Correlated Resetting Gas

Satya N. Majumdar

Laboratoire de Physique Théorique et Modèles Statistiques,CNRS, Université Paris-Saclay, France

Collaborators

- Marco Biroli (LPTMS, Univ. Paris Saclay)
- Manas Kulkarni (ICTS, Bangalore)
- Hernan Larralde (UNAM, Mexico)
- Gregory Schehr (LPTHE, Univ. Sorbonne)
- Sanjib Sabhapandit (RRI, Bangalore)

Collaborators

- Marco Biroli (LPTMS, Univ. Paris Saclay)
- Manas Kulkarni (ICTS, Bangalore)
- Hernan Larralde (UNAM, Mexico)
- Gregory Schehr (LPTHE, Univ. Sorbonne)
- Sanjib Sabhapandit (RRI, Bangalore)

References:

M. Biroli, H. Larralde, S. N. Majumdar, G. Schehr, "Extreme Statistics and Spacing Distribution in a Brownian Gas Correlated by Resetting", Phys. Rev. Lett., 130, 207101 (2023)

M. Biroli, H. Larralde, S. N. Majumdar, G. Schehr, "Exact extreme, order and sum statistics in a class of strongly correlated system", Phys. Rev. E 109, 014101 (2024).

M. Biroli, M. Kulkarni, S. N. Majumdar, G. Schehr, "Dynamically emergent correlations between particles in a switching harmonic trap ", Phys. Rev. E 109, L032106 (2024).

S. Sabhapandit & S. N. Majumdar, "Noninteracting particles in a harmonic trap with a stochastically driven center ", arXiv: 2404.02480 (to appear in J. Phys. A: Math. Theor.) • Correlated gas in thermal equilibrium: examples and observables

• Correlated gas in **nonequilibrium** stationary state created by resetting

• Exact results for various observables: average density, extreme and order statistics, gap statistics, full counting statistics

• Summary and Conclusions

One dimensional Correlated Gas In Thermal Equilibrium

 N particles on a line with coordinates \Longrightarrow { x_1, x_2, \ldots, x_N }

 $V(x) \rightarrow$ external confining potential

 N particles on a line with coordinates \Longrightarrow { x_1, x_2, \ldots, x_N }

 $V(x) \rightarrow$ external confining potential

Energy of the gas:

In thermal equilibrium, the joint distribution of the particle positions:

$$
P(x_1, x_2, \ldots, x_N) = \frac{1}{Z} e^{-\beta E[\{x_i\}]}
$$

In thermal equilibrium, the joint distribution of the particle positions:

$$
P(x_1, x_2, \ldots, x_N) = \frac{1}{Z} e^{-\beta E[\{x_i\}]} \neq p(x_1) p(x_2) \ldots p(x_N)
$$

No **factorization** in the presence of **interactions**

Given the joint distribution:

$$
P(x_1, x_2, \ldots, x_N) = \frac{1}{Z} e^{-\beta E[\{x_i\}]}
$$

Given the joint distribution:

$$
P(x_1, x_2, \ldots, x_N) = \frac{1}{Z} e^{-\beta E[\{x_i\}]}
$$

• Average density: $\rho(x, N) = \frac{1}{N} \sum$ N $\sum_{i=1} \langle \delta(x_i - x) \rangle$

Given the joint distribution:

$$
P(x_1, x_2, \ldots, x_N) = \frac{1}{Z} e^{-\beta E[\{x_i\}]}
$$

• Average density: $\rho(x, N) = \frac{1}{N} \sum \langle \delta(x_i - x) \rangle$ • Order statistics: $\{x_1, x_2, \ldots, x_N\} \longrightarrow \{M_1 > M_2 > M_3 > \ldots > M_N\}$

N

Given the joint distribution:

$$
P(x_1, x_2, \ldots, x_N) = \frac{1}{Z} e^{-\beta E[\{x_i\}]}
$$

• Average density: $\rho(x, N) = \frac{1}{N} \sum_{n=1}^{N}$ $\langle \delta(x_i - x) \rangle$

• Order statistics: $\{x_1, x_2, \ldots, x_N\} \longrightarrow \{M_1 > M_2 > M_3 > \ldots > M_N\}$

• Gap/spacing statistcs: $d_k = M_k - M_{k+1} \longrightarrow k$ -th gap

Given the joint distribution:

$$
P(x_1, x_2, \ldots, x_N) = \frac{1}{Z} e^{-\beta E[\{x_i\}]}
$$

• Average density: $\rho(x, N) = \frac{1}{N} \sum_{n=1}^{N}$ $\langle \delta(x_i - x) \rangle$

• Order statistics: $\{x_1, x_2, \ldots, x_N\} \longrightarrow \{M_1 > M_2 > M_3 > \ldots > M_N\}$

• Gap/spacing statistcs: $d_k = M_k - M_{k+1} \longrightarrow k$ -th gap

• Full counting statistics: Prob. $[N_L, N]$ where N_L denotes the number of particles in the interval $[-L, L]$

Given the joint distribution:

$$
P(x_1, x_2, \ldots, x_N) = \frac{1}{Z} e^{-\beta E[\{x_i\}]}
$$

• Average density: $\rho(x, N) = \frac{1}{N} \sum_{n=1}^{N}$ $\langle \delta(x_i - x) \rangle$

• Order statistics: $\{x_1, x_2, \ldots, x_N\} \longrightarrow \{M_1 > M_2 > M_3 > \ldots > M_N\}$

• Gap/spacing statistcs: $d_k = M_k - M_{k+1} \longrightarrow k$ -th gap

• Full counting statistics: $\text{Prob.}[N_L, N]$ where N_L denotes the number of particles in the interval $[-L, L]$

Generally hard to compute for a **correlated/interacting** gas!

Ideal gas: no interaction

k⊣h gap: d_k=M_k−M_{k+1} In the absence of interactions Energy: $E[\{x_i\}] = \sum V(x_i)$ N $i=1$ Joint distribution factorises (i.i.d) $P({x_i}) = p(x_1)p(x_2)...p(x_N)$ where $p(x) = \frac{e^{-\beta V(x)}}{\int dx/a^{-\beta V(x)}}$ \int dx′ e^{−β V(x′)}

Ideal gas: no interaction

k⊣h gap: d_k=M_k−M_{k+1} In the absence of interactions Energy: $E[\{x_i\}] = \sum V(x_i)$ N $i=1$ Joint distribution **factorises** (i.i.d) $P({x_i}) = p(x_1)p(x_2)...p(x_N)$ where $p(x) = \frac{e^{-\beta V(x)}}{\int dx/a^{-\beta V(x)}}$ \int dx′ e^{−β V(x′)}

All observables are exactly computable in terms of $p(x)$

Ideal gas: no interaction

k⊣h gap: d_k=M_k−M_{k+1} In the absence of interactions Energy: $E[\{x_i\}] = \sum^N$ $i=1$ $V(x_i)$ Joint distribution **factorises** (i.i.d) $P({x_i}) = p(x_1)p(x_2)...p(x_N)$ where $p(x) = \frac{e^{-\beta V(x)}}{\int dx/a^{-\beta V(x)}}$

 \int dx′ e^{−β V(x′)}

All observables are exactly computable in terms of $p(x)$

• Average density:
$$
\rho(x, N) = \frac{1}{N} \sum_{i=1}^{N} \langle \delta(x_i - x) \rangle = p(x)
$$

- Distribution of the k-th maximum $M_k \implies$ Order statistics
- Distribution of the k-th gap $d_k = M_k M_{k+1}$
- Full counting statistics (FCS): $Prob.[N_L, N]$

Each of the N i.i.d variables is distributed via $p(x)$

Each of the N i.i.d variables is distributed via $p(x)$

• Order Statistics: Distribution of the k -th maximum M_k

 $\text{Prob.}[M_k = w] = \frac{N!}{(k-1)!(N-k)!}p(w) \left[\int_w^{\infty} p(y)dy\right]^{k-1} \left[\int_{-\infty}^{w} p(y)dy\right]^{N-k}$

Each of the N i.i.d variables is distributed via $p(x)$

• Order Statistics: Distribution of the k -th maximum M_k

 $\text{Prob.}[M_k = w] = \frac{N!}{(k-1)!(N-k)!}p(w) \left[\int_w^{\infty} p(y)dy\right]^{k-1} \left[\int_{-\infty}^{w} p(y)dy\right]^{N-k}$

• Gap statistics: Distribution of $d_k = M_k - M_{k+1} \implies$ requires the joint pdf of M_k and $M_{k+1} \Rightarrow$ can be expressed exactly in terms of $p(x)$

Each of the N i.i.d variables is distributed via $p(x)$

• Order Statistics: Distribution of the k -th maximum M_k

 $\text{Prob.}[M_k = w] = \frac{N!}{(k-1)!(N-k)!}p(w) \left[\int_w^{\infty} p(y)dy\right]^{k-1} \left[\int_{-\infty}^{w} p(y)dy\right]^{N-k}$

• Gap statistics: Distribution of $d_k = M_k - M_{k+1} \implies$ requires the joint pdf of M_k and $M_{k+1} \Rightarrow$ can be expressed exactly in terms of $p(x)$

• Full Counting Statistics:

 $\text{Prob.}[N_L, N] = {N \choose N_L} q_L^{N_I} (1 - q_L)^{N - N_L}$ where $q_L = \int_{-L}^{L} p(y) dy$ $N_L \Rightarrow$ no. of particles in the interval $[-L, L]$

Example 1 of a correlated gas: Dyson's log-gas

Energy:

$$
E[{x_i}] = \frac{N}{2} \sum_{i=1}^{N} x_i^2 - \frac{1}{2} \sum_{i \neq j} \log |x_i - x_j|
$$

pairwise logarithmic repulsion Dyson, 1962

Example 1 of a correlated gas: Dyson's log-gas

Energy:

$$
E[{x_i}] = \frac{N}{2} \sum_{i=1}^{N} x_i^2 - \frac{1}{2} \sum_{i \neq j} \log |x_i - x_j|
$$

pairwise logarithmic repulsion Dyson, 1962

Consider an $(N \times N)$ Gaussian Hermitian random matrix H_{ii} whose entries are distributed via:

$$
\text{Prob.}[H] \propto \exp \left[-N \sum_{i,j} |H_{ij}|^2\right] \propto \exp \left[-N \operatorname{Tr} \left(H^{\dagger} H\right)\right]
$$

 \implies invariant under unitary rotation (change of basis) (GUE)

Example 1 of a correlated gas: Dyson's log-gas

Energy:

$$
E[{x_i}] = \frac{N}{2} \sum_{i=1}^{N} x_i^2 - \frac{1}{2} \sum_{i \neq j} \log |x_i - x_j|
$$

pairwise logarithmic repulsion Dyson, 1962

Consider an $(N \times N)$ Gaussian Hermitian random matrix H_{ii} whose entries are distributed via:

$$
\text{Prob.}[H] \propto \exp \left[-N \sum_{i,j} |H_{ij}|^2\right] \propto \exp \left[-N \operatorname{Tr} \left(H^{\dagger} H\right)\right]
$$

 \implies invariant under unitary rotation (change of basis) (GUE) N real eigenvalues: $\{\lambda_1, \lambda_2, ..., \lambda_N\} \longrightarrow$ strongly correlated

Dyson's log-gas

Joint distribution of eigenvalues of an $(N \times N)$ Gaussian Hermitian random matrix (Wigner, 1951):

$$
P(\{\lambda_i\}) = \frac{1}{Z_N} \exp \left[-N \sum_{i=1}^N \lambda_i^2 \right] \prod_{i < j} |\lambda_i - \lambda_j|^2
$$

Dyson's log-gas

Joint distribution of eigenvalues of an $(N \times N)$ Gaussian Hermitian random matrix (Wigner, 1951):

$$
P(\{\lambda_i\}) = \frac{1}{Z_N} \exp\left[-N \sum_{i=1}^N \lambda_i^2\right] \prod_{i < j} |\lambda_i - \lambda_j|^2
$$
\n
$$
\propto \exp\left[-\left(N \sum_{i=1}^N \lambda_i^2 - \sum_{i \neq j} \log|\lambda_i - \lambda_j|\right)\right] \propto e^{-2E[\{\lambda_i\}]}
$$

Dyson's log-gas

Joint distribution of eigenvalues of an $(N \times N)$ Gaussian Hermitian random matrix (Wigner, 1951):

$$
P(\{\lambda_i\}) = \frac{1}{Z_N} \exp\left[-N \sum_{i=1}^N \lambda_i^2\right] \prod_{i < j} |\lambda_i - \lambda_j|^2
$$
\n
$$
\propto \exp\left[-\left(N \sum_{i=1}^N \lambda_i^2 - \sum_{i \neq j} \log|\lambda_i - \lambda_j|\right)\right] \propto e^{-2E[\{\lambda_i\}]}
$$

Hence one can identify the eigenvalues $\{\lambda_1, \lambda_2, \ldots, \lambda_N\} \equiv \{x_1, x_2, \ldots, x_N\}$ as the positions of a 1-d gas of N particles with pairwise log-repulsion with $\beta = 2$ (Dyson, 1962)

Most of the observables can be computed exactly \implies not that easy !

• Average density $(N \to \infty \text{ limit})$: $\rho(x, N) \equiv \rho_N(\lambda) \to \frac{1}{\pi}$ $\sqrt{2-\lambda^2}$

- Average density $(N \to \infty \text{ limit})$: $\rho(x, N) \equiv \rho_N(\lambda) \to \frac{1}{\pi}$ $\sqrt{2-\lambda^2}$
- Largest eigenvalue \longrightarrow Tracy-Widom distribution

• Average density $(N \to \infty \text{ limit})$: $\rho(x, N) \equiv \rho_N(\lambda) \to \frac{1}{\pi}$ $\sqrt{2-\lambda^2}$

• Largest eigenvalue \longrightarrow Tracy-Widom distribution

Similarly, other observables are also known \implies huge literature

S.M. & G. Schehr, "Statistics of Extremes and Records in Random Sequences" (Oxford University Press, 2024)

Energy:

$$
E[{x_i}] = \frac{N^2}{2} \sum_{i=1}^{N} x_i^2 - \alpha N \sum_{i \neq j} |x_i - x_j|
$$

1-d Coulomb (linear) repulsion

Lenard, 1961; Prager, 1962; Baxter, 1963 ...

Again most of the observables can be computed (at least for large N)

Again most of the observables can be computed (at least for large N)

• Average density $\rho(x, N) \to \frac{1}{4\alpha}$ for $-2\alpha \leq x \leq 2\alpha \longrightarrow$ flat density

Again most of the observables can be computed (at least for large N)

- Average density $\rho(x, N) \to \frac{1}{4\alpha}$ for $-2\alpha \leq x \leq 2\alpha \longrightarrow$ flat density
- Extreme, order, gap, full counting statistics \implies recently computed

Dhar, Kundu, S.M., Sabhapandit, Schehr, PRL, 119, 060601 (2017); J. Phys. A: Math. Theor. 51, 295001 (2018)

Flack, S.M., Schehr, J. Stat. Mech. 053211 (2022)
Ex 3: harmonically confined Riesz gas in 1-d

Energy function (with $k > -2$): $E[{x_i}] = \frac{1}{2}\sum^N$ $i=1$ $x_i^2 + \frac{J \operatorname{sgn}(k)}{2}$ $\frac{\sin(k)}{2}$ \sum i≠j $\frac{1}{|x_i-x_j|^k}$ M. Riesz, 1938 Recent survey: M. Lewin, 2022

Ex 3: harmonically confined Riesz gas in 1-d

Special cases:

 $k = -1$ (Jellium model), $k \to 0^+$ (Log-gas) and $k = 2$ (Calogero model)

Ex 3: harmonically confined Riesz gas in 1-d

Special cases:

 $k = -1$ (Jellium model), $k \to 0^+$ (Log-gas) and $k = 2$ (Calogero model)

Average density $\rho(x, N)$ in the large N limit

 \implies computed recently for all $k > -2$

Agarwal, Dhar, Kulkarni, S.M., Mukamel, Schehr, PRL, 123, 100603 (2019) Kethepalli et. al., J. Stat. Mech., 103209 (2021); J. Stat. Mech. 033203 (2022) Santra et. al. PRL, 128, 170603 (2022)

Nonequilibrium Stationary State induced by Stochastic Resettting

Stochastic Resetting

- Natural dynamics =⇒ deterministic/stochastic/classical/quantum
- Resetting at random times and then natural dynamics restarts afresh
- Interval between resettings $\implies p(\tau)$ independently

 \implies renewal process

• If $p(\tau) = r e^{-r\tau} \implies$ Poissonian resetting

M. R. Evans & S.M., PRL, 106, 160601 (2011)

Reviews: Evans, S.M., Schehr, J. Phys. A. : Math. Theor. 53, 193001 (2020); Pal, Kostinski, Reuveni, J. Phys. A. : Math. Theor. 55, 021001 (2022)

Any many-body system evolving under its own stochastic dynamics:

Ex: fluctuating interfaces, Ising model with Glauber dynamics etc.

Any many-body system evolving under its own stochastic dynamics:

Ex: fluctuating interfaces, Ising model with Glauber dynamics etc.

Configuration $C: \{H_1, H_2, \ldots, H_k\} \rightarrow$ heights of an $(1 + 1)$ -dim KPZ/EW interface $\{s_1, s_2, \ldots, s_k\}$ \rightarrow spins in Ising model

Any many-body system evolving under its own stochastic dynamics:

Ex: fluctuating interfaces, Ising model with Glauber dynamics etc.

Configuration $C: \{H_1, H_2, \ldots, H_k\} \rightarrow$ heights of an $(1 + 1)$ -dim KPZ/EW interface $\{s_1, s_2, \ldots, s_k\}$ \rightarrow spins in Ising model

Any many-body system evolving under its own stochastic dynamics:

Ex: fluctuating interfaces, Ising model with Glauber dynamics etc.

Configuration $C: \{H_1, H_2, \ldots, H_k\} \rightarrow$ heights of an $(1 + 1)$ -dim KPZ/EW interface $\{s_1, s_2, \ldots, s_L\}$ \rightarrow spins in Ising model

 \Rightarrow subject to resetting to its initial configuration at a constant rate r

Any many-body system evolving under its own stochastic dynamics:

Ex: fluctuating interfaces, Ising model with Glauber dynamics etc.

Configuration $C: \{H_1, H_2, \ldots, H_k\} \rightarrow$ heights of an $(1 + 1)$ -dim KPZ/EW interface $\{s_1, s_2, \ldots, s_L\}$ \rightarrow spins in Ising model

 \Rightarrow subject to resetting to its initial configuration at a constant rate r

 $P_r(C,t) \longrightarrow$ Prob. that the system is in config. C at time t

Question : How does $P_r(C, t)$ evolve with time?

A renewal equation for $P_r(C,t)$

A renewal equation for $P_r(C,t)$

Renewal equation: Setting $\tau \rightarrow$ time since last resetting before t

$$
P_r(C,t) = e^{-rt} P_0(C,t) + \int_0^t d\tau (r e^{-r\tau}) P_0(C,\tau)
$$

[S. Gupta, S.M., G. Schehr, PRL, 112, 220601 (2014)]

A renewal equation for $P_r(C,t)$

Renewal equation: Setting $\tau \rightarrow$ time since last resetting before t

$$
P_r(C,t) = e^{-rt} P_0(C,t) + \int_0^t d\tau (r e^{-r\tau}) P_0(C,\tau)
$$

[S. Gupta, S.M., G. Schehr, PRL, 112, 220601 (2014)]

As $t \to \infty$, the nonequilibrium stationary state:

$$
P_r(C) = \int_0^\infty d\tau \left(r e^{-r\tau}\right) P_0(C,\tau)
$$

At long times, the system reaches a nonequilibrium stationary state

$$
P_r(C) = \int_0^\infty d\tau \left(r e^{-r\tau}\right) P_0(C,\tau)
$$

At long times, the system reaches a nonequilibrium stationary state

$$
P_r(C) = \int_0^\infty d\tau \left(r e^{-r\tau}\right) P_0(C,\tau)
$$

To determine this stationary state, we need to know the full time-dependent $P_0(C, \tau)$ for the system without resetting at all times τ

 \implies makes it **hard**

At long times, the system reaches a nonequilibrium stationary state

$$
P_r(C) = \int_0^\infty d\tau \left(r e^{-r\tau}\right) P_0(C,\tau)
$$

To determine this stationary state, we need to know the full time-dependent $P_0(C, \tau)$ for the system without resetting at all times τ

 \implies makes it **hard**

Few cases where analytical progress can be made

Examples: Diffusion-Coagulation process, Fluctuating interfaces, Exclusion processes, N independent Brownian motions, Ising model etc.

Durang, Henkel & Park, J. Phys. A, 47, 045002 (2014), ; Gupta, S.M., Schehr, PRL, 112, 220601 (2014); Basu, Kundu, Pal, PRE, 100, 032136 (2019); Magoni, S.M., Schehr, PRR, 2, 033182 (2020) ,...

At long times, the system reaches a nonequilibrium stationary state

$$
P_r(C) = \int_0^\infty d\tau \left(r e^{-r\tau}\right) P_0(C,\tau)
$$

To determine this stationary state, we need to know the full time-dependent $P_0(C, \tau)$ for the system without resetting at all times τ

 \implies makes it **hard**

Few cases where analytical progress can be made

Examples: Diffusion-Coagulation process, Fluctuating interfaces, Exclusion processes, N independent Brownian motions, Ising model etc.

Durang, Henkel & Park, J. Phys. A, 47, 045002 (2014), ; Gupta, S.M., Schehr, PRL, 112, 220601 (2014); Basu, Kundu, Pal, PRE, 100, 032136 (2019); Magoni, S.M., Schehr, PRR, 2, 033182 (2020) ,...

Example: N noninteracting particles in a switching optical trap

M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)

Correlated Resetting Gas

Recent Experiments on Stochastic Resetting

Recent experiments on stochastic resetting using optical traps set-up: Tal-Friedman, Pal, Sekhon, Reuveni, Roichman, J. Phys. Chem. Lett. 11, 7350 (2020) Besga, Bovon, Petrosyan, S.M., Ciliberto, Phys. Rev. Res. 2, 032029 (2020) → 1-dimension Faisant, Besga, Petrosyan, Ciliberto, S.M. J. Stat. Mech. 113203 (2021) → 2-dimension

Experimental protocol for resetting

- 1. Free diffusion for a certain period (deterministic or random)
- 2. Switch on an optical harmonic trap and the let the particle relax to its equilibrium distribution using Engineered Swift Equilibration (ESE) technique \implies mimics instantaneous resetting

Steps 1 and 2 alternate ...

Exp. protocol for resetting

- 1. Free diffusion of N noninteracting particles during an exponentially distributed period
- 2. Switch on an optical harmonic trap and the let the particles relax to their equilibrium distribution \implies mimics instantaneous resetting

Steps 1 and 2 alternate ...

Consider N Brownian motions (independent) that are **simultaneously** reset with rate r to the origin

Consider N Brownian motions (independent) that are **simultaneously** reset with rate r to the origin

The joint position distribution approaches a nonequilibrium stationary state (NESS) at long times

Consider N Brownian motions (independent) that are **simultaneously** reset with rate r to the origin

The joint position distribution approaches a nonequilibrium stationary state (NESS) at long times

$$
P_r^{\rm st}\left(\left\{x_i\right\}\right)=r\,\int_0^\infty d\tau\,e^{-r\,\tau}\,\prod_{i=1}^N\frac{1}{\sqrt{4\pi D\tau}}\,e^{-x_i^2/4D\tau}
$$

Consider N Brownian motions (independent) that are **simultaneously** reset with rate r to the origin

The joint position distribution approaches a nonequilibrium stationary state (NESS) at long times

$$
P_r^{\rm st}\left(\left\{x_i\right\}\right)=r\,\int_0^\infty d\tau\,e^{-r\,\tau}\,\prod_{i=1}^N\frac{1}{\sqrt{4\pi D\tau}}\,e^{-x_i^2/4D\tau}
$$

The joint distribution does not **factorize** \implies **correlated** resetting gas

M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)

Joint distribution:

$$
P_r^{\text{st}}(\lbrace x_i \rbrace) = r \int_0^\infty d\tau \, e^{-r\tau} \prod_{i=1}^N p_0(x_i, \tau)
$$

$$
p_0(x, \tau) = \frac{1}{\sqrt{4\pi D\tau}} e^{-x_i^2/4D\tau}
$$

In this model, interactions between particles are not built-in, but the correlations are generated by the dynamics (simultaneous resetting), that persist all the way to the stationary state

Joint distribution:

$$
P_r^{\text{st}}(\lbrace x_i \rbrace) = r \int_0^\infty d\tau \, e^{-r\tau} \prod_{i=1}^N p_0(x_i, \tau)
$$

$$
p_0(x, \tau) = \frac{1}{\sqrt{4\pi D\tau}} e^{-x_i^2/4D\tau}
$$

In this model, interactions between particles are not built-in, but the correlations are generated by the dynamics (simultaneous resetting), that persist all the way to the stationary state

The gas is **strongly** correlated in the NESS

 $\langle x_i^2 x_j^2 \rangle - \langle x_i^2 \rangle \langle x_j^2 \rangle = 4 \frac{D^2}{r^2}$ $\frac{D^2}{r^2} \Longrightarrow$ attractive all-to-all interaction

Joint distribution:

$$
P_r^{\rm st}\left({\{x_i\}}\right) = r \int_0^\infty d\tau \, e^{-r\tau} \, \prod_{i=1}^N \frac{1}{\sqrt{4\pi D\tau}} \, e^{-x_i^2/4D\tau}
$$

Joint distribution:

$$
P_r^{\rm st}(\{x_i\}) = r \int_0^\infty d\tau \, e^{-r\tau} \prod_{i=1}^N \frac{1}{\sqrt{4\pi D\tau}} \, e^{-x_i^2/4D\tau}
$$

Despite **strong correlations**, several physical observables can be computed **exactly** in the NESS \implies (Solvable)

- Compute any observable for the ideal gas \Rightarrow 1.1.D variables with distribution $p_0(x, \tau)$ parametrized by $\tau \Longrightarrow$ easy
- Average over the **random** parameter τ using $p(\tau) = r e^{-r\tau}$

Joint distribution:

$$
P_r^{\rm st}(\{x_i\}) = r \int_0^\infty d\tau \, e^{-r\tau} \prod_{i=1}^N \frac{1}{\sqrt{4\pi D\tau}} \, e^{-x_i^2/4D\tau}
$$

Despite **strong correlations**, several physical observables can be computed **exactly** in the NESS \implies (Solvable)

- Compute any observable for the ideal gas \Rightarrow 1.1.D variables with distribution $p_0(x, \tau)$ parametrized by $\tau \implies$ easy
- Average over the **random** parameter τ using $p(\tau) = r e^{-r\tau}$

Examples:

- Average density
- Distribution of the k -th maximum: Order statistics
- Spacing distribution
- Full Counting Statistics

M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)

Average Density

Joint distribution:

$$
P_r^{\text{st}}(\{x_i\}) = r \int_0^\infty d\tau \, e^{-r\tau} \prod_{i=1}^N p_0(x_i, \tau)
$$

$$
p_0(x, \tau) = \frac{1}{\sqrt{4\pi D\tau}} e^{-x_i^2/4D\tau}
$$

Average density:

 $\rho(x,N)=\frac{1}{N}\!\sum^{N}$ $\sum_{i=1}^N \langle \delta(x_i - x) \rangle = \int P_r^{\rm st}(x, x_2, \ldots, x_N) dx_2 dx_3 \ldots dx_N$

Average Density

Joint distribution:

$$
P_r^{\text{st}}(\{x_i\}) = r \int_0^\infty d\tau \, e^{-r\tau} \prod_{i=1}^N p_0(x_i, \tau)
$$

$$
p_0(x, \tau) = \frac{1}{\sqrt{4\pi D\tau}} e^{-x_i^2/4D\tau}
$$

Average density:

$$
\rho(x, N) = \frac{1}{N} \sum_{i=1}^{N} \langle \delta(x_i - x) \rangle = \int P_r^{\text{st}}(x, x_2, \dots, x_N) \, dx_2 \, dx_3 \dots dx_N
$$

$$
= r \int_0^{\infty} d\tau \, e^{-r\tau} \, p_0(x, \tau) = \frac{\alpha_0}{2} \, \exp[-\alpha_0 |x|]
$$
where $\alpha_0 = \sqrt{r/D}$

 \implies same as the single particle position distribution

 $M_k \Longrightarrow k$ -th maximum Set $k = \alpha N$ $\alpha \sim O(1) \Longrightarrow$ bulk $\alpha \sim O(1/N) \Longrightarrow$ edge

 $M_k \Longrightarrow k$ -th maximum Set $k = \alpha N$ $\alpha \sim O(1) \Longrightarrow$ bulk $\alpha \sim O(1/N) \Longrightarrow$ edge

• Bulk: Prob.[
$$
M_k = w
$$
] $\approx \frac{1}{\Lambda(\alpha)} f\left(\frac{w}{\Lambda(\alpha)}\right)$ where $\Lambda(\alpha) = \sqrt{\frac{4D}{r}} \operatorname{erfc}^{-1}(2\alpha)$

 $M_k \Longrightarrow k$ -th maximum Set $k = \alpha N$ $\alpha \sim O(1) \Longrightarrow$ bulk $\alpha \sim O(1/N) \Longrightarrow$ edge

• Bulk: Prob. $[M_k = w] \approx \frac{1}{\Lambda(\alpha)} f\left(\frac{w}{\Lambda(\alpha)}\right)$) where $\Lambda(\alpha) = \sqrt{\frac{4D}{r}} \, \text{erfc}^{-1}(2 \, \alpha)$

• Edge: Prob. $[M_k = w] \approx \frac{1}{L_N} f\left(\frac{w}{L_N}\right)$ where $L_N = \sqrt{\frac{4D \ln N}{r}}$

 $M_k \Longrightarrow k$ -th maximum Set $k = \alpha N$ $\alpha \sim O(1) \Longrightarrow$ bulk $\alpha \sim O(1/N) \Longrightarrow$ edge

• Bulk: Prob. $[M_k = w] \approx \frac{1}{\Lambda(\alpha)} f\left(\frac{w}{\Lambda(\alpha)}\right)$) where $\Lambda(\alpha) = \sqrt{\frac{4D}{r}} \, \text{erfc}^{-1}(2 \, \alpha)$

• Edge: Prob. $[M_k = w] \approx \frac{1}{L_N} f\left(\frac{w}{L_N}\right)$ where $L_N = \sqrt{\frac{4D \ln N}{r}}$

The scaling function $f(z) = 2 z e^{-z^2} \theta(z) \Longrightarrow$ **universal** (indep. of α)

M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)
Order Statistics

• Bulk: Prob.[
$$
M_k = w
$$
] $\approx \frac{1}{\Lambda(\alpha)} f\left(\frac{w}{\Lambda(\alpha)}\right)$ where $\Lambda(\alpha) = \sqrt{\frac{4D}{r}} \operatorname{erfc}^{-1}(2\alpha)$

• Edge: Prob. $[M_k = w] \approx \frac{1}{L_N} f\left(\frac{w}{L_N}\right)$ where $L_N = \sqrt{\frac{4D \ln N}{r}}$

The scaling function $f(z) = 2 z e^{-z^2} \theta(z) \Longrightarrow$ **universal** (indep. of α)

 $M_k \Longrightarrow k$ -th maximum k-th gap: $d_k = M_k - M_{k+1}$ Set $k = \alpha N$ $\alpha \sim O(1) \Longrightarrow$ bulk $\alpha \sim O(1/N) \Longrightarrow$ edge

 $M_k \Longrightarrow k$ -th maximum k-th gap: $d_k = M_k - M_{k+1}$ Set $k = \alpha N$ $\alpha \sim O(1) \Longrightarrow$ bulk $\alpha \sim O(1/N) \Longrightarrow$ edge

• Bulk: Prob.[
$$
d_k = g
$$
] $\approx \frac{1}{\lambda_N(\alpha)} h\left(\frac{g}{\lambda_N(\alpha)}\right)$ where $\lambda_N(\alpha) = \frac{1}{b\sqrt{r}N}$ with
 $b = \exp\left(-\left[\text{erfc}^{-1}(2\alpha)\right]^2\right) / \sqrt{4\pi D}$

 $M_k \Longrightarrow k$ -th maximum k-th gap: $d_k = M_k - M_{k+1}$ Set $k = \alpha N$ $\alpha \sim O(1) \Longrightarrow$ bulk $\alpha \sim O(1/N) \Longrightarrow$ edge

• Bulk: Prob. $[d_k = g] \approx \frac{1}{\lambda_N(\alpha)} h\left(\frac{g}{\lambda_N(\alpha)}\right)$) where $\lambda_N(\alpha) = \frac{1}{b\sqrt{r}N}$ with $b = \exp \left(-\left[\text{erfc}^{-1}(2\,\alpha)\right]^2\right)/\sqrt{4\pi D}$

• Edge: $\text{Prob.}[d_k = g] \approx \frac{1}{l_N(k)} h\left(\frac{g}{l_N(k)}\right)$ where $I_N(k) = \sqrt{\frac{D}{r k^2 \ln N}}$

 $M_k \Longrightarrow k$ -th maximum k-th gap: $d_k = M_k - M_{k+1}$ Set $k = \alpha N$ $\alpha \sim O(1) \Longrightarrow$ bulk $\alpha \sim O(1/N) \Longrightarrow$ edge

• Bulk: Prob. $[d_k = g] \approx \frac{1}{\lambda_N(\alpha)} h\left(\frac{g}{\lambda_N(\alpha)}\right)$) where $\lambda_N(\alpha) = \frac{1}{b\sqrt{r}N}$ with $b = \exp \left(-\left[\text{erfc}^{-1}(2\,\alpha)\right]^2\right)/\sqrt{4\pi D}$

• Edge: $\text{Prob.}[d_k = g] \approx \frac{1}{l_N(k)} h\left(\frac{g}{l_N(k)}\right)$ where $I_N(k) = \sqrt{\frac{D}{r k^2 \ln N}}$

The scaling function $h(z) = 2 \int_0^\infty du \, e^{-u^2 - z/u} \quad (z \ge 0)$ \implies universal (indep. of α)

The gap scaling function: $h(z) = 2 \int_0^\infty du \, e^{-u^2 - z/u}$ $h(z) \rightarrow \sqrt{ }$ as $z \rightarrow 0$ $h(z) \sim \exp[-3(z/2)^{2/3}]$ as $z \to \infty$

• Bulk: $\text{Prob.}[d_k = g] \approx \frac{1}{\lambda_N(\alpha)} h\left(\frac{g}{\lambda_N(\alpha)}\right)$) where $\lambda_N(\alpha) = \frac{1}{b\sqrt{r}N}$ with $\vec{b} = \exp \left(-\left[\text{erfc}^{-1}(2\,\alpha)\right]^2\right) / \sqrt{4\pi D}$ • Edge: $\text{Prob.}[d_k = g] \approx \frac{1}{l_N(k)} h\left(\frac{g}{l_N(k)}\right)$) where $I_N(k) = \sqrt{\frac{D}{r k^2 \ln N}}$ The scaling function $h(z) = 2 \int_0^\infty du \, e^{-u^2 - z/u} \quad (z \ge 0)$ \Longrightarrow universal (indep. of α)

 $N_L \implies$ number of particles in $[-L, L]$

Clearly, $0 \leq N_L \leq N$

 $P(N_L, N) = ?$

 $N_L \implies$ number of particles in $[-L, L]$

Clearly, $0 \leq N_L \leq N$

 $P(N_L, N) = ?$

Full Counting Statistics: $P(N_L, N) \approx \frac{1}{N} H(\frac{N_L}{N} = \kappa)$ $(0 \le \kappa \le 1)$

 $N_l \implies$ number of particles in $[-L, L]$

Clearly, $0 \leq N_L \leq N$

 $P(N_L, N) = ?$

Full Counting Statistics: $P(N_L, N) \approx \frac{1}{N} H(\frac{N_L}{N} = \kappa)$ $(0 \le \kappa \le 1)$ where the scaling function:

$$
H(\kappa) = \gamma \sqrt{\pi} \left[u(\kappa) \right]^{-3} \exp \left[-\gamma u^{-2}(\kappa) + u^{2}(\kappa) \right]
$$

with $\gamma=r\,L^2/(4D)$ and $u(\kappa)=\text{erf}^{-1}(\kappa)$

The scaling function $H(\kappa)$ $H(\kappa) \rightarrow \frac{8\gamma}{\pi \kappa^3} \, \exp \left[- \frac{4\gamma}{\pi \, \kappa^2} \right]$ as $\kappa \rightarrow 0$ $H(\kappa) \rightarrow \frac{\gamma \sqrt{\pi}}{(1-\kappa) \left[\ln(1-\kappa)\right]^{3/2}}$ as $\kappa \rightarrow 1$

Full Counting Statistics: $P(N_L, N) \approx \frac{1}{N} H(\frac{N_L}{N} = \kappa)$ $(0 \le \kappa \le 1)$ where the scaling function:

$$
H(\kappa) = \gamma \sqrt{\pi} \left[u(\kappa) \right]^{-3} \exp \left[-\gamma u^{-2}(\kappa) + u^{2}(\kappa) \right]
$$

with $\gamma=r\,L^2/(4D)$ and $u(\kappa)=\text{erf}^{-1}(\kappa)$

Generalisations

The structure of the joint distribution for N independent particles driven by simultaneous resetting is very general:

$$
P_r^{\rm st}(\{x_i\})=r\int_0^\infty d\tau\,e^{-r\,\tau}\prod_{i=1}^N p_0(x_i,\tau)
$$

where $p_0(x, \tau)$ can represent any single particle motion, not necessarily difusion

Generalisations

The structure of the joint distribution for N independent particles driven by simultaneous resetting is very general:

$$
P_r^{\rm st}(\{x_i\})=r\int_0^\infty d\tau\,e^{-r\,\tau}\prod_{i=1}^N p_0(x_i,\tau)
$$

where $p_0(x, \tau)$ can represent **any** single particle motion, not necessarily difusion

Ex: ballistic motion, Lévy flights etc.

 \implies a whole class of **solvable** correlated gases in their nonequilibrium stationary state

 \implies a new application of stochastic resetting

M. Biroli, H. Larralde, S. M., G. Schehr, Phys. Rev. E 109, 014101 (2024)

N noninteracting particles in a harmonic trap

N noninteracting particles in a harmonic trap

(1) Protocol 1: Stiffness of the harmonic trap changes from $\mu_1 \rightarrow \mu_2$ with rate r_1 and $\mu_2 \rightarrow \mu_1$ with rate r_2

 \implies drives the system into a correlated NESS

Biroli, Kulkarni, S.M., Schehr, PRE, 109, L032106 (2024)

N noninteracting particles in a harmonic trap

(1) Protocol 1: Stiffness of the harmonic trap changes from $\mu_1 \rightarrow \mu_2$ with rate r_1 and $\mu_2 \rightarrow \mu_1$ with rate r_2

 \implies drives the system into a correlated NESS

Biroli, Kulkarni, S.M., Schehr, PRE, 109, L032106 (2024)

- (2) Protocol 2: The center of the harmonic trap performs a stochastic motion
	- \implies drives the system into a correlated NESS

Sabhapandit, S.M., arXiv: 2404.02480

In both protocols, the NESS has the CIID (conditionally independent and identically distributed) structure

$$
P_{\rm st}(x_1,x_2,\ldots,x_N)=\int_{-\infty}^{\infty}du\,h(u)\prod_{i=1}^N p(x_i|u)
$$

This CIID structure makes the problem **solvable** for various observables such as average density, spacing distribution, extreme statistics, full counting statistics etc.

Biroli, Kulkarni, S.M., Schehr, PRE, 109, L032106 (2024); Sabhapandit, S.M., arXiv: 2404.02480

Summary and Conclusions

- A simple solvable model of a correlated gas of N diffusing particles in their nonequilibrium stationary state driven by simultaneous stochastic resetting
- Several physical observables are exactly computable and have rich and interesting behaviors, despite being a **strongly correlated** system
- Easily generalisable to a whole new class of solvable correlated gases in their nonequilibrium stationary state \rightarrow ballistic particles, Lévy flights
- Generalisation to N independent particles with two other protocols

Biroli, Larralde, S.M., Schehr, PRL, 130, 207101 (2023); Phys. Rev. E 109, 014101 (2024); Biroli, Kulkarni, S.M., Schehr, PRE, 109, L032106 (2024); Sabhapandit, S.M., arXiv: 2404.02480

Statistics of Extremes and Records in Random **Sequences**

Satya N. Majumdar Grégory Schehr

OXFORD GRADUATE TEXTS