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Plan

• Correlated gas in thermal equilibrium: examples and observables

• Correlated gas in nonequilibrium stationary state created by resetting

• Exact results for various observables: average density, extreme and
order statistics, gap statistics, full counting statistics

• Summary and Conclusions
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One dimensional Correlated Gas

In

Thermal Equilibrium
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Correlated gas in thermal equilibrium

x

V(x)

0

N particles on a line with coordinates
=⇒ {x1, x2, . . . , xN}

V (x) → external confining potential

Energy of the gas:

E [{xi}] =
∑

i

V (xi ) +
∑

i 6=j

V2(xi , xj) +
∑

i 6=j 6=k

V3(xi , xj , xk) + . . .

In thermal equilibrium, the joint distribution of the particle positions:

P(x1, x2, . . . , xN) =
1

Z
e−β E [{xi}] 6= p(x1)p(x2) . . . p(xN)

No factorization in the presence of interactions
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Observables of interest

V(x)

0 x
MM M

123
MN

d
1d2

k−th gap: d
k = M

k
_ Mk+1

−L +L

Given the joint distribution:

P(x1, x2, . . . , xN) =
1

Z
e−β E [{xi}]

• Average density: ρ(x ,N) = 1
N

N∑

i=1

〈δ(xi − x)〉

• Order statistics: {x1, x2, . . . , xN} −→ {M1 > M2 > M3 > . . . > MN}
• Gap/spacing statistcs: dk = Mk −Mk+1 −→ k-th gap

• Full counting statistics: Prob.[NL,N] where NL denotes the number of
particles in the interval [−L, L]

Generally hard to compute for a correlated/interacting gas !
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Ideal gas: no interaction

V(x)

0 x
MM M

123
MN

d
1d2

k−th gap: d
k = M

k
_ Mk+1

−L +L

In the absence of interactions

Energy: E [{xi}] =
N∑

i=1

V (xi )

Joint distribution factorises (i.i.d)

P({xi}) = p(x1)p(x2) . . . p(xN)

where p(x) = e−β V (x)∫
dx′e−β V (x′)

All observables are exactly computable in terms of p(x)

• Average density: ρ(x ,N) = 1
N

N∑

i=1

〈δ(xi − x)〉 = p(x)

• Distribution of the k-th maximum Mk =⇒ Order statistics

• Distribution of the k-th gap dk = Mk −Mk+1

• Full counting statistics (FCS): Prob.[NL,N]
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Exact results for observables in the Ideal gas

Each of the N i.i.d variables is distributed via p(x)

• Order Statistics: Distribution of the k-th maximum Mk

Prob.[Mk = w ] = N!
(k−1)! (N−k)!p(w)

[∫∞
w

p(y)dy
]k−1

[∫ w

−∞ p(y)dy
]N−k

• Gap statistics: Distribution of dk = Mk −Mk+1 =⇒ requires the joint
pdf of Mk and Mk+1 ⇒ can be expressed exactly in terms of p(x)

• Full Counting Statistics:

Prob.[NL,N] =
(
N
NL

)
qL

Nl (1− qL)N−NL where qL =
∫ L

−L p(y) dy

NL ⇒ no. of particles in the interval [−L, L]
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Example 1 of a correlated gas: Dyson’s log-gas

x

V(x)

0

Energy:

E [{xi}] = N
2

N∑

i=1

x2
i −

1

2

∑

i 6=j

log |xi − xj |

pairwise logarithmic repulsion Dyson, 1962

Consider an (N × N) Gaussian Hermitian random matrix Hij whose
entries are distributed via:

Prob.[H] ∝ exp


−N

∑

i,j

|Hij |2

 ∝ exp

[
−N Tr

(
H† H

)]

=⇒invariant under unitary rotation (change of basis) (GUE)

N real eigenvalues: {λ1, λ2, . . . , λN} −→ strongly correlated
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Dyson’s log-gas

Joint distribution of eigenvalues of an (N × N) Gaussian Hermitian
random matrix (Wigner, 1951):

P({λi}) = 1
ZN

exp

[
−N

N∑

i=1

λ2
i

] ∏

i<j

|λi − λj |2

∝ exp


−


N

N∑

i=1

λ2
i −

∑

i 6=j

log |λi − λj |




 ∝ e−2 E [{λi}]

Hence one can identify the eigenvalues {λ1, λ2, . . . λN} ≡ {x1, x2, . . . , xN}
as the positions of a 1-d gas of N particles with pairwise log-repulsion
with β = 2 (Dyson, 1962)

Most of the observables can be computed exactly =⇒ not that easy !
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Observables in the log-gas model

�
p

2 +
p

2 �

⇢N (�)

⇠ O(N� 2
3 )

-Tracy-Widom (TW)�

⇢̃sc(�) =
1

⇡

p
2 � �2

e��N2��(w) e��N�+(w)

• Average density (N →∞ limit): ρ(x ,N) ≡ ρN(λ)→ 1
π

√
2− λ2

• Largest eigenvalue −→ Tracy-Widom distribution

Similarly, other observables are also known =⇒ huge literature

S.M. & G. Schehr, “Statistics of Extremes and Records in Random Sequences”

(Oxford University Press, 2024)
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Ex 2: Jellium model in 1-d

Energy:

E [{xi}] = N2

2

N∑

i=1

x2
i − αN

∑

i 6=j

|xi − xj |

1-d Coulomb (linear) repulsion

Lenard, 1961; Prager, 1962; Baxter, 1963 ...

Again most of the observables can be computed (at least for large N)

• Average density ρ(x ,N)→ 1
4α for −2α ≤ x ≤ 2α −→ flat density

• Extreme, order, gap, full counting statistics =⇒ recently computed

Dhar, Kundu, S.M., Sabhapandit, Schehr, PRL, 119, 060601 (2017); J. Phys. A: Math. Theor.
51, 295001 (2018)

Flack, S.M., Schehr, J. Stat. Mech. 053211 (2022)
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Again most of the observables can be computed (at least for large N)

• Average density ρ(x ,N)→ 1
4α for −2α ≤ x ≤ 2α −→ flat density

• Extreme, order, gap, full counting statistics =⇒ recently computed

Dhar, Kundu, S.M., Sabhapandit, Schehr, PRL, 119, 060601 (2017); J. Phys. A: Math. Theor.
51, 295001 (2018)

Flack, S.M., Schehr, J. Stat. Mech. 053211 (2022)
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Ex 3: harmonically confined Riesz gas in 1-d

1 2 3

confining

parabolic

potential

0

x x x x
Ν

x

Energy function (with k > −2):

E [{xi}] = 1
2

N∑

i=1

x2
i + J sgn(k)

2

∑

i 6=j

1
|xi−xj |k

M. Riesz, 1938

Recent survey: M. Lewin, 2022

Special cases:

k = −1 (Jellium model), k → 0+ (Log-gas) and k = 2 (Calogero model)

Average density ρ(x ,N) in the large N limit

=⇒ computed recently for all k > −2

Agarwal, Dhar, Kulkarni, S.M., Mukamel, Schehr, PRL, 123, 100603 (2019)

Kethepalli et. al., J. Stat. Mech., 103209 (2021); J. Stat. Mech. 033203 (2022)

Santra et. al. PRL, 128, 170603 (2022)
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Nonequilibrium Stationary State

induced by

Stochastic Resettting
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Stochastic Resetting

t

x(t)

0

t3t2t1

• Natural dynamics =⇒ deterministic/stochastic/classical/quantum

• Resetting at random times and then natural dynamics restarts afresh

• Interval between resettings =⇒ p(τ) independently

=⇒ renewal process

• If p(τ) = r e−r τ =⇒ Poissonian resetting

M. R. Evans & S.M., PRL, 106, 160601 (2011)

Reviews: Evans, S.M., Schehr, J. Phys. A. : Math. Theor. 53, 193001 (2020); Pal, Kostinski,

Reuveni, J. Phys. A. : Math. Theor. 55, 021001 (2022)

S.N. Majumdar Correlated Resetting Gas



Stochastic resetting in many-body systems

Any many-body system evolving under its own stochastic dynamics:

Ex: fluctuating interfaces, Ising model with Glauber dynamics etc.

Configuration C : {H1,H2, . . . ,HL} → heights of an (1 + 1)-dim
KPZ/EW interface

{s1, s2, . . . , sL} → spins in Ising model

⇒ subject to resetting to its initial configuration
at a constant rate r

Pr (C , t) −→ Prob. that the system is in config. C at time t

Question :How does Pr (C , t) evolve with time ?
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A renewal equation for Pr(C , t)

C

t time

last reset before t

τ

C0

Renewal equation: Setting τ → time since last resetting before t

Pr (C , t) = e−r t P0(C , t) +

∫ t

0

dτ (r e−r τ )P0(C , τ)

[S. Gupta, S.M., G. Schehr, PRL, 112, 220601 (2014)]

As t →∞, the nonequilibrium stationary state:

Pr (C ) =
∫∞

0
dτ (r e−r τ )P0(C , τ)
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Nonequilibrium Stationary State

At long times, the system reaches a nonequilibrium stationary state

Pr (C ) =

∫ ∞

0

dτ (r e−r τ )P0(C , τ)

To determine this stationary state, we need to know the full
time-dependent P0(C , τ) for the system without resetting at all times τ

=⇒ makes it hard

Few cases where analytical progress can be made

Examples: Diffusion-Coagulation process, Fluctuating interfaces,
Exclusion processes, N independent Brownian motions, Ising model etc.

Durang, Henkel & Park, J. Phys. A, 47, 045002 (2014), ; Gupta, S.M., Schehr, PRL, 112, 220601

(2014); Basu, Kundu, Pal, PRE, 100, 032136 (2019); Magoni, S.M., Schehr, PRR, 2, 033182

(2020),...

Example: N noninteracting particles in a switching optical trap

M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)
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Correlated Resetting Gas
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Recent Experiments on Stochastic Resetting

Recent experiments on stochastic resetting using optical traps set-up:

Tal-Friedman, Pal, Sekhon, Reuveni, Roichman, J. Phys. Chem. Lett. 11, 7350 (2020)

Besga, Bovon, Petrosyan, S.M., Ciliberto, Phys. Rev. Res. 2, 032029 (2020) −→ 1-dimension

Faisant, Besga, Petrosyan, Ciliberto, S.M. J. Stat. Mech. 113203 (2021) −→ 2-dimension

S.N. Majumdar Correlated Resetting Gas



Experimental protocol for resetting

1. Free diffusion for a certain period (deterministic or random)

2. Switch on an optical harmonic trap and the let the particle relax
to its equilibrium distribution using Engineered Swift Equilibration
(ESE) technique =⇒ mimics instantaneous resetting

Steps 1 and 2 alternate ...

free diffusion

sp
ac

e

time
0
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Exp. protocol for resetting

1. Free diffusion of N noninteracting particles during an exponentially
distributed period

2. Switch on an optical harmonic trap and the let the particles relax
to their equilibrium distribution =⇒ mimics instantaneous resetting

Steps 1 and 2 alternate ...

free diffusion

sp
ac

e

0
time
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A simple model of Correlated resetting gas

time 

sp
ac

e

0

Consider N Brownian motions (independent) that are simultaneously
reset with rate r to the origin

The joint position distribution approaches a nonequilibrium stationary
state (NESS) at long times

Pst
r ({xi}) = r

∫ ∞

0

dτ e−r τ
N∏

i=1

1√
4πDτ

e−x
2
i /4Dτ

The joint distribution does not factorize =⇒ correlated resetting gas

M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)
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Solvable Correlated Gas

time 

s
p

a
c
e

0

Joint distribution:

Pst
r ({xi}) = r

∫∞
0

dτ e−r τ
N∏

i=1

p0(xi , τ)

p0(x , τ) = 1√
4πDτ

e−x
2
i /4Dτ

In this model, interactions between particles are not built-in, but the
correlations are generated by the dynamics (simultaneous resetting),
that persist all the way to the stationary state

The gas is strongly correlated in the NESS

〈x2
i x

2
j 〉 − 〈x2

i 〉 〈x2
j 〉 = 4D2

r2 =⇒ attractive all-to-all interaction
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Solvable Correlated Gas

Joint distribution:

Pst
r ({xi}) = r

∫ ∞

0

dτ e−r τ
N∏

i=1

1√
4πDτ

e−x
2
i /4Dτ

Despite strong correlations, several physical observables can be
computed exactly in the NESS =⇒ (Solvable)

• Compute any observable for the ideal gas ⇒ I.I.D variables with
distribution p0(x , τ) parametrized by τ =⇒ easy

• Average over the random parameter τ using p(τ) = r e−r τ

Examples:

• Average density

• Distribution of the k-th maximum: Order statistics

• Spacing distribution

• Full Counting Statistics

M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)
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Average Density

1
N

1
ln N

ρ(x, N)

x0
M1 ∼ ln N

∼ D
r

Joint distribution:

Pst
r ({xi}) = r

∫∞
0

dτ e−r τ
N∏

i=1

p0(xi , τ)

p0(x , τ) = 1√
4πDτ

e−x
2
i /4Dτ

Average density:

ρ(x ,N) = 1
N

N∑

i=1

〈δ(xi − x)〉 =

∫
Pst
r (x , x2, . . . , xN) dx2 dx3 . . . dxN

= r
∫∞

0
dτ e−r τ p0(x , τ) = α0

2 exp[−α0 |x |]

where α0 =
√
r/D

=⇒ same as the single particle position distribution

S.N. Majumdar Correlated Resetting Gas



Average Density

1
N

1
ln N

ρ(x, N)

x0
M1 ∼ ln N

∼ D
r

Joint distribution:

Pst
r ({xi}) = r

∫∞
0

dτ e−r τ
N∏

i=1

p0(xi , τ)

p0(x , τ) = 1√
4πDτ

e−x
2
i /4Dτ

Average density:

ρ(x ,N) = 1
N

N∑

i=1

〈δ(xi − x)〉 =

∫
Pst
r (x , x2, . . . , xN) dx2 dx3 . . . dxN

= r
∫∞

0
dτ e−r τ p0(x , τ) = α0

2 exp[−α0 |x |]

where α0 =
√
r/D

=⇒ same as the single particle position distribution

S.N. Majumdar Correlated Resetting Gas



Order Statistics

1
N

1
ln N

ρ(x, N)

x0
M1 ∼ ln N

∼ D
r

Mk =⇒ k-th maximum

Set k = αN

α ∼ O(1) =⇒ bulk

α ∼ O(1/N) =⇒ edge

• Bulk: Prob.[Mk = w ] ≈ 1
Λ(α) f

(
w

Λ(α)

)
where Λ(α) =

√
4D
r erfc−1(2α)

• Edge: Prob.[Mk = w ] ≈ 1
LN

f
(

w
LN

)
where LN =

√
4D ln N

r

The scaling function f(z) = 2 z e−z2

θ(z) =⇒ universal (indep. of α)

M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)
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Set k = αN

α ∼ O(1) =⇒ bulk

α ∼ O(1/N) =⇒ edge

• Bulk: Prob.[Mk = w ] ≈ 1
Λ(α) f

(
w

Λ(α)

)
where Λ(α) =

√
4D
r erfc−1(2α)

• Edge: Prob.[Mk = w ] ≈ 1
LN

f
(

w
LN

)
where LN =

√
4D ln N

r

The scaling function f(z) = 2 z e−z2

θ(z) =⇒ universal (indep. of α)

M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)

S.N. Majumdar Correlated Resetting Gas



Order Statistics

• Bulk: Prob.[Mk = w ] ≈ 1
Λ(α) f

(
w

Λ(α)

)
where Λ(α) =

√
4D
r erfc−1(2α)

• Edge: Prob.[Mk = w ] ≈ 1
LN

f
(

w
LN

)
where LN =

√
4D ln N

r

The scaling function f(z) = 2 z e−z2

θ(z) =⇒ universal (indep. of α)

M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)

S.N. Majumdar Correlated Resetting Gas



Gap/Spacing Statistics

1
N

1
ln N

ρ(x, N)

x0
M1 ∼ ln N

∼ D
r

Mk =⇒ k-th maximum

k-th gap: dk = Mk −Mk+1

Set k = αN

α ∼ O(1) =⇒ bulk

α ∼ O(1/N) =⇒ edge

• Bulk: Prob.[dk = g ] ≈ 1
λN (α) h

(
g

λN (α)

)
where λN(α) = 1

b
√
r N

with

b = exp
(
−[erfc−1(2α)]2

)
/
√

4πD

• Edge: Prob.[dk = g ] ≈ 1
lN (k) h

(
g

lN (k)

)
where lN(k) =

√
D

r k2 ln N

The scaling function h(z) = 2
∫∞

0
du e−u

2−z/u (z ≥ 0)

=⇒ universal (indep. of α)
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Gap/Spacing Statistics

The gap scaling function:

h(z) = 2
∫∞
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du e−u
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Full Counting Statistics

1
N

1
ln N

ρ(x, N)

x0
M1 ∼ ln N

∼ D
r

NL =⇒ number of particles in [−L, L]

Clearly, 0 ≤ NL ≤ N

P(NL,N) =?

Full Counting Statistics: P(NL,N) ≈ 1
N H

(
NL

N = κ
)

(0 ≤ κ ≤ 1)

where the scaling function:

H(κ) = γ
√
π [u(κ)]−3 exp

[
−γ u−2(κ) + u2(κ)

]

with γ = r L2/(4D) and u(κ) = erf−1(κ)
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Full Counting Statistics

The scaling function H(κ)

H(κ)→ 8γ
π κ3 exp

[
− 4γ
π κ2

]
as κ→ 0

H(κ)→ γ
√
π

(1−κ) [ln(1−κ)]3/2 as κ→ 1

Full Counting Statistics: P(NL,N) ≈ 1
N H
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NL

N = κ
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(0 ≤ κ ≤ 1)

where the scaling function:
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Generalisations

The structure of the joint distribution for N independent particles driven
by simultaneous resetting is very general:

Pst
r ({xi}) = r

∫ ∞

0

dτ e−r τ
N∏

i=1

p0(xi , τ)

where p0(x , τ) can represent any single particle motion, not necessarily
difusion

Ex: ballistic motion, Lévy flights etc.

=⇒ a whole class of solvable correlated gases in their
nonequilibrium stationary state

=⇒ a new application of stochastic resetting

M. Biroli, H. Larralde, S. M., G. Schehr, Phys. Rev. E 109, 014101 (2024)
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Exact stationary states for two other protocols

N noninteracting particles in a harmonic trap

(1) Protocol 1: Stiffness of the harmonic trap changes from µ1 → µ2

with rate r1 and µ2 → µ1 with rate r2

=⇒ drives the system into a correlated NESS

Biroli, Kulkarni, S.M., Schehr, PRE, 109, L032106 (2024)

(2) Protocol 2: The center of the harmonic trap performs a stochastic
motion

=⇒ drives the system into a correlated NESS
Sabhapandit, S.M., arXiv: 2404.02480
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Exact stationary states for two other protocols

In both protocols, the NESS has the CIID (conditionally independent and
identically distributed) structure

Pst(x1, x2, . . . , xN) =

∫ ∞

−∞
du h(u)

N∏

i=1

p(xi |u)

This CIID structure makes the problem solvable for various observables
such as average density, spacing distribution, extreme statistics, full
counting statistics etc.

Biroli, Kulkarni, S.M., Schehr, PRE, 109, L032106 (2024); Sabhapandit, S.M., arXiv: 2404.02480
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Summary and Conclusions

• A simple solvable model of a correlated gas of N diffusing particles in
their nonequilibrium stationary state driven by simultaneous stochastic
resetting

• Several physical observables are exactly computable and have rich and
interesting behaviors, despite being a strongly correlated system

• Easily generalisable to a whole new class of solvable correlated gases in
their nonequilibrium stationary state −→ ballistic particles, Lévy flights

• Generalisation to N independent particles with two other protocols

Biroli, Larralde, S.M., Schehr, PRL, 130, 207101 (2023); Phys. Rev. E 109, 014101 (2024); Biroli,

Kulkarni, S.M., Schehr, PRE, 109, L032106 (2024); Sabhapandit, S.M., arXiv: 2404.02480
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