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I. PRELIMINARIES

� Natural Units:

c = 2.998× 108 meters/second = 1

~ =
h

2π
= 1.054572× 10−34 joules · seconds = 1 (1)

� Mass dimensions:

– Length, Time, Energy, Momentum

c = ~ = 1 , E = ~ν −→ [Length] = [Time] ; [Energy] = −[Time]

E = mc2 −→ [Energy] = [Mass] = +1 ; [Length] = [Time] = −1

p = mc −→ [Momentum] = [Mass] = +1 ;

[Energy] = [Momentum] = +1 ; [Length] = [Time] = −1 (2)

– Action, Lagrangian, Fields

S =

∫
d4xL : [S] = 0 , [d4x] = −4 −→ [L] = 4

Lspin−0 kinetic =
1

2
(∂µφ)(∂µφ) −→ [φ] = 1

Lspin−1/2 kinetic = ψ̄ (i∂µγ
µ)ψ −→ [ψ] = 3/2 (3)

� Conversion: cross section 1

1 GeV = 1.602× 10−10 joules

1

GeV2 =
1

GeV2 ~
2c2 =

(1.054572× 10−34)2(2.998× 108)2

(1.602× 10−10)2
meters2 = 3.894× 10−32=8−12−28 meters2

= 3.894× 108 picobarn (4)

� LHC:

TABLE I. The SM cross sections from Ref. [3] taking MH = 125 GeV: ggF from Table 191, VBF from Tables 25 and 26, WH
from Table 223, ZH from Table 225, ttH from Table 231, tHq from Table 237, and bbH from Table 247.

√
s (TeV) ggF (pb) VBF (fb) WH (fb) ZH (fb) ttH (fb) tHq (fb) tHW (fb) bbH (fb)

7 16.85 1241.4 577.30 339.10 88.78 12.26 − 155.20

8 21.42 1601.2 702.50 420.70 133.0 18.69 − 202.10

13 48.57 3781.7 1373.00 883.70 507.2 74.25 15.2 488.00

– Run 1 (2011-2012): 5/fb @ 7 TeV + 20/fb @ 6 TeV

– Run 2 (2015-2018): ∼150/fb @ 13 TeV per experiment: NH = σ× Luminosity ' 60 pb× 150/fb = 9, 000, 000

– Run 3 (2022-2025): ∼300(?)/fb @ 13.6 TeV

– · · ·

1 The origin of the term barn comes from the fact that inducing nuclear fission by hitting 235U with neutrons is as easy as hitting the broad
side of a barn. The inelastic neutron-235U scattering cross section is around 1 barn= 10−28 m2 at E ∼ 1 MeV.
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II. U(1)Q GAUGE SYMMETRY [1]

In this section, we follow the notations and conventions in Chapter 8 of Ref. [1].

We aim to find:

� Maxwell tensor:

Fµν = ∂µAν − ∂νAµ (5)

which is invariant under the gauge tansformation

Aµ(x)→ Aµ(x) + ∂µα(x) (6)

for any function α(x). Incidentally, the mass term 1
2m

2A2
µ breaks the gauge symmetry.

� Covariant derivative: Dµφ ≡ (∂µ − ieQAµ)φ

φ −→ eiQα(x)φ

Aµ −→ Aµ +
1

e
∂µα(x)

Dµφ −→ eiQα(x)Dµφ (7)

The charge of the field φ is denoted by Q, 1/e appears in the gauge transformation of Aµ, and the combination
−ieQ is for the covariant detivative:

A. Spin-0 field

Let’s start with a spin-0 scalar field φ(x) with

� Lagrangian:

L(x) =
1

2
∂µφ(x) ∂µφ(x) − 1

2
m2 φ(x)2 (8)

� Equation of motion: 2 (
� +m2

)
φ = 0 (9)

� Energy Density: 3

E =
∂L

∂(∂tφ)
(∂tφ)− L = (∂tφ)

2 − 1

2

[
(∂tφ)

2 −
(
~∇φ
)2

−m2φ2

]
=

1

2

[
(∂tφ)

2
+
(
~∇φ
)2

+m2φ2

]
(10)

which is positive definite and bounded from below by 0.

B. Massive spin-1 field

From the Lagrangian for a spin-0 field,

2 ∂L
∂φ
− ∂µ

[
∂L

∂(∂µφ)

]
= 0.

3 gµν = diag(1,−1,−1,−1).
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� Lagrangian of four massive scalar fields of A0, A1, A2, and A3 which somehow represent a massive spin-1 vector
field Aµ with the Lorentz-invariant length A2

µ = AµA
µ = A2

0 −A2
1 −A2

2 −A2
3:

L(x) = +
1

2

∑
i=0,1,2,3

[
∂νAi ∂νAi −m2A2

i

]
→ −1

2

[
∂νA0 ∂νA0 −m2A2

0

]
+

1

2

∑
i=1,2,3

[
∂νAi ∂νAi −m2A2

i

]
= −1

2
∂νAµ ∂νAµ+

1

2
m2A2

µ (11)

� Equation of motion: ∂L
∂φ − ∂µ

[
∂L

∂(∂µφ)

]
= 0.

+
(
� +m2

)
A0 = 0 , −

(
� +m2

)
Ai=1,2,3 = 0 →

(
� +m2

)
Aµ = 0 ; (12)

� Energy density:

E =
∑

i=0,1,2,3

∂L
∂(∂tAi)

(∂tAi)− L = −1

2

[
(∂tA0)

2
+
(
~∇A0

)2

+m2A2
0

]
+
∑

i=1,2,3

1

2

[
(∂tAi)

2
+
(
~∇Ai

)2

+m2A2
i

]
(13)

which has a negative sign for the A0 field and, accordingly, will not produce a physical theory...

What’s wrong? Definitely, there are three degrees of freedom for spin 1 with m > 0, not four! Hmm... then, can we
simply drop A0 or remove one degree of freedom from Aµ which has four components?

Actually, there is one more Lorentz-invariant two-derivative kinetic term of

Aµ∂µ∂νAν = − (∂µAµ)
2

+ t.d. = −∂νAµ∂µAν + t.d. (14)

in addition to ∂νAµ∂νAµ = −Aµ�Aµ + t.d.

� The most general Lagrangian:

L =
a

2
Aµ�Aµ +

b

2
Aµ∂µ∂νAν +

1

2
m2A2

µ (15)

The equations of motion are

a�Aµ + b ∂µ(∂νAν) + m2Aµ = 0 ;

∂µ−→
[
(a+ b)� +m2

]
(∂µAµ) = 0 (16)

If a+ b = 0, when m > 0, the second equation reduces to ∂µAµ = 0 which is Lorentz invariant and indeed removes
one degree of freedom! Then, taking a = −b = 1, we have arrived at

L =
1

2
Aµ�Aµ −

1

2
Aµ∂µ∂νAν +

1

2
m2A2

µ = −1

4
F 2
µν +

1

2
m2A2

µ (17)

with the Maxwell tensor 4

Fµν = ∂µAν − ∂νAµ (18)

� Energy Density: With ~E = ∂t ~A− ~∇A0 and ~B = ~∇× ~A, one might find

E =
1

2

(
~E2 + ~B2

)
+

1

2
m2
(
A2

0 + ~A2
)

+A0∂t(∂µAµ)−A0(� +m2)A0 + ∂i(A0F0i) (19)

4 Note that − 1
4
F 2
µν = − 1

4
(∂µAν∂µAν + ∂νAµ∂νAµ − 2∂µAν∂νAµ) = − 1

2
(∂µAν∂µAν − ∂µAν∂νAµ) = 1

2
(Aν�Aν −Aν∂µ∂νAµ) + t.d.
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which give the positive-definite total energy with ∂µAµ = 0 and (� +m2)A0 = 0.

� Polarizations: One might find the following solution to the equations of motion (� + m2)Aµ = 0 satifying the
Lorentz-invariant condition ∂µAµ = 0:

Aµ(x) =
∑
i

∫
d3~p

(2π)3
ãi(~p) ε

i
µ(p) eipx with p0 =

√
~p2 +m2 (20)

where ãi(~p) denotes Fourier components and the three basis 4-vectors εiµ(p) constitute the polarization vectors which
satisfy the Lorentz-invariant condition

pµ εiµ(p) = 0 (21)

The polarizations vectors are conventionally normalized as

ε∗µε
µ = −1 (22)

To be explicit, if pµ points to the z direction

pµ = (E, 0, 0, pz) with E2 − p2
z = m2 ;

εµ(λ = ±1 = R/L) =
1√
2

(0,−λ,−i, 0) , εµ(λ = 0) =

(
pz
m
, 0, 0,

E

m

)
(23)

with λ = ±1 (0) denote the transverse (longitudinal) polarizations. Note that εµε∗µ = −1 and εµpµ = 0.

C. Massless spin-1 field

� Massive spin-1 field in the m→ 0 limit:

– m2(∂µAµ) = 0: we no longer automatically have ∂µAµ = 0

– The longitudinal polarization εµ(λ = 0) =
(
pz
m , 0, 0,

E
m

)
blows up: pµ → (E, 0, 0, E) and εµ(λ = 0)→ pµ.

– There should be only two polarizations for a massless spin-1 particle

Instead of trying to analyze what happens to the massive modes in the massless limit, let us just postulate the following
Lagrangian and start over with analyzing the degrees of freedom:

L = −1

4
F 2
µν with Fµν = ∂µAν − ∂νAµ (24)

which is invariant under the tansformation (gauge invariance)

Aµ(x)→ Aµ(x) + ∂µα(x) (25)

for any function α(x). Note that the mass term 1
2m

2A2
µ violates the gauge invariance.

� Equations of motion:

�Aµ − ∂µ(∂νAν) = 0 ;

µ = 0 = t : (∂2
t − ∂2

j )A0 − ∂t(∂tA0 − ∂jAj) = −∂2
jA0 + ∂t(∂jAj) = 0

µ = i = 1, 2, 3 : �Ai − ∂i(∂tA0 − ∂jAj) = 0 (26)

� Gauge fixing: use the freedom of transforming the fields Aµ(x)→ Aµ(x) + ∂µα(x) to impose constraints on Aµ

– One can choose α so that ∂jAj = 0 (Coulomb gauge)

A′j = Aj + ∂jα with ∂jAj 6= 0 −→ one can make ∂jA
′
j = 0 by choosing α such that ∂2

i α = −∂jAj (27)

Note that, once in the Coulomb gauge, there still is the freedom of gauge transformation Aµ(x) → Aµ(x) +
∂µα(x) for any α satisfying ∂2

i α = 0: Coulomb gauge is preserved if ∂2
i α = 0
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– One can set A0 = 0: In Coulomb gauge, A′0 = A0 + ∂tα with ∂2
i α = 0. 5 Then one can set A′0 = 0 by choosing

α such that ∂tα = −A0.

� In Coulomb gauge and setting A0 = 0, the equations of motion become

�Ai = 0 for i = 1, 2, 3 (28)

to which the solutions might be given by

Aµ(x) =

∫
d4p

(2π)4
εµ(p)eipx (29)

with ε0 = 0 (gauge choice), piεi = 0 (Coulomb gauge: ~ε ⊥ ~p), and p2 = 0 (equation of motion). In the frame
pµ = (E, 0, 0, E), one might have the two basis 4-vectors

εµ(λ = ±1 = R/L) =
1√
2

(0,−λ,−i, 0) , (30)

representing the two circularly polarized light or the helicity eigenstates.

D. Covariant derivatives

In order not to affect our counting of degrees of freedom, the interactions in the Lagrangian must respect gauge
invariance. Naively,

Lint ∼ Aµ φ∂µφ −→ Aµ φ∂µφ + (∂µα)φ∂µφ (31)

hmm... We must be able to make φ transform to compensate for the gauge transformation of Aµ in order to cancel the
∂µα term. In fact, we need at least two real fileds φ1 and φ1 which form a complex field φ = φ1 + iφ2. Then, under a
gauge transformation, it transforms 6

φ −→ eiQα(x)φ together with Aµ −→ Aµ +
1

e
∂µα(x) (32)

� Mass term 1
2m

2φ∗φ = 1
2m

2|φ|2 is gauge invariant

� Derivative term is not gauge invariant

∂µφ −→ eiQα(x)[∂µ + iQ ∂µα(x)]φ (33)

� Hmm...

−ieQAµφ −→ −ieQ
[
Aµ +

1

e
∂µα(x)

]
eiQα(x)φ = eiQα(x) [−ieQAµ − iQ ∂µα(x)]φ (34)

� Covariant derivative Dµφ ≡ (∂µ − ieQAµ)φ tansforms like φ leading to gauge invariant |Dµφ|2:

Dµφ = (∂µ − ieQAµ)φ −→ eiQα(x)(∂µ − ieQAµ)φ = eiQα(x)Dµφ

|Dµφ|2 = [(∂µ + ieQAµ)φ∗] [(∂µ − ieQAµ)φ] = ∂µφ
∗∂µφ+ ieQAµ (φ∗∂µφ− φ∂µφ∗) + e2Q2|φ|2AµAµ (35)

E. Ward identity

Let’s simply remember that some amplitude Mµ which is to be contracted with the polarization 4-vectors to result in
Lorentz invariant amplitude of εµMµ, one should have

pµMµ = 0 (36)

5 Note that the A0 equation of motion ∂2jA0 = 0 (for µ = 0 = t) is preserved in Coulomb gauge since ∂2jα = 0.
6 The charge of the field φ is denoted by Q, 1/e appears in the gauge transformation of Aµ, and the combination −ieQ is for the covariant

detivative. Note that eQ is the coupling strength between Aµ and the Noether current Jµ = i(φ∗∂µφ− φ∂µφ∗) in the free theory (e = 0).
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which is know as the Ward identity which is guranteed by Lorentz invariance and the fact that unitary representations
for massless spin-l particles have two polarizations.

F. Photon progator

Recall that, for the massless spin-1 field, we have 7

L = −1

4
F 2
µν ; �Aµ − ∂µ(∂νAν) = 0 (37)

which might lead to, in momentum space,

(−p2gµν + pµpν)Aµ = 0 (38)

and one may find the photon propagator by inverting (−p2gµν + pµpν):

(−p2gµν + pµpν)Πνα = gµα (39)

The problem is that det(−p2gµν + pµpν) = 0 and make it non-invertiable which is a manifestation of gauge invariance.

What should we do? gauge fixing? ... ∂µAµ = 0. OK, then how? A Lagrange multiplier?! :

L = −1

4
F 2
µν −

1

2ξ
(∂µAµ)2 ; �Aµ −

(
1− 1

ξ

)
∂µ(∂νAν) = 0 (40)

and we would like to invert [
−p2gµν +

(
1− 1

ξ

)
pµpν

]
(41)

One may find

Πµν = −
gµν − (1− ξ)pµpνp2

p2
(42)

by checking that [
p2gµα −

(
1− 1

ξ

)
pµpα

] [
p2gαν − (1− ξ)pαpν

] 1

p4

= gµν + [−(1− 1/ξ)− (1− ξ) + (1− 1/ξ)(1− ξ)] pµpν
p2

= gµν (43)

So, the time-ordered Feynman propagator for a photon might be givenn by

iΠµν(p) =
−i

p2 + iε

[
gµν − (1− ξ)pµpν

p2

]
(44)

in covariant or Rξ-gauge.

� Feynman-’t Hooft gauge ξ = 1: iΠµν(p) =
−igµν
p2+iε : for most calculations

� Lorentz gauge ξ = 0 8: iΠµν(p) = −i gµν−
pµpν

p2

p2+iε : ∂µAµ = 0 or pµΠµν = 0 enforced

� Unitary gauge ξ →∞: the propagator blows up ... useless for QED but ...

Note that physical results should be independent of ξ.

7 See Eq. (15) and below.
8 We could not set ξ = 0 and then invert the kinetic term, but we can invert and then set ξ = O.
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G. Decomposition of a vector field

Any vector field can be written as 9

Aµ(x) = ATµ (x) + ∂µπ(x) with ∂µA
T
µ = 0. (45)

The beauty of this decomposition is that it lets us see whether the non-transverse polarizations are physical or not simply
by looking at the Lagrangian: find conditions to remove unphysical terms.

Performing the decomposition in the most general Lorentz-invariant Lagrangin for a vector field Aµ
10

L =
a

2
Aµ�Aµ +

b

2
Aµ∂µ∂νAν +

1

2
m2A2

µ (46)

we have 11

L =
a

2
ATµ�A

T
µ +

m2

2
(ATµ )2 − a+ b

2
π�2π − m2

2
π�π (47)

For π field, in momentum space, we have −(a+ b)p4 +m2p2 and, by imverting it, we have the π’s propagator which reads

Ππ =
−1

(a+ b)p4 −m2p2
=

1

m2

[
1

p2
− (a+ b)

(a+ b)p2 −m2

]
(48)

Thus, π really represents two fields: one of which has negative norm for generic a and b and therefore represents a ghost
with a wrong-sign kinetic term. For (a + b) 6= 0, there are ghosts and the theory cannot be unitary. More generally, a
kinetic term with more than two derivatives always indicates that a theory is not unitary.

We can remove the dangerous 4-derivative kinetic terms by choosing a = −b = 1 and we have finally arrived at

L =
1

2
Aµ�Aµ −

1

2
Aµ∂µ∂νAν +

1

2
m2A2

µ = −1

4
F 2
µν +

1

2
m2A2

µ (49)

which is invariant under the gauge transformation Aµ → Aµ + ∂µα(x) when m2 = 0. In this case, we see that the
longitudinal modes get a kinetic term from the mass term, as expected.

9 This decomposition is invariant under shifts ATµ → ATµ + ∂µα and π → π − α and we can pick α so that the field is in Lorenz gauge where

∂µATµ = 0.
10 Eq. (15).
11 For the mass term, A2

µ = (ATµ + ∂µπ)(ATµ + ∂µπ) = (ATµ )2 + (∂µπ)(∂µπ) +ATµ (∂µπ) + (∂µπ)ATµ = (ATµ )2 − π�π + t.d..
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III. YANG-MILLS THEORY [1]

In this section, we follow early sections of Chapter 25 of Ref. [1].

� QED is to embed a massles spin-1 particle, whose irreducible representation of the Poincare group has two degrees of
freedom, in a vector field Aµ(x), which has four degrees of freedom. The two extra degrees of freedom are removed
in quantum field theory through gauge invariance under the transformation

Aµ(x) −→ Aµ(x) +
1

e
∂µα(x) (50)

resulting in a gauge-invariant kinetic Lagrangian

L = −1

4
F 2
µν with Fµν = ∂µAν − ∂νAµ (51)

To have the photon interact with matter, we replace ∂µ in the matter kinetic term with the covartiant derivative
Dµ:

Dµ = ∂µ − ieQAµ (52)

which gives, for example,

L = ψ (iγµDµ −m)ψ (53)

which is invariant under the gauge transformations given by Eq. (50) and

ψ −→ eiQα(x)ψ (54)

� Yang-Mills theories are the unique generalizations of QED in which Lagrangians are constrained by non-Abelian
gauge invariance having renormalizable self-interactions among massless spin-l particles

A. SU(2)

� A global SU(2) symmetry: Consider two complex fields φ1 and φ2. Then we might have the following kinetic
Lagrangian for them:

Lkin = (∂µφ
∗
1) (∂µφ1) + (∂µφ

∗
2) (∂µφ2) = (∂µΦ)

†
(∂µΦ) (55)

with

Φ ≡
(
φ1

φ2

)
(56)

Note that Lkin is invariant under a global SU(2) symmetry

Φ −→ ei(α
1t1+α2t2+α3t3) Φ = eiα

ata Φ (57)

where α1,2,3 are real numbers and ta = σa/2 with σa begin the Pauli matrices, 12

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (58)

The normazlization of the t matrices is chosen so that

[ta , tb] = iεabctc (59)

where εabc is the Levi-Civita tensor.

12 Note that (σi)† = σi.
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� We can promote the global SU(2) symmetry to a local symmetry by elevating the real numbers αa to real functions
of space-time αa(x). Then one can make Lkin gauge invariant by replacing ∂µΦ with the covariant derivative

DµΦ =
(
∂µ − igAaµta

)
Φ . (60)

Then the unique gauge-invariant kinetic term for the spin-1 fields is given by

LYM = −1

4

∑
a

(
∂µA

a
ν − ∂νAaµ + gεabcAbµA

c
ν

)2 ≡ −1

4

∑
a

(F aµν)2 (61)

One should check that Lkin with ∂µ → Dµ and LYM are invariant under the SU(2) gauge transformations

Φ −→ eiα
a(x)ta Φ ,

Aaµ(x) −→ Aaµ(x) +
1

g
∂µα

a(x)− εabcαb(x)Acµ(x) (62)

HW#1: Derive the infinitesimal SU(2) gauge transformation rule of Aaµ given by the above equation and
show that, under which, LYM is invariant.

Hint: one may consider infinitesimal transformation conveniently. From DµΦ→ (DµΦ)
′

= eiα
ataDµΦ, one have(

∂µ − igA′aµ τa
) (

1 + iαbtb
)

Φ =
(
1 + iαbtb

) (
∂µ − igAaµta

)
Φ

which is solved up to the first order of α to give

A′aµ (x) = Aaµ(x) +
1

g
∂µα

a(x)− εabcαb(x)Acµ(x)

Then, under the infinitesimal transformation, you might be able to show

F aµν −→ F aµν − εabcαbF cµν

which might make LYM invariant under Aaµ → A′aµ . One might need the identity εabcεade = δbdδce− δbeδcd... or not.

B. Gauge invariance and Wilson lines: Ablelian case

Consider a complex field φ(x) with Q = 1. Then, how can we tell if φ(x) = φ(y)? The difference, under the local gauge
transformation, transforoms as

φ(y)− φ(x) −→ eiα(y)φ(y)− eiα(x)φ(x) (63)

which makes, for example, |φ(y)−φ(x)| depend on our choice of local phases. How one can have well-defined comparisons
of field values at difference points or a well-defined derivative? The answer is to introduce a new bi-local field W (x, y)
called a Wilson line which transforms as

W (x, y) −→ eiα(x)W (x, y)e−iα(y) (64)

� The absolute value of the quantity W (x, y)φ(y)− φ(x) is independent of our choice of local phases:

W (x, y)φ(y)− φ(x) −→ eiα(x)W (x, y)e−iα(y) eiα(y)φ(y)− eiα(x)φ(x)

= eiα(x) [W (x, y)φ(y)− φ(x)] (65)

� The covariant derivative by use of the quantiy W (x, y)φ(y)−φ(x) and the gauge field as a connection allowing us
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to compare field values at different points: 13

Dµφ ≡ lim
δxµ→0

W (x, x+ δx)φ(x+ δx)− φ(x)

δxµ

W (x, x+ δx) ≡ 1− ie(δx)µAµ(x) +O(δx2) (66)

Then, from W (x, y) −→ eiα(x)W (x, y)e−iα(y) and the definition of Dµφ, we can obtain the gauge transformation
rule for the vector field and the explict form for the covariant derivative !!!:

Aµ(x) −→ Aµ(x) +
1

e
∂µα(x) ; Dµφ = ∂µφ− ieAµφ (67)

Proofs:

1− ieAµδxµ −→ 1− ieA′µδxµ = eiα(x)(1− ieAµδxµ)e−iα(x+δx)

= (1− ieAµδxµ)(1− i∂µαδxµ)

' 1− ieδxµ (Aµ + ∂µα/e) (68)

Dµφ = lim
δxµ→0

(1− ieAνδxν)φ(x+ δx)− φ(x)

δxµ

' lim
δxµ→0

φ(x+ δx)− φ(x)

δxµ
− ieAµφ(x) = (∂µ − ieAµ)φ(x) (69)

� A closed-form expression for the Wilson line W (x, y) using the path integral of the vector field from y to x

WP (x, y) = exp

(
ie

∫ x

y

Aµ(z)dzµ
)

(70)

One can see that WP (x, x) = 1 and, using Aµ → Aµ+∂µα/e, it indeed satisfy the supposed transformation property

WP (x, y) −→WP (x, y) = exp

(
ie

∫ x

y

[Aµ(z) + ∂µα(z)/e] dzµ
)
A = eiα(x)WP (x, y)e−iα(y) (71)

� A Wilson loop: if we set x = y, we get

W loop
P = exp

(
ie

∮
P

Aµ(x)dxµ
)

= exp

(
i
e

2

∫
Σ

Fµνdσ
µν

)
(72)

where, in the second step, we apply Stokes’ therem over the surface Σ with surface element σµν which the closed-path
P bounds. One can see that the Wilson loop is gauge invariant by observing that it dependes only on Fµν .

� The Maxwell tensor Fµν from a commutator of covariant derivatives 14

[Dµ , Dν ]φ(x) = ([∂µ , ∂ν ]− ie[∂µ , Aν ] + ie[∂ν , Aµ])φ(x) = −ieFµνφ(x) (73)

The commutator [Dµ , Dν ] is not an operator and the field strength for QED can be defined as

Fµν ≡
i

e
[Dµ , Dν ] (74)

whcih is the result of comparing field values around an infinitesimal closed loop in the µ− ν plane.

13 Note that W (x, x) = 1.
14 [∂µ , Aν ]φ = ∂µ(Aνφ)−Aν(∂µφ) = (∂µAν)φ.
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FIG. 1. Fµν from a commutator of covariant derivatives: Fµν ≡ i
e
[Dµ , Dν ]

C. SU(N)

Consider the kinetic Lagrangian with N Dirac fermions

L =

N∑
j=1

ψj(i∂/−m)ψj = Ψ(i∂/−m)Ψ (75)

with Ψ = (ψ1, ψ2, · · · , ψN )T . This kinetic term is invariant under a global SU(N) symmetry

Ψ −→
(
eiα

aTa
)

Ψ = UΨ (76)

where αa and, accordingly, U do not depend on x. T a’s are the SU(N) generators in the fundamental representation
satisfying

[T a , T b] = ifabc T c (77)

Note that

(T a)† = T a and U† = U−1 (78)

One can promote the global SU(N) symmetry to the local one by taking space-time dependent αa(x). Then we have

U(x) = eiα
a(x)Ta (79)

The non-Abelian vector fields, the convariant derivative, the gauge transformation rule of the vector fields, and the
gauge-invariant field strength could be obtained by:

� Wilson line and a Lie-algebra-valued field Aµ = AaµT
a

WP (x, y) = P

{
exp

(
ig

∫ x

y

Aaµ(z)T adzµ
)}
≡ P

{
exp

(
ig

∫ x

y

Aµ(z)dzµ
)}

(80)

with P{· · · } denoting a path-ordering operator

� Covariant derivative: The infinitesimal expansion of the Wilson line is

WP (x, x+ δx) = 1− igAµδx
µ (81)

and we have

DµΨ = lim
δxµ→0

(1− igAνδx
ν)Ψ(x+ δx)−Ψ(x)

δxµ
= (∂µ − igAµ)Ψ(x) (82)
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� How Aaµ transform?

DµΨ −→ (DµΨ)′ = (∂µ − igA′µ)UΨ = U(∂µ − igAµ)Ψ

∂µU − igA′µU = −igUAµ

Aµ −→ A′µ = UAµU
† − i

g
(∂µU)U† (83)

Using [T a , T b] = ifabcT c, one might have the infinitesimal version

Aaµ −→ Aaµ +
1

g
∂µα

a(x)− fabcαb(x)Acµ (84)

� Field strength

Fµν = F aµνT
a =

i

g
[Dµ , Dν ] =

i

g

{
− ig (∂µAν − ∂νAµ)− g2[Aµ ,Aν ]

}
= ∂µAν − ∂νAµ − ig[Aµ ,Aν ]

F aµν = ∂µA
a
ν − ∂νAaµ + gf bcaAbµA

c
ν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν (85)

Last but not least, note some identities for SU(N) which are used in almost every QCD (N = 3) calculation:

tr
(
T aT b

)
= TF δ

ab∑
a

(T aT a)ij = CF δij

facdf bcd = CAδ
ab (86)

with TF = 1/2, CA = N , and CF = N2−1
2N

HW#2: Show Eq. (84) and the second line of Eq. (85).
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IV. SM HIGGS BOSON

The SM gauge structure is SU(3)c×SU(2)L×U(1)Y . The corresponding gauge transformations can be written as follows
(for the SU(2)L and SU(3)c gauge field transformations, we give only the infinitesimal form):

U(1)Y : ψ → exp[iλY (x)Y ]ψ, Bµ → Bµ +
1

g′
∂µλY (x)

SU(2)L : ψ → exp[iλaL(x)T a]ψ, W a
µ →W a

µ +
1

g
∂µλ

a
L(x) + εabcW b

µλ
c
L(x)

SU(3)c : ψ → exp[iλac (x)ta]ψ, Gaµ → Gaµ +
1

gs
∂µλ

a
c (x) + fabcGbµλ

c
c(x) (87)

TABLE II. The SM fermions and Higgs. Note that Q = T3 + Y .

QL ≡
(
uL
dL

)
uR dR LL ≡

(
νL
eL

)
eR Φ ≡

(
φ+

φ0

)
Hypercharge Y 1/6 2/3 −1/3 −1/2 −1 1/2

Color triplet triplet triplet singlet singlet singlet

The gauge interactions of fermions or scalars are encoded in the covariant derivative,

Dµ = ∂µ − ig′BµY − igW a
µT

a − igsGaµta, (88)

where g′ is the coupling strength of the hypercharge interaction, Y is the hypercharge operator, and T a and ta are the
SU(2) and SU(3) generators, respectively. When acting upon a doublet representation of SU(2), T a is just σa/2 where
σa are the Pauli matrices,

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (89)

A. The Higgs mechanism in the Standard Model [2]

This subsection IV.A is just a copy of Section 2 of Ref. [2]

1. Preliminaries: gauge sector

Let’s start with a review of the gauge and fermion parts of the SM Lagrangian. The SM gauge structure is
SU(3)c×SU(2)L×U(1)Y , comprising respectively the strong interactions (subscript c for color), weak isospin (subscript
L for the left-handed fermions it couples to), and hypercharge (subscript Y for the hypercharge operator). The gauge
boson dynamics are encoded in the Lagrangian in terms of the field strength tensors:15

Lgauge = −1

4
GaµνG

aµν − 1

4
W a
µνW

aµν − 1

4
BµνB

µν , (90)

where repeated indices are always taken as summed. Here the field strength tensors are given as follows. For the U(1)Y
interaction, the field strength tensor takes the same form as in electromagnetism,

Bµν = ∂µBν − ∂νBµ. (91)

For SU(3)c, and non-abelian theories in general, the field strength tensor takes a more complicated form,

Gaµν = ∂µG
a
ν − ∂νGaµ + gsf

abcGbµG
c
ν , (92)

15 I use the metric gµν = diag(1,−1,−1,−1), so that p2 ≡ pµpµ = m2 for an on-shell particle.
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QL ≡
(
uL
dL

)
uR dR LL ≡

(
νL
eL

)
eR

Hypercharge 1/6 2/3 −1/3 −1/2 −1

Color triplet triplet triplet singlet singlet

TABLE III. The chiral fermion content of a single generation of the Standard Model.

where gs is the strong interaction coupling strength, a, b, c run from 1 to 8, and fabc are the (antisymmetric) structure
constants of SU(3), defined in terms of the group generators ta according to

[ta, tb] = ifabctc. (93)

For SU(2), a, b, c run from 1 to 3 and fabc = εabc, the totally antisymmetric three-index tensor defined so that ε123 = 1.
Therefore, the field strength tensor for SU(2)L can be written as

W a
µν = ∂µW

a
ν − ∂νW a

µ + gεabcW b
µW

c
ν , (94)

where g is the weak interaction coupling strength.
The gauge interactions of fermions or scalars are encoded in the covariant derivative,

Dµ = ∂µ − ig′BµY − igW a
µT

a − igsGaµta, (95)

where g′ is the coupling strength of the hypercharge interaction, Y is the hypercharge operator, and T a and ta are the
SU(2) and SU(3) generators, respectively. When acting upon a doublet representation of SU(2), T a is just σa/2 where
σa are the Pauli matrices,

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (96)

The corresponding gauge transformations can be written as follows (for the SU(2)L and SU(3)c gauge field transfor-
mations, we give only the infinitesimal form):

U(1)Y : ψ → exp[iλY (x)Y ]ψ, Bµ → Bµ +
1

g′
∂µλY (x)

SU(2)L : ψ → exp[iλaL(x)T a]ψ, W a
µ →W a

µ +
1

g
∂µλ

a
L(x) + εabcW b

µλ
c
L(x)

SU(3)c : ψ → exp[iλac (x)ta]ψ, Gaµ → Gaµ +
1

gs
∂µλ

a
c (x) + fabcGbµλ

c
c(x). (97)

A mass term for a gauge boson would take the form

L ⊃ 1

2
m2
BBµB

µ. (98)

This is not gauge invariant and thus cannot be inserted by hand into the Lagrangian. Therefore, (unbroken) gauge
invariance implies that gauge bosons are all massless.

2. Preliminaries: fermion sector

The SM contains three copies (generations) of a collection of chiral fermion fields with different gauge transformation
properties under SU(3)c×SU(2)L×U(1)Y . The content of a single generation is given in Table III, along with their
hypercharge assignments16 (the value of the quantum number Y ) and their SU(3)c (color) transformation properties.
The fields QL and LL transform as doublets under SU(2)L, while the remaining fields transform as singlets.

16 A careful observer will notice that the electric charge of each field is given by Q = T 3 + Y . We will derive this relationship in Sec. IV A 3.
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The left- and right-handed chiral fermion states are obtained from an unpolarized Dirac spinor using the projection
operators

PR =
1

2
(1 + γ5), PL =

1

2
(1− γ5), (99)

in such a way that

PRψ ≡ ψR, PLψ ≡ ψL. (100)

Using the anticommutation relations {γµ, γ5} = 0 and the fact that γ5 is Hermitian, we also have

ψ̄PR = ψ†γ0PR = ψ†PLγ
0 = (PLψ)†γ0 = ψ̄L, (101)

and similarly ψ̄PL = ψ̄R. Finally, the projection operators obey PR + PL = 1 and P 2
R = PR, P 2

L = PL.
We can use this to rewrite the Dirac Lagrangian in terms of chiral fermion fields as follows. We start with the Lagrangian

for a generic fermion ψ with mass m,

L = ψ̄i∂µγ
µψ −mψ̄ψ. (102)

The first term can be split into two terms involving left- and right-handed chiral fermion fields by inserting a factor of
1 = (P 2

L +P 2
R) before the ψ and using the anticommutation relation to pull one factor of the projection operator through

the γµ in each term:

ψ̄i∂µγ
µψ = ψ̄PRi∂µγ

µPLψ + ψ̄PLi∂µγ
µPRψ = ψ̄Li∂µγ

µψL + ψ̄Ri∂µγ
µψR. (103)

The kinetic term separates neatly into one term involving only ψL and one involving only ψR. We can then incorporate
the gauge transformation properties by promoting the derivative ∂µ to a covariant derivative Dµ and these two terms will
be gauge invariant for any of the fermion fields given in Table III.

Now let’s consider the mass term. Using the same tricks, we have,

−mψ̄ψ = −mψ̄P 2
Lψ −mψ̄P 2

Rψ = −mψ̄RψL −mψ̄LψR. (104)

(Note that the second term is just the Hermitian conjugate of the first term.) The mass terms each involve fermions
of both chiralities. Because the left-handed and right-handed fermions of the SM carry different SU(2)L×U(1)Y gauge
charges, such mass terms are not gauge invariant and thus cannot be inserted by hand into the Lagrangian. Therefore,
given the gauge charges of the SM fermions, (unbroken) gauge invariance implies that all the SM fermions are massless.
17

3. The SM Higgs mechanism

We have established that the theoretical explanation of the experimentally-observed nonzero masses of the W and
Z bosons and the SM fermions requires a new ingredient. Such an explanation is achieved by introducing a single
SU(2)L-doublet scalar field, which causes spontaneous breaking of the SU(2)L×U(1)Y gauge symmetry via the Higgs
mechanism.

We add to the SM a field Φ, an SU(2)L-doublet of complex scalar fields that can be written as

Φ =

(
φ+

φ0

)
=

1√
2

(
φ1 + iφ2

φ3 + iφ4

)
, (105)

where φ1, φ2, φ3, φ4 are properly normalized real scalar fields. We assign Φ a hypercharge Y = 1/2 and make it a color
singlet. The new terms in the Lagrangian involving Φ are given by 18

LΦ = (DµΦ)†(DµΦ)− V (Φ) + LYukawa, (106)

where the first term contains the kinetic and gauge-interaction terms via the covariant derivative, the second term is

17 Some models beyond the SM contain left- and right-handed chiral fermions that carry the same SU(2)L×U(1)Y gauge charges, and can
thus form a massive Dirac fermion without any reference to electroweak symmetry breaking. Such fermions are called vectorlike fermions,
because of their pure vector (as opposed to axial-vector) couplings to the Z boson.

18 (DµΦ)†(DµΦ)→ Sec. IV.A.4: LYukawa → Sec. IV.A.5: V (Φ)→ Sec. IV.A.6.
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FIG. 2. Plots of V (Φ) = −µ2Φ†Φ +λ(Φ†Φ)2 as a function of |Φ| ≡
√

Φ†Φ for the cases −µ2 > 0 (left) and −µ2 < 0 (right). For the
SM parameters I used |−µ2| ' (88.4 GeV)2 and λ ' 0.129, obtained from the measured values mh ' 125 GeV and v ' 246 GeV.
In the case that −µ2 < 0 (right), the minimum of the potential is at |Φ| = v/

√
2 = (246/

√
2) GeV.

a potential energy function involving Φ, and the third term contains Yukawa couplings of the scalar field to pairs of
fermions. We will treat each term in turn, starting with the potential energy function.

The most general gauge invariant potential energy function, or scalar potential, involving Φ is given by

V (Φ) = −µ2Φ†Φ + λ(Φ†Φ)2. (107)

Consider the possible signs of the coefficients of the two terms in V :

� If λ is negative, then V is unbounded from below and there is no stable vacuum state.

� When −µ2 and λ are both positive, the potential energy function has a minimum at |Φ| ≡
√

Φ†Φ = 0 (left panel of
Fig. 2). In this case the electroweak symmetry is unbroken in the vacuum, because a gauge transformation acting
on the vacuum state Φ = 0 does not change the vacuum state.

� When −µ2 is negative and λ is positive, the potential energy function has a minimum away from |Φ| = 0 (right panel
of Fig. 2). In this case the vacuum, or minimum energy state, is not invariant under SU(2)L×U(1)Y transformations:
the gauge symmetry is spontaneously broken in the vacuum.

Let’s take a closer look at the symmetry-breaking case. The Higgs field Φ is a complex scalar field with two isospin
components; we can thus write it in terms of four real scalar degrees of freedom as in Eq. (105), where the 1/

√
2

normalization ensures that the kinetic energy terms for the real scalars will have the correct normalization, L ⊃ 1
2∂µφi∂

µφi.
Then

Φ†Φ =
1

2

(
φ2

1 + φ2
2 + φ2

3 + φ2
4

)
, (108)

which can be thought of as the square of the length of a four-component vector. Minimizing the potential in Eq. (107)
fixes the length of this vector to satisfy

Φ†Φ =
µ2

2λ
, (109)

which is a positive quantity when −µ2 is negative. This picks out a spherical surface in four dimensions upon which the
potential is minimized.19

In this language, SU(2)L×U(1)Y gauge transformations correspond to rotations in this four-dimensional space.20 Under
such rotations V is invariant—the value of the potential depends only on the distance from the origin— but a particular

19 For the topologically inclined, the vacuum manifold is S3.
20 Note that there are four independent SU(2)L×U(1)Y gauge transformations in Eq. (97) but only three independent rotation directions for

a vector in a four-dimensional space. In fact, there is always one combination of the SU(2)L and U(1)Y transformations that leaves the
vacuum state invariant. This particular combination of gauge transformations will remain unbroken by the Higgs field and corresponds to
the gauge transformation of electromagnetism.
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vacuum state (a particular vector of length
√
µ2/2λ) transforms nontrivially: it is rotated into a new vector of the same

length but pointing in a different direction.

We also acquire a physical picture for excitations around such a vacuum state. Excitations in any of the three rotational
directions cost zero energy, because the potential is flat in those directions. These correspond to massless modes or
Goldstone modes. An excitation in the radial direction, on the other hand, feels an approximate harmonic oscillator
potential about the minimum and gives rise to a massive particle.

Let’s see how this works explicitly. The potential is given in terms of the four real scalars by

V = −µ
2

2

(
φ2

1 + φ2
2 + φ2

3 + φ2
4

)
+
λ

4

(
φ2

1 + φ2
2 + φ2

3 + φ2
4

)2
. (110)

We are free to choose the basis of states φ1, · · · , φ4 to be oriented however we like relative to the local vacuum value; let’s
choose the vacuum expectation values (“vevs”) of the four fields to be

〈φ3〉 ≡ v =

√
µ2

λ
, 〈φ1〉 = 〈φ2〉 = 〈φ4〉 = 0. (111)

We can also define a new real scalar field h with zero vacuum value, 〈h〉 = 0, according to

φ3 = h+ v. (112)

Then our field becomes

Φ =
1√
2

(
φ1 + iφ2

v + h+ iφ4

)
, (113)

and the potential becomes

V = −µ
2

2

(
φ2

1 + φ2
2 + (h+ v)2 + φ2

4

)
+
λ

4

(
φ2

1 + φ2
2 + (h+ v)2 + φ2

4

)2
. (114)

In particular, we have expressed the potential entirely in terms of constants and fields with zero vacuum value. This lets
us treat the fields in terms of small excitations as usual in quantum field theory. Multiplying out the terms in V and
using µ2 = λv2 to eliminate µ2, we find 21

V = constant + 0 · φ2
1 + 0 · φ2

2 + λv2h2 + 0 · φ2
4 + cubic + quartic. (115)

These quadratic terms are the mass terms for the real scalars. We see that φ1, φ2, and φ4 are massless in accordance
with our intuitive picture above, while h has a mass mh =

√
2λv2.22

To learn more about the nature of the massless modes, we can rewrite Φ in another convenient form,

Φ =
1√
2

exp

(
iξaσa

v

)(
0

v + h

)
. (116)

Here h and ξa are fields, σa are the Pauli matrices as in Eq. (96), and a is summed over 1, 2, 3. This expression is
equivalent to Eq. (113) up to linear order in the fields, i.e., for infinitesimal fluctuations about the vacuum. 23

HW#3: Show that ξ1 = φ2, ξ
2 = φ1, and ξ3 = −φ4 to linear order in the fields to make the above expression

equivalent to Eq. (113.

Now consider the gauge transformations of Φ:

U(1)Y : Φ→ exp

(
iλY (x) · 1

2

)
Φ,

SU(2)L : Φ→ exp

(
iλaL(x)

σa

2

)
Φ. (117)

21 0 = −µ2/2 + λ/4 [2v2] and λv2 = −µ2/2 + λ/4 [2v2 + (2v)2]
22 Recall that for a real scalar φ with mass m, V ⊃ 1

2
m2φ2.

23 To linear order, ξ1 = φ2, ξ2 = φ1, and ξ3 = −φ4.
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If we choose λaL(x) = −2ξa/v at each point in spacetime, we arrive at a gauge in which

Φ =
1√
2

(
0

v + h

)
, (118)

i.e., we have gauged away the fields ξa, or equivalently φ1, φ2, φ4.24 These fields have been entirely removed from the
Lagrangian by means of a gauge transformation!25 This means that it must be possible to interpret the theory in a way
in which these fields are absent (but with the gauge fixed): they are not physical degrees of freedom. This gauge choice
is known as unitary or unitarity gauge. The massive field h remains present and always shows up in the combination
(v + h).

4. Gauge boson masses and couplings to the Higgs boson

We now examine the gauge-kinetic term,

L ⊃ (DµΦ)
†

(DµΦ) . (119)

When acting on Φ, the covariant derivative reads

Dµ = ∂µ − i
g′

2
Bµ − i

g

2
W a
µσ

a. (120)

Applying this to Φ in the unitarity gauge we find

DµΦ =
1√
2

(
− i

2g(W 1
µ − iW 2

µ)(v + h)

∂µh+ i
2 (gW 3

µ − g′Bµ)(v + h)

)
. (121)

Dotting this into its Hermitian conjugate gives,

(DµΦ)
†

(DµΦ) =
1

2
(∂µh)(∂µh) +

1

8
g2(v + h)2(W 1

µ − iW 2
µ)(W 1µ + iW 2µ) +

1

8
(v + h)2

(
−g′Bµ + gW 3

µ

)2
. (122)

HW#4: Derive the above equation.
Let us consider the three terms in turn. The first is the properly normalized kinetic term for the real scalar field h (the

Higgs boson). For the second term, we note that the combinations W 1 ± iW 2 correspond to the charged W bosons. 26

W 1
µ − iW 2

µ√
2

(
ū d̄

)
σ+γµPL

(
u

d

)
=
W 1
µ − iW 2

µ√
2

ūγµPLd ⇒ W 1
µ − iW 2

µ√
2

= W+
µ ,

W 1
µ + iW 2

µ√
2

(
ū d̄

)
σ−γµPL

(
u

d

)
=
W 1
µ + iW 2

µ√
2

d̄γµPLu ⇒ W 1
µ + iW 2

µ√
2

= W−µ . (126)

W+
µ =

W 1
µ − iW 2

µ√
2

, W−µ =
W 1
µ + iW 2

µ√
2

. (127)

24 Note that we could have gauged away ξ3 by doing an appropriate combination of SU(2)L and U(1)Y gauge transformations.
25 This removal of the Goldstone modes by means of a gauge transformation is sometimes described as the Goldstones being “eaten” by the

corresponding gauge bosons.
26 Which combination corresponds to W+ and which to W−? This can be checked by noting that

QLW
a
µσ

aγµQL ⊃W 1
µσ

1 +W 2
µσ

2 =
1

2
(W 1

µ − iW 2
µ)(σ1 + iσ2) +

1

2
(W 1

µ + iW 2
µ)(σ1 − iσ2) =

√
2
W 1
µ − iW 2

µ√
2

σ+ +
√

2
W 1
µ + iW 2

µ√
2

σ−, (123)

where

(σ1 + iσ2) = 2σ+ = 2

(
0 1

0 0

)
, (σ1 − iσ2) = 2σ− = 2

(
0 0

1 0

)
. (124)

When the covariant derivative acts on the left-handed fermion doublets we get terms of the following form, from which we can identify W+

and W− using charge conservation. Recall:

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (125)
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h

W−
ν

W+
µ

= i
g2v

2
gµν = 2i

M2
W

v
gµν

h

h

W−
ν

W+
µ

= i
g2

4
· 2gµν = 2i

M2
W

v2
gµν

h

Zν

Zµ

= i
(g2 + g�2)v

4
· 2gµν = 2i

M2
Z
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FIG. 3. Feynman rules for the hWW and hhWW vertices, as derived from the Lagrangian in Eq. (128). The extra factor of 2 in
the first expression for the hhWW coupling is a symmetry factor accounting for the two identical Higgs bosons. See also Eq. (130).

The second term in Eq. (122) becomes

L ⊃ 1

8
g2(v + h)2(W 1

µ − iW 2
µ)(W 1µ + iW 2µ)

=
1

4
g2(v + h)2W+

µ W
−µ

=
g2v2

4
W+
µ W

−µ +
g2v

2
hW+

µ W
−µ +

g2

4
hhW+

µ W
−µ. (128)

The first term here is a mass term for the W boson, with

M2
W =

g2v2

4
. (129)

The Higgs vacuum expectation value (vev) has given the W boson a mass! Because MW and g have been directly
measured, we can determine v ' 246 GeV.27 The second and third terms in Eq. (128) give interactions of one or two
Higgs bosons with W+W−. The corresponding Feynman rules (see Fig. 3) are

hW+
µ W

−
ν : i

g2v

2
gµν = igMW gµν = 2i

M2
W

v
gµν ,

hhW+
µ W

−
ν : i

g2

4
× 2! gµν = 2i

M2
W

v2
gµν , (130)

where the 2! in the second expression is a combinatorical factor from the two identical Higgs bosons in the Lagrangian
term. Note that the W mass, the hWW coupling, and the hhWW coupling all come from the same term in the Lagrangian
and are generated by expanding out the factor (v + h)2. Thus the hWW and hhWW couplings are uniquely predicted
in the SM once the W mass and v are known.

We now consider the third term of Eq. (122). We first write the linear combination of W 3
µ and Bµ that appears in this

term as a properly normalized real field:

(
gW 3

µ − g′Bµ
)

=
√
g2 + g′2

(
g√

g2 + g′2
W 3
µ −

g′√
g2 + g′2

Bµ

)
≡
√
g2 + g′2

(
cWW

3
µ − sWBµ

)
≡
√
g2 + g′2 Zµ, (131)

where we have defined sW = sin θW , cW = cos θW , where θW is the weak mixing angle or Weinberg angle. We have also
defined the field combination Zµ, which will receive a mass from the Higgs vev and be identified as the Z boson.

We note that the orthogonal state, (
sWW

3
µ + cWBµ

)
≡ Aµ, (132)

27 This value of v actually comes from the Fermi constant, GF = 1/
√

2v2.
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FIG. 4. Feynman rules for the hZZ and hhZZ vertices, as derived from the Lagrangian in Eq. (133). The extra factor of 2 in the
first expression for the hZZ coupling is a symmetry factor accounting for the two identical Z bosons. The hhZZ coupling contains
two extra factors of 2 which are the symmetry factors accounting respectively for the two identical Higgs bosons and two identical
Z bosons. See also Eq. (135).

does not couple to the Higgs field and thus does not acquire a mass through the Higgs mechanism. This state will be
identified as the photon.28

The third term in Eq. (122) becomes

L ⊃ 1

8
(v + h)2

(
−g′Bµ + gW 3

µ

)2
=

1

8
(g2 + g′2)(v + h)2ZµZ

µ

=
(g2 + g′2)v2

8
ZµZ

µ +
(g2 + g′2)v

4
hZµZ

µ +
(g2 + g′2)

8
hhZµZ

µ. (133)

The first term here is a mass term for the Z boson,29

M2
Z =

(g2 + g′2)v2

4
=
g2 + g′2

g2

g2v2

4
=
M2
W

c2W
(134)

The second and third terms in Eq. (133) give interactions of one or two Higgs bosons with ZZ. The corresponding
Feynman rules (see Fig. 4) are

hZµZν : i
(g2 + g′2)v

4
× 2! gµν = i

√
g2 + g′2MZgµν = 2i

M2
Z

v
gµν ,

hhZµZν : i
(g2 + g′2)

8
× 2!× 2! gµν = 2i

M2
Z

v2
gµν , (135)

where each coupling contains a 2! from the two identical Z bosons, and the second expression contains an extra 2! from
the two identical Higgs bosons in the Lagrangian term. As before, the Z mass, the hZZ coupling, and the hhZZ coupling
all come from the same term in the Lagrangian and are generated by expanding out the factor (v + h)2. Thus the hZZ
and hhZZ couplings are uniquely predicted in the SM once the Z mass and v are known.

We can now rewrite the covariant derivative in terms of our new basis of electroweak gauge bosons, W+, W−, Z, and
A. Starting from Eq. (95), we make the following substitutions:

Bµ = cWAµ − sWZµ,
W 3
µ = sWAµ + cWZµ,

W 1T 1 +W 2T 2 = W 1σ
1

2
+W 2σ2

2
=

1√
2

(W+T+ +W−T−), (136)

28 The choice of basis of the Higgs field, i.e., in which component we put the vev, does not affect this conclusion. There will always remain
one massless gauge boson, corresponding to the combination of SU(2)L and U(1)Y gauge transformations that leaves our chosen vacuum
state invariant. This combination will not couple to (v + h)2, will not acquire a mass, and will thus be identified with the known massless
electroweak gauge boson, the photon. Since electric charge is defined in terms of the couplings of the photon, the SM Higgs vev and physical
Higgs boson will always be what we call electrically neutral.

29 Remember that the mass term for a real vector field takes the form L ⊃ 1
2
M2
ZZµZ

µ.
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where T± are the raising and lowering operators of SU(2)L, with T± = σ± in the doublet representation. This yields,

Dµ = ∂µ − igsGaµta − i
g√
2

(
W+
µ T

+ +W−µ T
−)− iZµ (gcWT 3 − g′sWY

)
− iAµ

(
gsWT

3 + g′cWY
)
. (137)

We first examine the photon coupling. Using the definitions sW = g′/
√
g2 + g′2, cW = g/

√
g2 + g′2, we can simplify

the coefficient (
gsWT

3 + g′cWY
)

=
gg′√
g2 + g′2

(
T 3 + Y

)
≡ eQ, (138)

where e is the electromagnetic coupling and Q is the electric charge operator. By convention, we identify

e =
gg′√
g2 + g′2

= gsW = g′cW , Q = T 3 + Y. (139)

The photon coupling then takes the familiar form Dµ ⊃ −ieAµQ.
Now let’s examine the Z boson coupling. We can use Y = Q− T 3 to write

(
gcWT

3 − g′sWY
)

=
g2 + g′2√
g2 + g′2

T 3 − g′2√
g2 + g′2

Q =
√
g2 + g′2

(
T 3 − s2

WQ
)
. (140)

Putting it all together, we obtain the covariant derivative in the gauge boson mass basis,

Dµ = ∂µ − igsGaµta − i
g√
2

(
W+
µ T

+ +W−µ T
−)− i e

sW cW
Zµ
(
T 3 − s2

WQ
)
− ieAµQ, (141)

where we note that g = e/sW and e/sW cW = g/cW =
√
g2 + g′2. From this expression we can derive the familiar

electroweak fermion-antifermion-gauge boson Feynman rules using the fermion gauge-kinetic terms,

L ⊃ ψ̄LiDµγµψL + ψ̄RiDµγµψR. (142)

5. Fermion masses, the CKM matrix, and couplings to the Higgs boson

Now let’s look at the couplings of the Higgs doublet Φ to fermions. We’ll start with the leptons and neglect neutrino
masses30 for simplicity.

� Lepton masses

The construction of the Lagrangian terms that describe the Higgs couplings to fermions is pretty straightforward.
Lorentz invariance (conservation of spin) requires that fermion spinors appear in pairs, ψ̄ψ. Because the fermion field
has mass dimension 3/2, ψ̄ψ has mass dimension 3; combining this with a single Higgs doublet (with mass dimension
1) already yields mass dimension 4. Thus we can construct renormalizable Higgs-fermion couplings involving only
one each of ψ̄, ψ, and Φ. Furthermore, Φ is an SU(2)L doublet; for our Lagrangian term to be gauge invariant,
we must couple it to one SU(2)L doublet fermion field (e.g., LL = (νL, eL)T , see Table III) and one SU(2)L singlet
(e.g., eR).

Following this logic, the most general gauge-invariant renormalizable Lagrangian terms involving the Higgs doublet
and leptons are, for a single generation,31 Recall: Y (eR) = −1, Y (LL) = −1/2, and Y (Φ) = 1/2

LYukawa ⊃ −
[
yeēRΦ†LL + y∗e L̄LΦeR

]
, (143)

where the second term is the Hermitian conjugate of the first and ye is a dimensionless constant. The coupling ye
is complex in general, but its phase can be absorbed into a physically-undetectable rephasing of the right-handed
electron field eR; therefore we’ll treat it as real in what follows.

30 I’ll make some comments on neutrino masses later in this subsection.
31 You can add up the hypercharges of the fields in these Lagrangian terms, remembering that a Hermitian-conjugated field carries minus

the hypercharge of the original field, and see that the net hypercharge of each term is zero, i.e., that these terms are also gauge invariant
under U(1)Y . The same is true for the up- and down-type quark Yukawa terms that we will write down below. Aren’t we lucky that
the hypercharges of the left-handed fermions, right-handed fermions, and Higgs doublet work out just right to allow for the generation of
fermion masses via electroweak symmetry breaking! Why this works out so nicely is a mystery in the SM, possibly to be explained by grand
unification of the gauge interactions.
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FIG. 5. Feynman rule for the hēe vertex, as derived from the Lagrangian in Eq. (146). See also Eq. (148).

In unitarity gauge,

Φ =

(
0

(v + h)/
√

2

)
, (144)

and

Φ†LL =

(
0,
v + h√

2

)(
νe
e

)
L

=
v + h√

2
eL, (145)

so [using Eq. (104) in the second step]

LYukawa ⊃ −ye
1√
2

[(v + h)ēReL + (v + h)ēLeR]

= − ye√
2

(v + h)ēe

= −
(
yev√

2

)
ēe− ye√

2
hēe. (146)

The first term in the last line is a mass term for the electron,

me =
yev√

2
. (147)

The Higgs vacuum expectation value has given the electron a mass! Using the known value of v as determined from
the W boson mass, we can deduce the value of ye and hence the he+e− Feynman rule (see Fig. 5), which is

hēe :
−iye√

2
=
−ime

v
. (148)

Thus the hēe coupling is uniquely predicted in the SM once the electron mass and v are known.

The Higgs-electron coupling is really very small:

ye√
2

=
me

v
=

511 keV

246 GeV
' 2.1× 10−6. (149)

We can write down a similar Higgs coupling and mass term for the muon and for the tau lepton. The tau Yukawa
coupling is more “respectable,” though still kind of small:

yτ√
2

=
mτ

v
=

1.78 GeV

246 GeV
' 7.2× 10−3. (150)

The SM does not provide any explanation for these numbers or their sizes; they are just parameters to be measured.
One can hope that a more complete theory of flavor would provide an explanation for the pattern of fermion masses.

Note that we have not generated any masses or Higgs couplings to neutrinos, because we did not introduce three
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right-handed neutrinos νR to participate in the Higgs couplings. More on this after we deal with the quark masses.

� Quark masses and mixing

We start by following our noses and writing a term just like for the charged leptons: Recall: Y (dR) = −1/3,
Y (QL) = 1/6, and Y (Φ) = 1/2

LYukawa ⊃ −
[
ydd̄RΦ†QL + y∗dQ̄LΦdR

]
, (151)

where again the second term is just the Hermitian conjugate of the first, and we will again assume that the
dimensionless constant yd is real for now. As for the leptons, we multiply out the SU(2)L doublets in unitarity
gauge,

Φ†QL =

(
0,
v + h√

2

)(
uL
dL

)
=
v + h√

2
dL, (152)

so that

LYukawa ⊃ −
(
ydv√

2

)
d̄d− yd√

2
hd̄d. (153)

The first term is a mass for the down quark, md = ydv/
√

2, and the second is an hd̄d coupling.

So far so good, but what about the up-type quark masses? To generate these, we take advantage of a useful property
of SU(2): the anti-doublet or “conjugate” doublet transforms in the same way as the doublet. 32 The conjugate
Higgs doublet is given by

Φ̃ ≡ iσ2Φ∗ = i

(
0 −i
i 0

)(
φ−

φ0∗

)
=

(
φ0∗

−φ−

)
, (154)

and has hypercharge Y = −1/2. Using Φ̃ we can write another gauge-invariant Lagrangian term, Recall: Y (uR) =
2/3, Y (QL) = 1/6, and Y (Φ) = 1/2

LYukawa ⊃ −
[
yuūRΦ̃†QL + y∗uQ̄LΦ̃uR

]
, (155)

where again the second term is the Hermitian conjugate of the first, and we will assume that the dimensionless
constant yu is real for now. Writing out the product of the SU(2)L doublets in unitarity gauge,

Φ̃†QL =

(
v + h√

2
, 0

)(
uL
dL

)
=
v + h√

2
uL, (156)

so that

LYukawa ⊃ −
(
yuv√

2

)
ūu− yu√

2
hūu. (157)

This is exactly what we need to describe the up-quark mass mu = yuv/
√

2 and its coupling to the Higgs.

This is fine if we want to describe a single generation of quarks. But in the SM there are three generations of quarks!
We should really rewrite our left- and right-handed quark fields with a generation index j,

QLj , uRj , dRj , j = 1, 2, 3. (158)

In general, we can write a gauge-invariant coupling of QL1 to a Higgs doublet and each of uRj and dRj , with
j = 1, 2, 3, and the same for QL2 and QL3. The most general form of the quark Yukawa Lagrangian is

LqYukawa = −
3∑
i=1

3∑
j=1

[
yuij ūRiΦ̃

†QLj + ydij d̄RiΦ
†QLj

]
+ h.c., (159)

32 Contrast this to the case of SU(3), in which the anti-triplet does not transform in the same way as the triplet.
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where h.c. stands for Hermitian conjugate. The dimensionless couplings yuij and ydij are now the (i, j) entries of
3×3 complex matrices, containing a total of 18 complex coupling parameters! Replacing Φ with its vacuum value
(0, v/

√
2)T , we obtain the quark mass terms:

LqYukawa ⊃ − (ū1, ū2, ū3)RMu

 u1

u2

u3


L

−
(
d̄1, d̄2, d̄3

)
R
Md

 d1

d2

d3


L

+ h.c., (160)

where

Mu
ij =

v√
2
yuij , Md

ij =
v√
2
ydij (161)

are the quark mass matrices in generation space, each containing 9 complex entries.

We want to find the quark mass eigenstates. To do that, we just need to diagonalize the two complex matricesMu

andMd. Any such matrix can be transformed into a real diagonal matrix by multiplying it on the left and right by
appropriate unitary transformation matrices. We define four unitary matrices UL, UR, DL, and DL according to u1

u2

u3


L,R

= UL,R

 u

c

t


L,R

,

 d1

d2

d3


L,R

= DL,R

 d

s

b


L,R

, (162)

where u, c, t, d, s, b are the quark mass eigenstates, such that33

U−1
R MuUL =

 mu 0 0

0 mc 0

0 0 mt

 , D−1
R MdDL =

 md 0 0

0 ms 0

0 0 mb

 . (163)

Note that diagonalizing the mass matrices Mu and Md simultaneously diagonalizes the Yukawa matrices yuij =
√

2
v Mu

ij and ydij =
√

2
v Md

ij : this means that the Higgs couplings to q̄q are real and diagonal in the quark mass basis.
In particular, the Feynman rules are just

hq̄q :
−iyq√

2
=
−imq

v
, (164)

where yq is the appropriate eigenvalue of the Yukawa matrix yuij or ydij .

Notice that we’ve “broken up” the left-handed quark doublets by rotating the up-type quarks by UL and the down-
type quarks by the different matrix DL. This shows up in the charged-current weak interactions, which change
uLj ↔ dLj within the same (linear combination of) doublets. Because the mass eigenstates of the down-type
quarks are no longer matched up to the mass eigenstates of the up-type quarks, there are generation-changing weak
interactions, which are described by the Cabibbo-Kobayashi-Maskawa (CKM) matrix.

In the charged-current interaction part of the Lagrangian we have the quark bilinears

ūL1γ
µdL1, ūL2γ

µdL2, ūL3γ
µdL3. (165)

Their sum can be written in matrix form as

J+µ
L = (ū1, ū2, ū3)L γ

µ

 d1

d2

d3


L

= (ū, c̄, t̄)L U
†
Lγ

µDL

 d

s

b


L

= (ū, c̄, t̄)L γ
µV

 d

s

b


L

. (166)

The combination U†LDL ≡ V is the CKM matrix. Its elements are denoted by quark symbol subscripts; e.g., Vud is
the (1, 1) element of V . This indexing convention also helps one remember the form of Eq. (166).

33 For a unitary matrix, U−1 = U†.
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The CKM matrix is unitary:

V †V =
(
U†LDL

)† (
U†LDL

)
= D†LULU

†
LDL = 1. (167)

Note also that UR and DR have no physical consequences in the SM: uRi and dRi are not tied together in any way,
so their relative basis rotations do not matter.

In the neutral current interactions, the photon couplings Q and the Z boson couplings (T 3 − s2
WQ) are the same

for each of the three generations. The fermion bilinears involved in the neutral current can then be written out in
generation space as, e.g.,

(ū1, ū2, ū3)L γ
µ

 u1

u2

u3


L

= (ū, c̄, t̄)L U
†
Lγ

µUL

 u

c

t


L

= (ū, c̄, t̄)L γ
µ

 u

c

t


L

. (168)

So the neutral currents are automatically flavor diagonal, so long as the photon and Z boson couplings to all three
generations are universal. This is a manifestation of the GIM mechanism (after Glashow, Iliopoulos and Maiani). It
is also why “flavor changing neutral currents” (FCNCs) provide such tight constraints on physics beyond the SM:
they are absent at tree level in the SM, and the SM FCNCs induced at one-loop by W boson exchange are typically
quite small effects.

As a last comment, it is often convenient to work in the weak basis in which the up-type quarks are mass eigenstates.
The weak isospin doublets can then be written as(

u

d′

)
L

,

(
c

s′

)
L

,

(
t

b′

)
L

, (169)

where in generation space, (V = U†LDL = DL in this basis) d′

s′

b′


L

= V

 d

s

b


L

. (170)

� An aside on neutrino masses

If the neutrinos are Dirac particles (we do not know whether this is true; the other alternative is that they are
Majorana particles, which are their own antiparticles), then we can introduce three right-handed neutrino fields νRi
(i = 1, 2, 3) and write Dirac neutrino masses in the same way as the up-type quark masses: Recall: Y (νR) = 0,
Y (LL) = −1/2, and Y (Φ) = 1/2

LYukawa ⊃ −yν ν̄RΦ̃†LL + h.c., (171)

or, including the charged lepton mass terms and the full three-generation structure [compare Eq. (159)],

L`Yukawa = −
3∑
i=1

3∑
j=1

[
yνij ν̄RiΦ̃

†LLj + y`ij ēRiΦ
†LLj

]
+ h.c. (172)

Exactly as for the quarks, we get Dirac masses for the charged lepton mass eigenstates e, µ, τ and the neutrino
mass eigenstates ν1, ν2, ν3. The weak isospin doublets can be written in the basis in which the charged leptons are
mass eigenstates as (

νe
e

)
L

,

(
νµ
µ

)
L

,

(
ντ
τ

)
L

, (173)

where the “flavor eigenstates” of the neutrinos, νe, νµ, and ντ , are related to their mass eigenstates by the lepton
analogue of the CKM matrix, called the Maki-Nakagawa-Sakata-Pontecorvo (MNSP, or PMNS depending on your



27

political affiliation) matrix U :  νe
νµ
ντ


L

= U

 ν1

ν2

ν3


L

. (174)

The elements of the MNSP matrix are denoted by indices as, e.g., Ue1 for the (1, 1) element. This helps one
remember the form of Eq. (174).

Note that the Yukawa couplings needed to generate the neutrino masses are extremely—some would say unreasonably—
small: for a neutrino mass mν ∼ 0.1 eV, the corresponding neutrino Yukawa coupling would be

yν√
2

=
mν

v
' 4× 10−13. (175)

The other possibility for neutrinos is a “Majorana mass.” In terms of the SM fields, this is a term of the form
mνLνL (no bar!). Neutrinos are the only known fermion for which we can construct a Majorana mass because they
are electrically neutral, so that the Majorana mass term does not violate electric charge conservation. Such a mass
term is not gauge invariant under SU(2)L×U(1)Y , but we can generate it after electroweak symmetry breaking by
writing a more complicated term involving the Higgs field:34

LMajorana = − (Φ̃†LL)2

Λ
. (177)

Counting up the dimensionality of the fields in the numerator of LMajorana quickly reveals that the field operator
has dimension 5. This is thus a nonrenormalizable interaction, with coefficient 1/Λ where Λ indicates the cutoff
scale beyond which a more complete theory must reveal itself.

Such a term yields a neutrino mass mν = v2/2Λ. To get a neutrino mass of mν ∼ 0.1 eV requires Λ ∼ 3×1014 GeV.
The more complete theory that yields the Majorana mass term usually involves a very heavy Majorana right-handed
neutrino νR with mass of order the scale Λ. This is known as the “Type-I Seesaw.”

� CKM matrix parameter counting

You may have heard that the CKM matrix (and also the MNSP matrix) can be specified by three angles and a
phase. Here’s where that counting comes from.

– We start with a 3 × 3 complex matrix V : in general it contains 9 complex numbers, i.e., 18 independent real
parameters.

– V is unitary, yielding 9 constraints of the form V †abVbc = δac. This leaves 9 independent real parameters.

– We are free to absorb a phase out of V into each left-handed field, by redefining qL → eiαqL qL, with q = u, d of
each of the three generations. This removes an arbitrary phase from each row or column of V . But a common
phase redefinition of all the qL has no effect on V , so this rephasing actually removes only 6−1 = 5 unphysical
phases. This leaves 9− 5 = 4 physical free parameters in V .

To see that these four free parameters comprise three angles and a phase, note that a 3×3 real unitary matrix—i.e.,
an orthogonal matrix—has three independent parameters (the familiar three Euler angles). Thus 4− 3 = 1 of our
CKM parameters must be a complex phase. This phase is what gives rise to CP violation in the Standard Model
weak interactions.35

6. Higgs self-couplings

Finally let’s return to the Higgs potential,

LV = −V (Φ) = µ2Φ†Φ− λ(Φ†Φ)2, (178)

34 The Majorana mass term is more properly written as

LMajorana = −
yMaj
ij

Λ
L̄cLiΦ̃

∗Φ̃†LLj , (176)

where the conjugate spinor L̄cL ≡ −LTLC, where C = −iγ2γ0 is known as the charge conjugation matrix. L̄cL transforms in the same way as

a right-handed spinor ψ̄R under the Lorentz group. (I also included a generation-dependent prefactor yMaj
ij to allow for different Majorana

masses for the three generations.) Majorana particles also show up in supersymmetry—in the Minimal Supersymmetric Standard Model,
the gluinos and neutralinos are Majorana fermions.

35 Note also that if we’d had only two generations, the CKM matrix would be fixed in terms of a single mixing angle and no phase. The
introduction of the CP-violating phase was part of the original motivation for Kobayashi and Maskawa to introduce the third generation.
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h

h

Zν

Zµ

= i
(g2 + g�2)

8
· 2 · 2gµν = 2i
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Z

v2
gµν

e

e
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ye√
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h
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3

FIG. 6. Feynman rules for the hhh and hhhh vertices, as derived from the Lagrangian in Eq. (180). The hhh coupling contains
a symmetry factor of 3! = 6 from the three identical Higgs bosons, and the hhhh coupling contains a symmetry factor of 4! = 24
from the four identical Higgs bosons. See also Eqs. (181) and (182).

and work out the self-interactions of the Higgs. In unitarity gauge,

Φ†Φ =
1

2
(h+ v)2, (179)

and minimizing the potential gave us the relation µ2 = λv2, which we will use to eliminate µ2.

Plugging in and multiplying out, we obtain 36

LV = −λv2h2 − λvh3 − λ

4
h4 + const. (180)

The first term is the mass term for the Higgs, −λv2 = −m2
h/2. The second term is an interaction vertex involving three

Higgs bosons, with Feynman rule (see Fig. 6)

hhh : −iλv × 3! = −6iλv = −3i
m2
h

v
, (181)

where the 3! is a combinatorical factor from the three identical Higgs bosons in the Lagrangian term. The third term is
an interaction vertex involving four Higgs bosons, with Feynman rule (see Fig. 6)

hhhh : −iλ
4
× 4! = −6iλ = −3i

m2
h

v2
, (182)

where again the 4! is a combinatorical factor from the four identical Higgs bosons in the Lagrangian term.

B. Summary 37

The self-interactions of the SM Higgs boson and its interactions with the massive vector bosons are derived from the
Higgs Lagrangian:

LHiggs = (DµΦ)
†

(DµΦ) − VSM(Φ) , (183)

36

(λ/2)v2(h+ v)2 − (λ/4)(h2 + 2vh+ v2)2 = const.+ h[(λ/2)v2(2v)− (λ/4)(4v3)] + h2[(λ/2)v2 − (λ/4)(2v2 + 4v2)]

+ h3[−(λ/4)(4v)] + h4[−(λ/4)]

37 This is a summary from Ref. [4]
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where Φ denotes a complex SU(2)L doublet Higgs field with hypercharge Y = 1/2 and its covariant derivative is defined
as

DµΦ =

(
∂µ − ig

σa

2
W a
µ − ig′

1

2
Bµ

)
Φ

=

(
∂µ − i

2 (gW 3
µ + g′Bµ) − ig2 (W 1

µ − iW 2
µ)

− ig2 (W 1
µ + iW 2

µ) ∂µ + i
2 (gW 3

µ − g′Bµ)

)
Φ , (184)

in terms of the SU(2)L and U(1)Y gauge couplings g and g′, respectively, the three SU(2)L gauge bosons W 1,2,3
µ , and the

single U(1)Y gauge boson Bµ with the usual three 2× 2 Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (185)

And the renormalizable SM Higgs potential VSM(Φ) is given by 38

VSM(Φ) = µ2(Φ†Φ) + λ(Φ†Φ)2 , (186)

with µ2 < 0 leading to the spontaneous breakdown of the electroweak gauge symmetry.

Taking Φ = (0, v + H)T /
√

2 with the vacuum expectation value (vev) v =
√
−µ2/λ and the real scalar field H after

rotating away three Goldstone modes and using W±µ = (W 1
µ ∓ iW 2

µ)/
√

2 and Zµ = (gW 3
µ − g′Bµ)/

√
g2 + g′2, we can

render the kinetic term of the Higgs Lagrangian in Eq. (183) into the form expanded as 39

(DµΦ)
†

(DµΦ) =
1

2
(∂µH)(∂µH) +M2

WW
+
µ W

µ− +
1

2
M2
ZZµZ

µ (187)

+ gMW

(
W+
µ W

µ− +
1

2c2W
ZµZ

µ

)
H +

1

v2

(
M2
WW

+
µ W

µ− +
M2
Z

2
ZµZ

µ

)
H2 ,

in the unitary gauge. We use the abbreviation sW ≡ sin θW for the sine of the weak mixing angle θW and cW ≡ cos θW ,
tW ≡ sin θW / cos θW , etc. The masses of the massive gauge bosons W and Z are given by MW = gv/2 and MZ = MW /cW

with v =
(√

2GF
)−1/2 ≈ 246 GeV fixed by the Fermi constant GF . Incidentally, the SU(2)L and U(1)Y gauge couplings

are g = e/sW and g′ = g tW = e/cW , respectively, where the magnitude of the electron electric charge e = 2
√
πα with α

being the fine structure constant. On the other hand, the SM Higgs potential takes the form of

VSM(H) = −1

8
v2M2

H +
1

2
M2
H H

2 +
1

3!

(
3M2

H

v2

)
v H3 +

1

4!

(
3M2

H

v2

)
H4 , (188)

which is completely fixed in terms of v and the Higgs mass MH with the replacements of µ2 = −λv2 and λ = M2
H/2v

2.

The Higgs interactions with the SM fermions are derived by considering the following Yukawa interactions 40

−LY = UR huQ
T (iσ2) Φ−DR hdQ

T (iσ2) Φ̃− ER he L
T (iσ2) Φ̃ + h.c. ,

= UR hu Φ̃†Q+DR hd Φ†Q+ ER he Φ† L + h.c. , (189)

where Φ̃ = iσ2Φ∗ = (φ0∗,−φ−)T and QT = (UL , DL) and LT = (νL , EL) with U and D standing for the three up-
and down-type quarks, respectively, and ν and E for the three neutrinos and charged leptons, respectively, in the weak
eigenstate basis. And the 3× 3 Yukawa matrices are denoted by hu,d,e. Taking Φ = (0, v +H)T /

√
2 again, we have

−LHf̄f =
∑

f=u,d,c,s,t,b,e,µ,τ

mf

v
H ff , (190)

with the masses mf = hf v/
√

2 in the fermion mass eigenstate basis diagonalizing the Higgs-fermion interactions.

38 Note the sign flip of the µ2 term
39 For the HVV couplings, one might have gMW = g(gv/2) = 2M2

W /v and gMW /c2W = 2M2
W /v/c2W = 2M2

Z/v using MW = gv/2 and
MW = MZcW .

40 Note that (iσ2)Φ = Φ̃∗ and (iσ2)Φ̃ = −Φ∗ which lead to QT (iσ2) Φ = Φ̃†Q, QT (iσ2) Φ̃ = −Φ†Q, and LT (iσ2) Φ̃ = −Φ† L.
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FIG. 7. The measured coupling modifiers of the Higgs boson to fermions and heavy gauge bosons, as functions of fermion or gauge
boson mass, see Refs.[5] and [6]. Note that, with the coupling modifiers, the HHVV and Yukawa couplings are given by (two times
of) κVM

2
V /v

2 and κfmf/v, respectively, see Eqs. (187) and (190).
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