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Defining the relaxation 
spectrum



A master equation formalism

• Consider a master equation defined by ,


• Probability vector . 


• Detailed balance ensures the spectral decomposition 
. 


• Here  are eigenvectors corresponding to the 
relaxation spectrum . 


• The relaxation spectrum is the eigenvalues of . 


• Detailed balance ensures , with . 

∂t |P⟩ = M |P⟩

|P⟩ = (P1, P2, . . . )

|P(t)⟩ = ∑
E≥0

aEe−Et |PE⟩
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Motivation

why should we care to do it? 
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What’s the challenge?



Handling many-body systems is hard

• Large state space  ! 


• Diagonalizing the master matrix 
becomes impractical for . 


• For an arbitrary model analytics is too 
hard. No known Boltzmann statistics for 
the excited states. 


• Find a trick!  e.g. Bethe ansatz, Matrix 
product ansatz, Matrix product states, 
integrability, conformal field theory. 


• Even numerically, we need a trick!  

2L

L = 20

The simple exclusion process: 


Each lattice site is either occupied or not

Particles jump to nearest vacant neighbors with some rate

Process may not be symmetric, or homogenous. 
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Can we do it then? 



Escape time of interacting systems in a deep trap

Finding the escape time of a particle from 
a deep trap is equivalent to finding the first 
excited energy in the relaxation spectrum 


We were able to capture the escape time 
using the macroscopic fluctuation theory, 
for diffusive systems. 


Kumar, Pal, and OS, PRE 24’ 

Kumar, Pal, and OS, JCP 24’ 
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What can and cannot be done 
with hydrodynamics



An over damped particle on a ring
Lattice model Continuum Fokker-Planck eq.

• Fokker-Planck formalism 
, with 

boundary conditions 



• The relaxation spectrum 
 for  

∂tP(x, t) = D∂xxP(x, t)

P(x, t) = P(x + L, t)

E = (2πn/L)2 n ∈ ℤ

• A jump process of a particle on a 
periodic lattice, with unbiased jump 
rates. 


• The master equation 
, 

with . 


• The relaxation spectrum 

∂tPi(t) = Pi−1(t) − 2Pi(t) + Pi+1(t)
Pi(t) = Pi+L(t)

E = 2 − 2 cos(2πn/L), n ∈ ℤ
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A different formalism 

Path probability



Path probability

Instead of Fokker-Planck, go over all paths 


(*) 


Much harder than using the Fokker-Planck formalism, as we need to count 
all the paths. 


For , the path probability is dominated by a saddle.                      


a) Following Hamilton’s equations


b) A constant energy manifold  . 


So, we find 


  , where   satisfies (*)  


Notice,  defines a continuum of energy manifolds. The inclusion of 
BC determines the actual spectrum. This is the hardest part of the WKB 
procedure. 

P(xf , t) = ∫ dxi P(xi,0)𝕋(xi → xf; t)

D ≪ 1

H = − DE

PE(x, t) ∼ e− 1
D VE(x)−Et VE(x) = ∫ ̂pE(x)dx

H(x, p)



Path probability  





,          . 


𝕋(xf , xi; t) = ∫ d ̂xd ̂π e−S

S =
1
D ∫ dt ̂p · ̂x − H( ̂x, ̂p) H(x, p) = − p∂xU + p2
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Path probability approach 

to find the relaxation spectrum

• Only works as a saddle approximation. 


• Need to handle boundary conditions carefully. 


• Hard to go beyond the single particle. 


• Need to solve eigenstates to infer the eigenvalues. The problem is coupled. 



The macroscopic fluctuation 
theory 



The macroscopic fluctuation theory

The probability to observe the density profile is given by 





Same idea as before:


a) Following Hamilton’s equations for .


b) A constant energy manifold  . 


So, we find 


  , where


  satisfies (*) 


This still looks challenging 

𝒫(ρf, t) ∼ ∫ 𝒟ρi 𝒫(ρi, t)𝒯(ρi, ρf; t)

ℋ

ℋ = − E/L

𝒫E[ρ(x), t] ∼ e−L𝒱E[ρ(x)]−Et

𝒱E[ρ(x)] = ∫ dx ̂π(x)dρ(x)

A closed system of interacting 
particles with the density ρ(x, t)

L
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a) Following Hamilton’s equations for .


b) A constant energy manifold  . 


So, we find 


  , where


  satisfies (*) 


This still looks challenging 

𝒫(ρf , t) ∼ ∫ 𝒟ρi 𝒫(ρi,0)𝒯(ρi, ρf; t)

ℋ

∫ dx ℋ = − E/L

𝒫E[ρ(x), t] ∼ e−L𝒱E[ρ(x)]−Et

𝒱E[ρ(x)] = ∫ dx ̂π(x)dρ(x)



Identifying the spectrum
A closed system of interacting 

particles with the density ρ(x, t)
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Path probability  
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𝒯(ρi, ρf; t) = ∫ 𝒟 ̂ρ𝒟 ̂πe−S

S = L∫ dxdt ̂π∂t ̂ρ − ℋ( ̂ρ, ̂π)

Assume there exists a fixed point 


The Hamilton equations lead imply . 


With these assumptions one can find   as an ODE of . 


  


* BC apply directly on the ODE


* Disentangles the eigenvalues from the eigenfunctions ! 


𝒱E[ρ(x)] = 0

∂tρ = ∂tπ = 0

E ρ(x)



Limitations

The formalism, as of yet, works only for closed systems that relax to a unique equilibrium. That is, we need a 
local and global particle conservation. 


There is a huge degeneracy in the spectrum’s eigenfunctions. That is, there are multiple quasi-potentials  
for each energy value. 


While there is a “formula” for inferring the spectrum, finding the associated quasi-potential requires some 
luck and skill.   


Still much work to be done!  

𝒱E


