}^N/S^N} \frac{1}{W_{\mathfrak{m}}} \oint \frac{d^N a}{(2\pi)^N} Z_{cl}(x;\mu,a;\mathfrak{m}) Z_{1-loop}(x;\mu,a;\mathfrak{m})$$

For the Aharony duality

$$Z_{pert} = \tilde{Z}_{pert} \tilde{Z}_{M}$$

$$Z_{vortex} = \tilde{Z}_{vortex} \tilde{Z}_{V}$$

Proved

Checked by series expansion up to a finite order

Type IIB brane picture

The Aharony duality of a 3d gauge theory = the wall-crossing of a 1d vortex GLSM

$$I = \sum_{pert} Z_{pert} Z_{vortex} \overline{Z}_{pert} \overline{Z}_{vortex}$$
Higgs vacua

$$Z_{vortex} = \sum_{n} w^n Z_n$$

$$Z_n = \frac{1}{W} \mathsf{JK-Res}_{\vec{\eta} = \zeta \vec{1}} \left[g(u) \, d^n u \right]$$

$$g^{n}(u) = \frac{\left(\prod_{i \neq j}^{n} \sinh \frac{u_{i} - u_{j}}{2}\right) \left(\prod_{j=1}^{n} \prod_{a=1}^{F} \sinh \frac{u_{j} - \tilde{m}_{a} + \mu - \gamma}{2}\right)}{\left(\prod_{i,j}^{n} \sinh \frac{u_{i} - u_{j} - 2\gamma}{2}\right) \left(\prod_{i=1}^{n} \prod_{b=1}^{N} \sinh \frac{u_{i} - m_{b} - \mu - \gamma}{2}\right) \left(\prod_{j=1}^{n} \prod_{a=N+1}^{F} \sinh \frac{-u_{j} + m_{a} + \mu - \gamma}{2}\right)}$$

$$I = \sum_{pert} Z_{pert} Z_{vortex} \overline{Z}_{pert} \overline{Z}_{vortex}$$
Higgs vacua

$$Z_{vortex} = \sum_{n} w^n Z_n$$

The contribution of each vortex number can be computed using the Jeffrey-Kirwan residue method [Hori-Kim-Yi 14, CH-Kim-Kim-Park 14].

$$Z_n = \frac{1}{W} \mathsf{JK-Res}_{\vec{\eta} = \zeta \vec{1}} \left[g(u) \, d^n u \right]$$

$$g^{n}(u) = \frac{\left(\prod_{i \neq j}^{n} \sinh \frac{u_{i} - u_{j}}{2}\right) \left(\prod_{j=1}^{n} \prod_{a=1}^{F} \sinh \frac{u_{j} - \tilde{m}_{a} + \mu - \gamma}{2}\right)}{\left(\prod_{i,j}^{n} \sinh \frac{u_{i} - u_{j} - 2\gamma}{2}\right) \left(\prod_{i=1}^{n} \prod_{b=1}^{N} \sinh \frac{u_{i} - m_{b} - \mu - \gamma}{2}\right) \left(\prod_{j=1}^{n} \prod_{a=N+1}^{F} \sinh \frac{-u_{j} + m_{a} + \mu - \gamma}{2}\right)}$$

For each vortex sector, it is shown that

 $I = \tilde{I}$

Provides a proof of the index identity motivated by a physical D-brane picture

- Furthermore, this index identity for the Aharony duality also derives the identity for the deconfined Kim-Park duality!
- Index identities for BBP? -> Open questions
- Together with BBP, whose index identities are still conjectural, the deconfinement of the $\mathbb{D}_p[SU(N)]$ can also be proved.

Conclusion

Aharony duality (Seiberg duality in 4d)

3d mirror symmetry

Kim-Park duality (Kutasov-Schwimmer duality in 4d)

And more...

Kim-Park duality (Kutasov-Schwimmer duality in 4d)

And more...

Many possible generalizations

- Relaxing the conditions among the parameters
- Monopole deformation
- Multiple adjoints with ADE-type superpotentials
- Non-supersymmetric counterparts?

$$W_A = \operatorname{tr} \left(X^{p+1} + Y^2 \right)$$
 Kim-Park 13
 $W_D = \operatorname{tr} \left(X^{p+1} + X Y^2 \right)$ CH-Kim-Park 13
 $W_{E_6} = \operatorname{tr} \left(Y^3 + X^4 \right)$
 $W_{E_7} = \operatorname{tr} \left(Y^3 + Y X^3 \right)$
 $W_{E_9} = \operatorname{tr} \left(Y^3 + X^5 \right)$

 Many versions of 3d bosonization/particle-vortex dualities, resembling supersymmetric mirror symmetry, and generalized level-rank dualities of Chern-Simons-matter theories

Thank you