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In 2014, we wrote a paper on calculating the Witten index of 1D GLSM with

N = 2 supersymmetry.

I will discuss some developments during the last 10 years since then.
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Indices in various dimensions

Witten index can be defined for d-dimensional supersymmetric QFTs on

compact manifolds S1 ×Md−1:

I [Md−1] = TrHMd−1
(−1)F

Why do we care?

• Strong coupling dynamics of quantum field theories.

• Counting problems in gravity, string theory.

• Enumerative geometry, topological invariants, etc,.
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What’s understood so far

The best understood backgrounds are the one that preserves two real

supercharges with U(1)R symmetry. Computations in these backgrounds can

be thought of as direct generalizations of [HKY 2014].

I [Md−1] = TrHMd−1
(−1)F

What’s understood so far:

1D: Witten index of N = 2 GLSMs

2D: M1 = S1 Elliptic genus of N = (0, 2) GLSMs

3D: M2 = Σg an arbitrary Riemann surface for N = 2

4D: M3 an arbitrary three-manifolds for N = 2 (*),

M3 an Seifert-manifold for N = 1.

5D: M4 an arbitrary four-manifolds for N = 1 (*)

(*): one susy preserving bg.
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1D



Witten index of 1D N = 2 GLSM

Consider 1d N = 2 Gauge Linear Sigma Models (GLSM). For each U(1) factor

of the gauge group G , one can assign a Fayet-Iliopoulos (FI) parameter

ζ(D) .

The Witten index enjoys integrality and deformation invariance. But the

Q-exactness can be spoiled by the existence of a non-compact direction. There

may exists a codimension-one locus in the space of ζ, across which the Witten

index jump discontinuously.
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Original motivation

When a GLSM describes the effective quantum mechanics of BPS particles in a

4d N = 2 theory, the discontinuity in the Witten index explains the

wall-crossing phenomena therein. The relevant quantity in 4d is the protected

spin character defined in [Gaiotto-Moore-Neitzke 2010][Manschot-Pioline-Sen 2010]:

Ω(γ : y) = TrHBPS
γ

y 2J3 (−y)2I3 .
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Coulomb branch integral of 1d GLSM

Main idea:

(1) Go to the localization scheme which reduces to the path integral down to

a finite-dimensional integral over the classical Coulomb branch

parametrized by u ∈MCoulomb = (T × t)/WG

(2) The u, ū- integral can be written as a total derivative. Schematically,∫
dD

D

∫
MCoulomb

dudū ∂ū(· · · ) ,

where (· · · ) is a meromorphic function.

(3) Dependence on the continuous parameter ζ is encoded in the D-integral.

By carefully performing the integration by parts with this dependence, we

arrive at a universal formula

I (ζ) =
1

|WG |
∑
p

JK-Res(Q(p), ζ) g(u, z)d ru .
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Some applications

• BPS dynamics of 4d N = 2 theories and Quivers.

• Instanton counting problems in higher-dimensional SCFTs.

• Enumerative geometry and higher-dimensional gauge theories. (Today)
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3D



3D: A-twisted indices and partition functions

This idea can be used to construct more general framework that computes

observables in higher-dimensional gauge theories. In 3D, we consider N = 2

theories on a closed Riemann surface:

• The supersymmetric background preserves N = 2 in 1d after the

topological twist.

• The effective quantum mechanics on S1 is described by fluctuations of

nc = h0(E) chiral and nf = h1(E) fermi multiplets which satisfies

nc − nf = deg(E)− g + 1 ,

by Riemann-Roch theorem.

• We integrate over the space of flat connections on Σg .
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Integral formula and the Bethe vacua formalism

Similarly to the 1d case, the path integral can be reduced down to a

finite-dimensional integral over the Coulomb branch. This gives an integral

formula of the 3d twisted index. [Closset-HK 16] [Benini-Zaffaroni 16]

Alternatively, one can reduce the theory on S1 and obtain an effective 2d

N = (2, 2) theory on Σg , which includes towers of KK modes. The twisted

index can be written as [Nekrasov-Shatashvilli 09, 14]

I =
∑

P(x)=0

Hg−1(x) .

where the summation is over the solution to a polynomial equation, which are

in one-to-one correspondence with the 2d massive Coulomb branch vacua.

9



Partition functions on Seifert three-manifolds

This framework can be expanded to the cases where S1 non-trivially fibers over

Σg [Closset-HK-Willett 17] ,

ZMg,p =
∑

P(x)=0

Hg−1(x)F p(x) .

and to an arbitrary closed oriented Seifert manifolds [Closset-HK-Willett 18] .

This includes M3 = S3 or Lens spaces, which have special applications in

SCFTs at the infrared fixed points.
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Some applications to geometry

(1) The effective quantum mechanics on S1 is the sigma model into the

moduli space of (generalized) vortices on Σg , which has applications in the

quantum K-theory. The index computes [Bullimore-Ferrari-HK 18]

χvir(M,E) .

where M is the moduli space of quasi-maps into the Higgs branch.

(2) In general, the 3d twisted index exhibits wall-crossing with respect to “1d

FI parameter”. This allows us to understand the wall-crossing phenomena

associated to the stability condition, e.g., in the moduli space of stable

pairs

(E , φ) ,

where E is a holomorphic vector bundle and φ ∈ H0(E) on Σg .

[Bullimore-Ferrari-HK 19]
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Partition functions on Seifert spaces - Modular data of VOAs

More recently, there has been progress in understanding structure of the vertex

operator algebra associated with 3d N = 2 theories with some twist. There

exists a class of 3d supersymmetric theories which support rational vertex

algebra on the boundary. [Gang-Kim-Lee-Shim-Yamazaki 21]...[Gang-HK-Spencer

23]

The partition functions on Seifert spaces can be used to extract the modular

data:

ZMg,p =
∑

P(x)=0

Hg−1(x)F p(x) =
∑

α:simple modules

S2−2g
0α T−p

αα .

A 3d mirror symmetry predicts various interesting conjectures about the

modular forms (which are characters of these VOAs) and novel dualities among

them. [Ferrari-Garner-HK 23],[Cruetzig-Garner-HK to appear]
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4D



4D: A-twisted partition functions

This framework (at least formally) generalizes to 4d N = 1 theory. The

relevant four-dimensional geometry is an elliptic fibration over a Riemann

surface.

This preserves two real supercharges with U(1)R symmetry. This includes most

of the known observables of 4d N = 1 theories, including superconformal

index, and lens space indices. They can be universally written in the form of

ZMg,p =
∑

P(x)=0

Hg−1(x)F p(x) .

now P(x) is an elliptic equation. [Closset-HK-Willett 18]

This formula has been recently applied to understand the black hole microstate

counting problem with N = 1 symmetry.
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4D N = 2 on an arbitrary four-manifolds

In fact, 4d N = 2 theory can be put on an arbitrary four-manifold M4 with full

topological twist. This background preserves one supercharge. The partition

function on such a background for pure SU(2) theory has been computed in

late 90’s by [Moore-Witten], and can be identified with the Donaldson’s

invariant.

• When b+
2 (M4) 6= 1, the partition function reduces to the computation of

the Seiberg-Witten invariant, which is much easier to compute.

• For b+
2 (M4) = 1, one should also integrate over the Coulomb branch, also

called the “u-plane”. This computation involves interesting theory of

(mock-)modular functions. [Korpas-Manscho-Moore-Nidaiev 2019]...

• Can be dimensionally reduced to compute the fully twisted partition

function of 3d N = 4 theory, which is (for some reason) more difficult to

compute directly.
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5D N=1 on an arbitrary four-manifolds

Supersymmetric correlation functions defined on a compact five-manifold X5

are one of the key tools in studying 5d SQFTs.

〈O(x)...〉X5 =

∫
[dV ] O(x)...e−SX5

[V ]

Compared to lower dimensional SQFTs, very little is known about these objects.
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K-theoretic Donaldson invariant

When M5 = X4 × S1, it is expected to compute the K-theoretic Donaldson

invariants, which is essentially the Dirac index of the instanton moduli space:

〈O(x)...〉X4×S1 =
∑
k

Rd(k)

∫
Mk

Â(Mk) ∧ ch(Ln) ,

where

M =
⊔
k

Mk ,

is the moduli space of G -instantons on X4. This has been computed recently in

mathematical literature for a large class of X4, e.g., in [Göttsche, Nakajima,

Yoshioka 06] [Göttsche, Kool, Williams 19] [Göttsche, Kool 20]

Can we make this relation more precise and provide path integral derivations in

5d supersymmetric gauge theories? [HK-Manschot-Moore-Tao-Zhang, to appear]
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Two approaches

Two approaches for computing the observables in 5d N = 1 theories on

X4 × S1:

(1) U-plane integral

• Reduction to 4d N = 2 effective theories

• Applicable for general closed smooth X4

(2) Localization in G -gauge theories

• Reduction to effective quantum mechanics on S1

• Restricted to toric X4

• useful in understanding geometric interpretation of the partition functions.
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5d N = 1 G -gauge theory

• Supersymmetric G Yang-Mills theory

SYM =
1

g 2
YM

∫
d5x tr

[
1

2
FµνFµν + |Dµσ|2 +

1

2
DABDAB + (fermionic)

]

• Global symmetry group is SU(2)R × U(1)I , where U(1)I is a global

symmetry associated to the current

j = ∗ tr (F ∧ F ) ,

whose charged particles are instanton particles.

• The theory can be put on a smooth X4 × S1 with the Donaldson twist.

The topological reduction gives 1d N = 1 quantum mechanics into the

moduli space of instantons

S1 →M =
⊔
k

Mk .
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Chern-Simons observable

One can turn on the following coupling:

Smixed CS =

∫
X4×S1

F(I ) ∧ Tr

(
A ∧ dA +

2

3
A3

)
+ (SUSY completion) ,

In the presence of the background flux,[
F(I )

2π

]
= n

the above coupling induces a line bundle L on the moduli space M.

The Hilbert space of the effective QM becomes the section of S ⊗ L over M,

and its Witten index computes∑
k

Rd(k)

∫
Mk,ν

Â(Mk,ν) ∧ ec1(L) ,

where ν = w2(P), where P is the principal G -bundle.
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Anomalies

If the target space of SQM is not spin, there can be global anomalies, due to

the fact that

Pfaff ( /D)

is not well-defined on the loop space of moduli space.

The instanton moduli spaces are not always spin. For G = SO(3) on an almost

complex X4 (together with some technical assumption), Mk is not spin if

w2(X4) · w2(P) 6= 0 ,

[Freed, Hopkins, Moore, Witten, unpublished]

But this anomaly can be canceled by the Chern-Simons observable introduced

in the last slide. This coupling provides extra factor in the path integral, so that

Pfaff ( /D) exp

(
−
∮
S1

A(I )

)
,

is well-defined.
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U-plane integral



U-plane integral

Following [Moore, Witten 97], the partition function of effective 4d theory for

b+
2 (X ) > 0 can be written as

ZJ,µ[R, n] = ΦJ,µ[R, n] +
4∑

i=1

Z SW
J,µ,i [R, n] ,

where Φ is the integral over the Coulomb branch, so-called “U-plane integral”

contribution. Z SW is the Seiberg-Witten contribution at the four singular

points in the U-plane, where a BPS particle becomes massless.

• For b+
2 > 1, ZJ,µ is independent of metric on X .

• For b+
2 > 1, ΦJ,µ identically vanishes.

• For b+
2 = 1, the partition functions are expected to jump discontinuously

as a function of metric on X .

• The metric dependence comes through J, the period point. J ∈ H2(X ,R)

with J = ∗J and J2 = 1).
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U-plane integral for b+
2 = 1

ZJ,µ = ΦJ,µ +
4∑

i=1

Z SW
J,µ,i

• For b+
2 = 1, ZJ,µ is a piecewise constant function of J. The dependence

on J only comes from the region U →∞.

• The J-dependence of Φ around the singularities at finite U = Ui are also

non-trivial, but they are canceled with the wall-crossing of Z SW
J,µ,i .

• We can utilize this fact to compute Z SW
J,µ,i for b+

2 > 1.
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Fundamental domain of τ

From the Seiberg-Witten curve, we obtain the relation

U(τ) = ±
(
−4R2 θ2(τ)4 + θ3(τ)4

θ2(τ)2θ3(τ)2
+ 4R4 + 4

)1/2

.

The integral over the U-plane can be written as an integral over the

fundamental domain of τ :

−1 0 1 2 3 4 5 6 7 8

F TF

SF

The fundamental domain is a branched double cover of H/Γ0(4). This is

related to the existence of the Z2 center symmetry, and also to the global

anomaly of effective QM.

23



U-plane integral and wall-crossing

• For b+
2 = 1, by analysing the contribution around τ → i∞, we derive the

wall-crossing formula.

Z J [R, n]−Z J′ [R, n] =
∑

k∈WJ,J′

8
[
νR(τ)C n2

(−1)〈k,K〉q−k2/2e−2πi〈k,nv/2〉
]
q0
,

where WJ,J′ =
{

k | 〈k − n/4, J〉 > 0 and 〈k − n/4, J ′〉 < 0
}
.

• Direct evaluation of the partition function is also possible, which involves

the theory of mock modular forms.
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Toric localization

When X4 is a smooth toric four-manifold, the partition function can be written

as

Z ∼
∑
k

∫
CJ

da

χ∏
i=1

Z(ai , εi1, ε
i
2,R,Λ

i ) ,

where Z(ai , εi1, ε
i
2,R,Λ

i ) is the K-theoretic Nekrasov partition functions on

S1 × C2
εi1ε

i
2

localized at fixed loci.

One can argue that the contour CJ depends on the choice of metric, J. After a

careful analysis of the zero mode integrals as in [HKY 14], we arrive at a

wall-crossing formula,

ZJ,µ[R, n]− ZJ′,µ[R, n] =
∑

k∈WJ,J′

(
res
a=∞

da + res
a=−∞

da

)
Zk,µ(a,R, n) ,

It turns out that this agrees precisely with the WC formula in the U-plane

integral approach.
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Summary and open questions

• The partition functions of supersymmetric gauge theories on backgrounds

that preserves two real supercharges have been computed in dimensions

from 1 to 5.

• This technique has been applied to various counting problems in physics

and mathematics.

• Some partition functions that preserve one supercharge have been

computed in 4 and 5 dimensions, via powerful technique of the

Seiberg-Witten theory. Lower-dimensions?

• These techniques can be generalized to the computations of

six-dimensional gauge theories, or 6d SCFTs which have 5d IR

descriptions.
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