
Appendix A

Constrained Dynamics

In the current Appendix, we will introduce the key concept of constrained dynamics,

indispensable for any system with gauge redundancy. A common feature of gauge

theories in general is that they are formulated with more field variables than the

actual degrees of freedom counting suggests. There exists an elaborate Hamiltonian

formulation of such theories with extra degrees of freedom built-in, due to Dirac, at

both classical and quantum level. Although this round-about attitude, of reaching

the physical degrees freedom starting from a redundant formulation, may look odd,

there are much advantage in doing so if we wish to take a full benefit of the symmetry

structures.

Dirac’s theory of constrained dynamics we will cover in this Appendix is also

important and unavoidable for theories formulated with a single time-derivative in the

Lagrangian. The latter includes typical fermionic theories, although in this appendix

we will fall short of the latter. Much of what happen with fermions can be seen

indirectly with the Chern-Simons theories, which is our last example in this Appendix.

A.1 Mechanical Prototypes

Let us first recall the Hamiltonian view on classical mechanics, starting with the

multi-particle action,∫
Ldt =

∫ (
1

2
Mab(q)q̇

aq̇b − V (q)

)
dt , (A.1.1)

617



with its Euler-Lagrange equation

δ

∫
Ldt = 0 → d

dt
(Mabq̇

b) =
1

2
∂aMcdq̇

cq̇d − ∂V

∂qa
. (A.1.2)

The same can be done alternatively in a first-order formulation with canonical vari-

ables,

pa ≡
δ

δq̇a

∫
L ,

H(q; p) ≡ (paq̇
a − L(q, q̇))

∣∣∣
extremize w.r.t q̇a

=
1

2
(M−1)abpapb + V (q) . (A.1.3)

It follows also that

L(q, q̇) = (paq̇
a −H(q; p))

∣∣∣
extremize w.r.t pa

. (A.1.4)

One may take a reverse view by taking

paq̇
a −H(q; p) (A.1.5)

as the definition of the Lagrangian, now with q and p considered as fundamental

variables, and extremize

δ

δp

∫
(pq̇ −H(q; p))dt = 0 ,

δ

δq

∫
(pq̇ −H(q; p))dt = 0 (A.1.6)

and obtain the evolution equation for p and q as

δ

δpa
→ q̇a =

δH

δpa
= (M−1)abpb ,

δ

δqa
→ ṗa = −δH

δqa
= −1

2
∂a(M

−1)cdpcpd −
∂V

∂qa
. (A.1.7)

This choice of variables where the evolution is dictated by H is what we mean by

Hamiltonian dynamics. This is clearly equivalent to the original Euler-Lagrange
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equation; Combining the two and using

∂aM
−1 = −M−1(∂aM)M−1 , (A.1.8)

we recover the above second-order equation of motion easily.

The above Hamiltonian dynamics has an elegant geometrical realization that

starts with the Poisson Bracket defined for functions on the phase space, i.e., the

space spanned by qa’s and pa’s. Given a pair of functions f and g on the phase space,

the Poisson bracket is,

[ f, g ]P.B ≡
∂f

∂qa
∂g

∂pa
− ∂f

∂pa

∂g

∂qa
(A.1.9)

In particular the coordinates and the conjugate momenta thereof obey,

[ qa, pb ]P.B. = δab (A.1.10)

which of course elevates to the quantum canonical commutator by multiplying the

right hand side by i~.

The above canonical equations of the motion are then recast as

q̇a = [ qa, H(q; p) ]P.B. , ṗa = [ pa, H(q; p) ]P.B. (A.1.11)

Since all dynamical variables are functions of q’s and p, this means that

ḟ(q; p) = [ f(q; p), H(q; p) ]P.B. (A.1.12)

This phase space dynamics can also be interpreted more geometrically in terms of

the symplectic structure,

Ω =
∑
a

dqa ∧ dpa , dΩ = 0 , (A.1.13)

and the so-called Hamiltonian flow thereof. We will not dwell on this geometric

interpretation of the Hamiltonian dynamics, as it is available almost in any graduate

textbooks on classical mechanics.
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A.1.1 A Prototype L1

The most familiar prototype of constrained dynamics are mechanics equipped with

Lagrange multipliers. As we are familiar from classical mechanics, sometimes it is

advantageous to keep redundant set of variables only to impose a restriction. For

instance, take a free particle motion on a circle,

L1 =
m

2
(ẋ2 + ẏ2)− λ

2
(x2 + y2 −R2)

=
m

2

(
ṙ2 + r2θ̇2

)
− λ

2
(r2 −R2) (A.1.14)

with

H1 =
1

2m

(
p2
r +

p2
θ

r2

)
+
λ

2
(r2 −R2) . (A.1.15)

The Lagrange multiplier λ imposes

r2 −R2 = 0 . (A.1.16)

Although one may immediately reduce this as x + iy = Reiθ and keep θ as the only

surviving variable,

L′1 =
mR2

2
θ̇2 , H ′1 =

1

2mR2
p2
θ , (A.1.17)

we will stick to this redundant form, L1, as it proves to be quite instructive.

Recasting this into the canonical form

L1 = prṙ + pθθ̇ + pλλ̇−H1(r, θ, λ; pr, pθ, pλ) , (A.1.18)

we immediately find a constraint,

ϕ1 ≡ pλ → ϕ1 ≈ 0 , (A.1.19)

where we introduced ≈ for the so-called weak equality, meaning that the equality

holds upon imposing the complete set of constraints. By definition, classical trajec-

tories live on the hypersurface carved out by the constraints.
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ϕ1 ≈ 0 is called the primary constraint in that its follows immediately when we

move over to the canonical formulation. Starting with such a primary constraint we

often discover secondary constraints as its consequences. For example, ϕ1 ≈ 0 has to

mean ϕ̇1 ≈ 0 as well. We actually already knew this since

ϕ2 ≡ −ϕ̇1 = −[ pλ, H1 ]P.B. =
r2 −R2

2
(A.1.20)

with the innocent overall sign for later convenience, is the λ equation of motion. So

we have

ϕ2 ≈ 0 , (A.1.21)

as a secondary constraint. It does not stop here since we need to make sure ϕ̇2 ≈ 0

as well, which gives,

ϕ3 ≡ ϕ̇2 =
1

2
[ r2 −R2, H1 ]P.B. =

rpr
m

. (A.1.22)

ϕ3 ≈ 0 demands the radial momentum to be absent, as to be expected for a circular

motion.

We have one more step to go,

ϕ̇3 =
1

m
[ rpr, H1 ]P.B. = 2

(
H1

m
− λ

m
(2ϕ2 +R2/2)

)
, (A.1.23)

so we might as well take

ϕ4 ≡
H1

m
− λR2

2m
. (A.1.24)

ϕ4 ≈ 0 determines the value of the Lagrange multiplier λ, given a trajectory. Since

H commute with itself, the generation of secondary constraints stops here. Now we

can self-consistently impose

ϕ1,2,3,4 ≈ 0 , (A.1.25)

bringing us back effectively to a single pair of canonical coordinates θ and its mo-

mentum pθ, as in x+ iy = Reiθ.

A significant fact to note for the prototype is that the Poisson bracket among
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these constraints do not vanish even weakly,

[ϕ1, ϕ4 ]P.B. ≈
R2

2m
, [ϕ2, ϕ3 ]P.B. ≈

R2

2m
. (A.1.26)

Other combinations vanish weakly. From this one can see that the matrix,

[ϕi, ϕj ]P.B. (A.1.27)

is a non-singular matrix, even weakly. Constraints of this type are called the second

class. Next, we come to classification of constraints to the first-class and the sec-

ond class, by Dirac, and how one may deal with such second-class constraints more

effectively.

Before proceeding further, we wish to warn the readers that the procedure we

used above for L1 and H1 is actually incomplete. This has something to do with

a necessity to modify the Hamiltonian H to include terms linear in the constraints,

which can affect generation of secondary constraints and how we view λ above. Al-

though we will initially work with H1 and the four accompanying constraint ϕ1,2,3,4,

a more systematic approach would have treated the dynamics a little differently. We

will revisit L1 once each in next two subsections, to illustrate what we mean by

this. Nevertheless, this more systematic alternatives do not represent corrections,

but merely alternatives.

A.2 First-Class vs. Second-Class

A.2.1 The Total Hamiltonian and the Dirac Bracket

Of course one naturally wonders why in the world we have gone through this gym-

nastics where, at least with the prototype here, we may obviate all these by solving λ

equation first x+ iy = Reiθ and keeping θ only. The answer to this is two-fold. One

is that it is not always easy, or even downright impossible to “solve” in many cases.

The latter in particular applies to all of fermionic quantum mechanics and fermionic

quantum field theories. The other is that there are certain kinds of constraints, to

be studied in next subsection, called the first-class constraints connected to gauge re-

dundancies. Here again, ‘solving” first to remove the unphysical part of the variables

is often cumbersome but, more importantly, not profitable.
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These two kinds of situations may be separated via a classification of the con-

straints themselves. Given the Poisson bracket we started with, suppose we compute

the pairwise bracket of these constraints,

[ϕI ,ϕJ ]P.B. , (A.2.1)

and ask whether these vanish weakly, i.e., vanish on the hypersurface ϕJ ≈ 0. For

some pairs, it may while for others it may not.

The constraints are classified into the first-class and the second-class by collecting

a maximal subset whose element commute with all the constraints. Such commut-

ing constraints are called the first class, while the rest are called the second class.

Since a first-class constraint must commute with all possible constraints, and we may

determine the first-class constraints only after determining the entire set of ϕ’s.

From now on, we will denote these two types of constraints by different symbols,

ϕI → χA , ϕi . (A.2.2)

In other words,

[χA,χB ]P.B. ≈ 0 , [χA, ϕi ]P.B. ≈ 0 , (A.2.3)

while [ϕi, ϕj ]P.B. is nonsingular on the constrained surface. Given the antisymmetric

property of the Poisson bracket, it should be clear that the number of second-class con-

straints, ϕi’s, are always even.∗ With our prototype example above, all four ϕi=1,2,3,4

are second-class, although we will later see that there are alternative descriptions

where ϕ1,4 are traded off in favor of a single first-class constraint.

One puzzling aspect of dynamics with the constraints, at the first sight, is that

physical expressions are in principle ambiguous along the directions normal to the

constrained hypersurface. On the other hand, we cannot impose the constraints too

early, since a Poisson bracket involving a constraint need not always vanish even if we

impose all the constraints. In fact the Hamiltonian is itself a function on the phase

∗For mechanics and field theories based on Grassmann numbers, necessary for fermions, this is
no longer true as the Poisson bracket becomes symmetric.
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space, so one must wonder whether the following type of shift

H → H ≡ H +
∑
I

λIϕI , (A.2.4)

makes any difference. In fact, the prototype Hamiltonian H1 came with λϕ2 built in,

so why not do the same with other constraints. The rule of the game can become

confusing rather quickly.

For a clarification why such shifts are often necessary, let us consider another

simple example,

L2 = yẋ− 1

2m
y2 − V (x) , H2 =

1

2m
y2 + V (x) , (A.2.5)

which is clearly equivalent to, upon using equation of motion for y,

L′2 =
m

2
ẋ2 − V (x) , H ′2 =

1

2m
p2
x + V (x) , (A.2.6)

the usual Newtonian mechanics for a particle of mass m on a line and the potential

V (x). As such, we can expect the constraints of L2 to reduce the canonical degrees of

freedom by two. Indeed, L2 comes with a pair of primary and second-class constraints,

ϕ1 ≡ py ≈ 0 , ϕ2 ≡ px − y ≈ 0 , [ϕ1, ϕ2 ]P.B. = 1 . (A.2.7)

However, an immediate puzzle appears from how ϕ̇1 seems to generate a secondary

constraint, since

[ py, H2 ]P.B. = − y

m
, (A.2.8)

whose weakly vanishing means px = 0 or ẋ = 0, contrary to the dynamical content

of L′2. If we had used H ′2 in place of H2, the result looks proper, but this would

have been an illegal thing to do since we decided to keep all four canonical degrees of

freedom in play when we were asking about the above Poisson bracket with py in it.

This oddity tells us that the time-evolution with the Poisson bracket, driven by

the Hamiltonian derived in the usual manner, is not the entire story. Suppose that

we decided to extend the Hamiltonian as

H2 = H2 + u1ϕ1 + u2ϕ2 , (A.2.9)
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with unknown functions u1,2, perform the Poisson bracket with this “total” Hamilto-

nian for the time evolution as

ϕ̇1 = [ ϕ1,H2 ]P.B. = − y

m
+ u2 , ϕ̇2 = [ ϕ2,H2 ]P.B. = −u1 − V ′(x) . (A.2.10)

Note that demanding ϕ̇1,2 = 0 actually fixes the value of u1 = −V ′(x), u2 = y/m

here, instead of generating secondary constraints.

These u’s are also called the Lagrange multipliers, as it multiplies the constraint,

just as λ did for H1. This is in part motivated by how in the very first example, we

had the constraint ϕ2 already appearing additively in the Hamiltonian, multiplied by

λ. The phenomenon of the Lagrange multipliers becoming fixed on shell is familiar

from classical mechanics, although u’s here are a little different from λ. One major

difference is that ui’s added this way are not meant to be a phase space coordinate

at all, while λ of L1 and its conjugate momentum pλ were treated so. Later, we will

dwell on related subtleties after presenting a more complete picture of constrained

systems.

The same can be done with the prototype L1 above, with H1 with all constraints

and accompanying ui’s built-in. For this example, however, we need to keep in mind

L1 came with a Lagrange multiplier of its own λ times the constraint called ϕ2 in that

example. Because of this, one has two different options for the total Hamiltonian H1,

depending on whether or not we treat λ as part of initial phase space variables or

not. One simple option is that we consider λ as u2 from the beginning in the sense

of the “total” Hamiltonian H1 with its conjugate momentum disregarded.

In the latter viewpoint, λ and ϕ1 = pλ are not part of the unconstrained phase

space, so that only ϕ2 and ϕ3 need to be counted as the constraints. In the latter

viewpoint, our “total” Hamiltonian is

H′1 = H1

∣∣∣∣
λ→u2

+ u3ϕ3 . (A.2.11)

We may do this if we decide to forget about the original Lagrangian side. Either way,

u2 is fixed by either ϕ̇3 = [ϕ3,H1 ]P.B. ≈ 0 or ϕ̇3 = [ϕ3,H′1 ]P.B. ≈ 0, resulting in the

same dynamics in the end.†

†The other option of treating λ as part of the phase space, now with the total Hamiltonian
understood, incurs yet another line of thought to be pursued in next subsection, where we need to
deal with cases where some Lagrange multipliers are not fixed but rather become a gauge ambiguity.
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The “total” Hamiltonian thus can contain many new u’s which do not appear

in the original Lagrangian and some of them seem essential while others are mere

formality with not much of consequences. Some of them starts out a part of the con-

figuration variable, as in λ of L1. Others, like ui’s above are just unknown functions

on the phase space, only to be determined on-shell by the time-independence of the

second -class constraints. One can also choose to elevate the latter type of Lagrange

multipliers ui’s in H to canonical variables, as long as we make sure to treat its con-

jugate momenta pui as constraints, whose equation of motion yields ϕi ≈ 0 to begin

with. For each u we treat as if dynamical, this of course enlarges the phase space

by two more canonical variables, so the process could be repeated forever, although

somewhat meaninglessly as it does not affect the true dynamics on the constrained

subspace.

One must wonder if all these formalisms, with potentially never-ending yet mean-

ingless growth of the phase space, are worth the trouble. Although there is no real

ambiguity here of dynamical consequence, the formalism with the Poisson bracket

and the second-class constraints can become quite heavy, more so if we view each of

u’s in the “total” Hamiltonian as part of the phase space prior to the constraints.

Somehow it would be better if we can find a simpler way where the Lagrange mul-

tipliers can be evaded altogether. Much of these complications and confusions often

originate from the question of when it is safe to impose the constraint and when it

is premature to do so, which in turn is due to how the Poisson bracket of a pair of

constraint need not vanish even weakly.

Fortunately, there exists a clever alternative to the Poisson bracket that can bypass

much of these procedural headaches associated with the second-class constraints. This

modified commutator is called the Dirac bracket,

[ f, g ]Dirac ≡ [ f, g ]P.B. − [ f, ϕi ]P.B.(C
−1)ij[ϕj, g ]P.B. , (A.2.12)

with the non-singular matrix,

Cij ≡ [ϕi, ϕj ]P.B. . (A.2.13)

The Dirac bracket is, quite clearly, a projection of the Poisson bracket onto ϕ ≈ 0,

As this single example L1 shows, the constrained dynamics often involves several different routes to
one and the same on-shell dynamics in the end.
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which means,

[ f, ϕ ]Dirac ≈ 0 (A.2.14)

for any second-class constraint ϕ and arbitrary dynamical quantity f .

In a dynamical system with the second-class constraints, the canonical dynamics

may be performed with this Dirac’s modification of the Poisson bracket,

ḟ(q; p) = [ f(q; p), H(q; p) ]Dirac . (A.2.15)

One should see immediately that with this modified bracket, the distinction between

H and H disappears as far as the second class constraints are concerned, since any

pieces that contain these constraints are projected out. All these extra baggages

and ambiguities due to the second-class constraints can be conveniently removed by

the Dirac bracket, whereby we are also free to impose these second-class constraints

freely, before or after the Dirac bracket.

As an immediate check, let us revisit L2 above and ask for the equation of motion

for the remaining x and px. If we use the Poisson bracket and happen to use H2

rather than H2, we end up with

ṗx ≈ ẏ = [ y,H2 ]P.B. = 0 . (A.2.16)

which is clearly a nonsense in view of L′2. This can be remedied most economically

by using the Dirac bracket instead,

ṗx ≈ ẏ = [ y,H2 ]Dirac = [ y,H2 ]P.B. − [ y, ϕ1 ]P.B.[ϕ2, ϕ1 ]−1
P.B.[ϕ2, H ]P.B.

= 0− [ y, py ]P.B. × (−1)× [ px − y,H ]P.B. = −V ′(x) , (A.2.17)

which is precisely the expected equation of motion for x from L′2. We can see the

same works for L1; the off-constraint variable r could have easily gone wrong if we

had used the Poisson bracket with H1.

A word of caution is in order. As is clear from the definition of the Dirac bracket,

it may be defined only after the complete set of constraints are collected and classified.

The Poisson bracket remains the fundamental symplectic structure that governs the

Hamiltonian dynamics. It is also with the Poisson bracket that we need to use for
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discovering the secondary constraints, although we must continue to update H along

the process. The Dirac bracket is not a new symplectic structure we introduced ad

hoc but rather an equivalent but cleaner version of the same symplectic structure

which obviates much of the unnecessary computational baggages.

One can also come away with the impression that these examples L1,2 are artificial,

as, in both, we have a perfectly sensible way to reduce the degrees of freedom to

unconstrained ones only. However, these simple examples are also quite prototypical;

we will encounter field theory examples with single time-derivative, both bosonic and

fermionic, where the Dirac bracket becomes practically indispensable.

A.2.2 First-Class and Gauge Redundancies

Along the way we discover constraints, we have seen that we should take into account

the potential ambiguities associated with the off-constraint directions. This led us to

consider the “total” Hamiltonian,

H = H +
∑
I

λIϕI = H +
∑
i

uiϕi +
∑
A

ΛAχA , (A.2.18)

we see that only ui’s and not ΛA’s appear on the right hand side of [ϕI ,H ]P.B. since

χA’s commute with all constraints weakly. This means that the coefficients u’s of the

second-class constraints get fixed on shell.

Alternatively, we have seen also how the Dirac bracket allows us to simplify the

dynamics on the constrained hypersurface, by effectively removing ϕi directions from

the dynamics. Unless one is for some reason interested in on-shell values of ui’s, the

latter is far easier route to the dynamics; the Dirac bracket allows us to forget about

ϕi directions and in particular to drop
∑

i uiϕi from H.

Either way, we are left with the first-class constraint terms
∑

A ΛAχA in H. Al-

though they commute weakly among themselves, the commutators between them

and generic dynamical variables vanish do not vanish weakly, so these terms in H

seemingly generate arbitrary shift of variables proportional to ΛA’s.

ḟ = [ f,H ]Dirac +
∑
A

[ f,ΛAχA ]Dirac

≈ [ f,H ]Dirac +
∑
A

ΛA [ f,χA ]Dirac . (A.2.19)
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On the flip side of the coin, there was no compelling reason why we kept these terms

in H, unlike those of ϕi’s, so the shift due to such terms should not be physically

significant either.

The only way to make sense of this odd situation is to say that the canonical

variables we started with is ambiguous physically, and we must consider classical

trajectories that differ by such shift due to χA’s as physically equivalent solutions.

Take for instance a trivial toy model,

L3 =
1

2
(xẋ+ yẏ)2 =

1

2
(r2 ṙ2) , H3 =

p2
r

2r2
. (A.2.20)

Since the angle θ of x+ iy = reiθ does not appear anywhere, we have

χ ≡ pθ (A.2.21)

as the primary constraint, which commutes with H3 and with itself and thus does

not generates a secondary constraint. The total Hamiltonian is then,

H3 = H3 + Λpθ (A.2.22)

While we have the option of forgetting about θ and pθ entirely, suppose that for

some reason we must keep x and y as the variables. H3 dictates the radial motion,

ṙ = [ r,H3 ]P.B. = [ r,H3 ]P.B. =
pr
r2

,

ṗr = [ pr,H3 ]P.B. = [ pr, H3 ]P.B. =
p2
r

r3
, (A.2.23)

whereas the angular part

ẋ+ iẏ = [ reiθ,H3 ]P.B. = iΛ reiθ (A.2.24)

rotate the phase by the integration of the arbitrary function Λ. Of course there is

nothing strange about this, since the Lagrangian did not depend on the phase part

of x+ iy = reiθ at all. This merely reminds us that we started with redundant set of

variables, x and y, instead of the single physical variable r.

The toy model teaches us how the first-class constraints remove degrees of freedom.

Note that unlike the previous examples with the second-class constraints only, we find
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exactly one first-class constraint whereas there are two canonical variables θ and pθ

which are unphysical. The single first-class constraint achieve this task, first but

imposing ϕ ≈ 0, and then performing an arbitrary shift of θ and basically telling

us not to worry; Configurations with the same r(t) but mutually different phase

angles are all supposed to be declared to be one and the same physical trajectories.

As such, the canonical degrees of freedom is reduced by twice the number of the

first-class constraints.

Combining this with what we learned of the second-class constraint, we conclude

that the canonical degree of freedom is reduced by

2×# of χA + # of ϕi . (A.2.25)

In terms of configuration space variables, the reduction is by

# of χA +
1

2
×# of ϕi , (A.2.26)

instead, which makes sense as the number of second-class constraints is even. For

fermionic systems the latter number can be actually odd due to how the Poisson

bracket is symmetric rather than anti-symmetric, but in these cases there is no sen-

sible definition of “configuration space” variables, so we safely resort to the first

counting.

Finally, with the Dirac bracket (or with the Poisson bracket if ϕi’s are absent),

note that the weakly commuting nature of χA means

[χA,χB]Dirac =
∑
C

fABC χC +O(ϕ2) , (A.2.27)

so they span an algebra of some kind. As we will see presently, in the prototypical

field theory examples, the algebra in question is the infinite-dimensional symmetry

algebra associated with position-dependent gauge transformations. Although one

often refers to the latter as the gauge symmetry, it should be really called the gauge

redundancies in view of what we have seen above.
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A.3 Ambiguities and Subtleties

Before turning to field theory examples, we wish to illustrate a point here by revisiting

a couple of examples above. As we saw earlier with L1, how we handle constraints and

Lagrange multiplier is open to some ambiguity, and in fact the constraint classification

itself and what should be considered the constraints are not entirely rigid. Without

affecting the dynamics on constraints, the off-constraint part of the phase space comes

with some amount of ambiguity.

In fact, if one wishes, we can continue to add more phase variables and more

constraints indefinitely, by deciding to treat ui’s as part of the phase space coordinates

on par with λ of L1 example. The ambiguity in question goes beyond such relatively

trivial one, and in fact allows us to swap first-class constraints to second-class one and

vice versa. In this last part of the section, we will revisit L1 and L3 for illustration.

Revisiting L1: a Single First-Class instead of a Pair of Second-Classes

The question of whether we treat Lagrange multiplier as phase space coordinate or

not is often ambiguous. For illustration of this question, L1 is a little special among

the three examples we displayed in that the Lagrangian include an explicit Lagrange

multiplier λ. Note how we use the same name “Lagrange multiplier” for the ones

that appear in the Lagrangian, such as this λ of L1, and those we use for extending

the Hamiltonian H to H, say, {λI} = {ui}∪{ΛA}. This common name is customary,

yet the two are rather different. λ and its conjugate pλ started out as part of the

phase space, while u’s and Λ’s are functions on the latter.

The question of how to view λ was the key to the two different ways we dealt

with L1 dynamics earlier. The first was to regard the Lagrange multiplier λ and

its conjugate pλ as part of phase space, and impose four second-class constraints,

ϕ1,2,3,4 ≈ 0. Alternatively, if we disregard the Lagrangian side, we could have replaced

λ by u2 for ϕ2. This way, we start with only r, θ, and their conjugate momenta as

phase space variables, and impose two second-class constraints ϕ2,3 ≈ 0. The total

Hamiltonian in this picture was H′1 in (A.2.11). The final dynamics remain the same,

regardless of these two choices.

We wish to point out yet another description, which in retrospect is perhaps

more in line with the general procedure we learned above. There was a potential
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problem with the first procedure, because we did the exercise before learning about

the necessity of the total Hamiltonian H. If we had updated the Hamiltonian to

include the secondary constraints as soon as we discovered them, we would have

computed ϕ̇3 by performing the Poisson bracket of ϕ3 against

H1 + u1pλ + u2
r2 −R2

2
+ u3

rpr
m

(A.3.1)

and realized that ϕ̇3 ≈ 0 fixes u2 via λ and H1, instead of generating a new constraint.

This is because H1 itself contains λ (r2 − R2)/2, so whatever fix u2 will actually fix

λ + u2. If we did this, we ended up with three constraints ϕ1,2,3, instead of the four

second-class ϕ1,2,3,4.

On the other hand, with this smaller set, ϕ1 = pλ becomes a first-class, as it

commutes with ϕ2,3. As such, ϕ1 = pλ should be denoted as χ1, and the dynamics is

dictated by

H′′1 = H1 + Λ1χ1 + u2ϕ2 + u3ϕ3 (A.3.2)

The degrees of counting is the same as before; we have one first-class χ1 = pλ and

two second-class ones ϕ2,3, removing the four canonical degrees of freedom in total

again. λ remains undetermined, even after the classical trajectories are fixed, but

this is precisely what we should expect since pλ is a first-class constraint and its

shifting action on λ is interpreted as a gauge redundancy. This is not what we are

accustomed from the usual Lagrange multiplier already present in the action from

the beginning. Nevertheless, there is nothing wrong with this 3rd description since λ

does not represent an independent physical quantity, classical or quantum.

More generally, if the Lagrangian comes with a term linear in the Lagrange mul-

tiplier

L = · · · − λϕ+ · · · (A.3.3)

with no time-derivative present in ϕ, it can be treated systematically along the same

line as with L1 and H′′1. pλ ≈ 0 is a primary constraint while ϕ ≈ 0 is a secondary

that follows from ṗλ ≈ 0. If ϕ proves to be a first-class, there is not much beyond this.

If ϕ proves to be a second-class, on the other hand, it means that there is another
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second-class constraints ϕ′ ≈ 0. The total Hamiltonian H is then include

H = · · ·+ Λpλ + (λ+ u)ϕ+ u′ϕ′ + · · · (A.3.4)

where we used the notation Λ for the new Lagrange multiplier of pλ, anticipating that

pλ will prove to be a first-class.

Without uϕ in H, ϕ̇′ ≈ 0 would have generated another secondary constraint that

contains a term linear in λ. If we did this, this new constraint would be a second-

class pair with pλ. With uϕ + u′φ′ in H, on the other hand, ϕ̇′ ≈ 0 and ϕ̇ ≈ 0

are now equations for u and u′, which determines (λ + u) and u′ given a classical

trajectories on the constrained surface, i.e. on-shell, but cannot fix λ separately. At

the same time, the generation of the secondary constraint along this particular branch

of the procedure ends here, and pλ remains a first-class. Instead of fixing λ on-shell,

therefore, we end up with an arbitrary gauge function Λ which shifts λ̇ arbitrarily.

The end result is that λ and pλ again decouple from the dynamics, as they should.

In other words, depending on whether uϕ is included in the middle procedure,

the character of pλ and exactly how λ is dealt with on-shell differ, although the

end results on the physical quantities on-shell remain unaffected. As this example

shows, the constrained dynamics often come with multiple descriptions where the

initial phase space, the subsequent set of constraints, and their classification can be

all different. All these, even though no real changes can be found on the dynamics

that matter.

Gauge Fixing L3: a Pair of Second-Class from a Single First-Class

We saw that, depending how we treat the Lagrange multiplier present in the La-

grangian, there might be an option of trade off a pair of second-class constraints

to a single first-class. In the latter option, the Lagrangian multiplier λ became an

arbitrary quantity, playing the role of a gauge function. Since the value of λ is not

important for the final dynamics on the constrained surface, the two options rep-

resents mere alternatives. On the flip side, there is a systematic way to convert a

first-class to a pair of second-class, namely the gauge-fixing. As a simplest example,

let us revisit L3.

Recall how L3 started with x and y as the configuration variables and constrained

to radial motions only by a first-class constraint pθ ≈ 0. A perfectly sensible thing to
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do is to introduced θ − θ0 ≈ 0 as a new constraint, whose Poisson Bracket with pθ is

not weakly zero but rather a unit. Now calling ϕ ≡ pθ and ϕ̃ ≡ θ − θ0, we have the

new total Hamiltonian,

H′3 = H3 + uϕ+ ũϕ̃ (A.3.5)

The Lagrange multipliers get fixed to u ≈ 0 ≈ ũ via the usual time-independence of

ϕ̃ and ϕ, respectively.

This gauge-fixing can be incorporated into the Lagrangian side as well, since all

we need to do is to add a term

L3 + λ̃(θ − θ0) (A.3.6)

whereby λ̃ equation of motion will impose θ ≈ θ0. The gauge symmetry θ → θ + α

is broken by such a term, but of course the whole point of gauge-fixing is to reduce

such gauge redundancy. Depending on how to treat λ̃, we may end up expanding the

phase space further and imposing more constraints, but by now it should be clear

that such ambiguities are harmless.

The Dirac bracket which starts from

[ϕ̃, ϕ]P.B. = 1 (A.3.7)

becomes trivial for any expression containing θ or pθ, so in the end, we have

ṙ = [r,H3]Dirac =
pr
r2

, ṗr = [pr, H3]Dirac =
p2
r

r3
(A.3.8)

as the only remaining dynamical content, the same as when we did not gauge-fix.

As this almost trivial example shows, a set of first-class constraint χA’s can be

converted into second-class ϕA’s when augmented by an equal number of gauge-fixing

conditions, ϕ̃B. The gauge-fixing condition can be added to the total Hamiltonian

with their Lagrange multipliers ũB’s, or even elevated as gauge-fixing terms with λ̃B

in the Lagrangian. The gauge fixing conditions must be such that

[ϕ̃B, ϕA]P.B. (A.3.9)

is of full rank, so that the matrix C built from this and its transverse as the two
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off-diagonal blocks must be invertible. When we quantize gauged theories in prac-

tice, we always do so in the end. Given a gauged system, the choice of such gauge

conditions is hardly unique; depending on what ϕ̃B’s we choose, the quantization

proceeds differently but in a manner that the physical part of the dynamics is not be

affected by such choices.

Despite these examples, we must not think that the distinction between the first-

class and the second-class are irrelevant. First-class constraints can be converted into

second-class by introducing gauge-fixing conditions as if they are also constraints, as

above. The reverse processes of trying to interpret non-commuting pairs of second-

class constraints and half-many first-classes and their gauge-fixing condition, even if

possible, are less than straightforward and more to the point may be possible at the

cost of other nice properties such as the general covariance.

Requisite Genericity of the Constraints

Dirac’s original exposition is often challenged by various “counter-examples”, as one

can easily design the Lagrangian with the intension to disrupt his procedures and

classifications. Such counterexamples are often equipped with singular and fine-tuned

form of Lagrangian and unlikely to be relevant in real applications; nevertheless, these

cast some residual and often unnecessary doubt on the validity of Dirac’s proposal.

There is one particular type of such complaints that can be dealt with easily; before

we move on to field theory examples a comment on it is worthwhile.

For an illustration, let us again resort back to L1 which describes a particle on a

circle. Suppose that for some reason we decided to use instead,

L̃1 =
m

2
(ẋ2 + ẏ2)− λ

2
(x2 + y2 −R2)2 (A.3.10)

The Lagrange multiplier λ imposes the same constraint, ϕ2 = (x2 + y2 − R2)/2 ≈ 0,

but the routine of reading off the new constraint from [pλ, H̃1]P.B. ≈ 0 produces

ϕ̃2 = 2(ϕ2)2 (A.3.11)

as the secondary constraint, in place of ϕ2.
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Taking a time-derivative of ϕ̃2 ≈ 0, we obtain

ϕ2ϕ3 ≈ 0 (A.3.12)

in place of ϕ3 ≈ 0 that would have arisen from the original L1. This expression

vanishes weakly upon ϕ̃2 ≈ 0 since the latter implies ϕ2 ≈ 0 as well. Does this mean

that the would-be tertiary constraint ϕ3 ∼ xẋ+ yẏ is not generated? This cannot be

since there is no real change to the dynamics; ϕ3 ≈ 0 says the radial momentum must

vanish, which clearly must follow from the fixed r2 condition. The right thing to do is

to take ϕ2 again as the secondary constraint even though (ϕ2)2 is seemingly produced

as the secondary constraint if we insist on L̃1 and follow the usual gymnastics.

This problem is really about whether the chosen constraints are good coordinates

near the constrained surfaces in the phase space. As a trivial analogy, consider a

plane z = 0 in R3, which can be equally described by z3 = 0 but z3 is a bad

coordinate at z = 0. If one tries to introduce variables that are degenerate at the

constraint, one would end up with such procedural oddities, which has nothing to do

with real dynamics but are merely due to bad choice of the phase space coordinates

that parameterize directions normal to the constrained surface. One can see from this

example that we would end up with various difficulties when we conjure up constraints

with degenerate behavior in the small tubular neighborhood of the constrained surface

and try to apply Dirac’s routine blindly.

The constrained dynamics is as much about the off-constraint variables as on-

constraint ones. Much of the Dirac procedure assumes implicitly that we can make

all the constraints, which should be regarded as the normal coordinates away from

the constrained surface, as nondegenerate as possible. In practice, this requirement

translates to the following schematics of the Poisson brackets near the constrained

surface,

[ϕ, ϕ]P.B. ∼ 1 ,

[χ,χ]P.B. ∼ χ+ ϕ2 ,

[χ, ϕ]P.B. ∼ χ+ ϕ . (A.3.13)

The Hamiltonian is also a first-class, in the sense of the weakly vanishing Poisson

brackets against the constraints, so we must have [H, ϕ]P.B. ∼ χ+ ϕ and [H,χ]P.B. ∼
χ+ ϕ2 as well.

636



A.4 Gauge Theories in Canonical Formulation

Extending this to field theory is straightforward. All that’s new is that the dynamical

variables are functions of all spacetime coordinates, not just a single time coordinate.

Maxwell theory with its first class constraints serves as a prototype for gauge theories

in general, so we start with this example, and move on the Chern-Simons theory in

d = 3 where second-class constraints enter as well.

A.4.1 Maxwell Theory and the Gauss Constraint

Starting the Maxwell in flat spacetime, for simplicity,

SMaxwell =

∫
d dx LMaxwell = −1

4

∫
d dx F 2 =

∫
d dx

1

2
(E⃗2 − B⃗2) (A.4.1)

with

E⃗ = ∂⃗A0 − ∂0A⃗ , B⃗ = ∂⃗ × A⃗ . (A.4.2)

Note how the time derivative of A0 never appears anywhere. As such, the conjugate

momenta,

πµ ≡ δ

δȦµ

∫
L , (A.4.3)

are such that

π0 = 0 , πi = −Ei . (A.4.4)

The first of which implies that something different happens. The definition of the

Hamiltonian or canonical formulation is to use the conjugate momenta as fundamental

variables, yet one of them vanishes identically.

Nevertheless, let us try to rewrite the Lagrangian via the canonical variables,∫
d dx LMaxwell =

∫
d dx

(
πiȦi +��

�
π0Ȧ0 −H(A, π)

) ∣∣∣∣
πi extremization

=

∫
d dx

(
πi (Ȧi − ∂⃗A0)︸ ︷︷ ︸

πi

−H + πi∂iA0

) ∣∣∣∣
πi extremization

.(A.4.5)
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Comparing against the configuration space form of the Lagrangian, we find

H =
1

2
(π2 +B2) + πi∂iA0 , (A.4.6)

or by integration by part,

H =
1

2
(π2 +B2) + A0 (−∂iπi)︸ ︷︷ ︸

∂iEi

. (A.4.7)

In other words,

∫
d dx LMaxwell =

∫
d dx

(
πiȦi −

1

2
(π2 +B2) + A0(∂iπ

i)

) ∣∣∣∣∣
πi equation of motion

.(A.4.8)

This shows that, in canonical variables, A0 is a Lagrange multiplier that imposes

∂iπ
i = 0 (or ∂iE

i = 0 for the Maxwell theory). The same can be seen by resorting to

the Hamiltonian equation of motion,

0 = ∂tπ
0 = − δH

δA0

=
δ

δA0

(A0∂iπ
i) = ∂iπ

i , (A.4.9)

where we simply used that time derivative of something that vanishes must vanish

as well.

Recognizing πi = −Ei, the last is nothing but the usual Gauss law, in the absences

of charge density,

−∂iEi = 0 , (A.4.10)

it is not difficult to imagine how this extends when we add charged matter fields. We

can do the latter by adding to the Lagrangian, for example,

Lmatter = −ηµν(∂µ + iqAµ)φ†(∂ν − iqAν)φ , (A.4.11)

whose conjugate momenta are

Π =
δ

δ∂tφ

∫
Lmatter = (∂0 + iqA0)φ† ,

Π† =
δ

δ∂tφ†

∫
Lmatter = (∂0 − iqA0)φ . (A.4.12)
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The total Lagrangian in the canonical form then has the form,∫
d dx L =

∫
d dx

(
πiȦi + Πφ̇+ Π†φ̇† −H(Aµ, π

i;φ, φ†,Π,Π†)
) ∣∣∣∣

πi,Π extremization

(A.4.13)

with

H =
1

2
(π2 +B2) + ΠΠ† + · · ·+ A0

(
−∂iπi + iq(Πφ− Π†φ†)

)
. (A.4.14)

All that happens to π0’s null equation of motion is that the Gauss constraint acquires

a charge density,

∂iπ
i + ρ ≈ 0 , ρ ≡ −iq(Πφ− Π†φ†) . (A.4.15)

The fact that π0 ≈ 0 and the subsequent ∂tπ
0 ≈ 0 imposes a constraint to the dy-

namics is unchanged. The latter, secondary constraint is called the Gauss constraint.

Let us first sit back and explore the implications of what we have found so far,

A0 proved to be a Lagrange multiplier in the canonical variable choice, such that we

find the following set of constraints,

π0 ≈ 0 , ∂iπ
i − iq(Πφ− Π†φ†) ≈ 0 (A.4.16)

It is easy to see that together they form the first-class constraints, since the Poisson

bracket of the two is identically zero. As we have seen, the first-class constraints

remove two degrees of freedom each. For Maxwell theory, we see this reduction fairly

explicitly.

The Lagrange multiplier A0 is arbitrary while π0 = 0 identically, leaving us with

Ai and πi. The Gauss constraint generates the gauge transformation,

Ai → Ai + ∂iϑ (A.4.17)

for an arbitrary gauge function ϑ. We again see that each first-class constraint re-

moves a pair of canonical field variables. Even though we started with 2d canonical

variables Aµ and πµ, therefore, we end up with 2(d−2) canonical field theory degrees

of freedom in the phase space, or equivalently d−2 field variables in the configuration

space.

The Gauss constraint is the generator of the U(1) gauge symmetry and demands
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that physical states must be invariant under the gauge redundancy. In a gravitational

system, such gauge redundancies manifest as general coordinate transformations.

Maxwell Theory under the Stückelberg Mechanism

A particular case of the above deserves further attention. Start with a single charged

field φ but suppose some underlying potential so that the modulus of the field is

frozen to an expectation value,

φ =
m√

2
eiθ , (A.4.18)

which is nothing but a minimally distilled Higgs mechanism that give a mass m to

the gauge field. With q = 1, for the sake of simplicity, we have the action∫
d dx

(
−1

4
F 2 − m2

2
(∂θ − A)2

)
. (A.4.19)

We still find the same pair of first-class constraints,

π0 ≈ 0 , −∂iπi + Πθ ≈ 0 , (A.4.20)

with

Πθ = m2(∂0θ − A0) . (A.4.21)

All that happens is that the Gauss constraint not only shift A by the gauge transfor-

mation but shift θ additively.

The combined system of d+ 1 field variables, Aµ and θ, is reduced to d− 1 such;

By judicious choice of the gauge, we may remove θ and end up with d− 1 dynamical

field variables, Ai, appropriate for a massive vector. Despite how the second term

can be interpreted as the mass of the photon, the gauge redundancy is intact, which

is the hallmark of the Higgs mechanism.

A.4.2 Chern-Simons Theory and the Dirac Bracket

A little unusual form of gauge theory exists in d = 3 spacetime, with the so-called

Chern-Simons action. The Maxwell theory in d = 3 has d−2 = 1 propagating degrees
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of freedom after two first-class constraints, π0 ≈ 0 and ∂iπ
i + · · · ≈ 0 are taken into

account. In contrast, the Chern-Simons theory, without an accompanying Maxwell

term, carries zero field theory degrees of freedom. This is a simplest field theory

example where both first-class and second-class constraints are found together and

in particular the Dirac bracket plays a central role. Although one can perform the

computation here with both Maxwell and Chern-Simons present, in which case the

single massless degrees of freedom of the former become massive, we will consider the

pure Chern-Simons as this limit generates the second-class constraints of interest.

The action is

SC.S. =
κ

4π

∫
A ∧ F =

κ

4π

∫
d3x (A0F12 − A1F02 + A2F01) , (A.4.22)

where κ/~ is called the level. This action is not manifestly gauge-invariant because

of two reasons. First, under continuous gauge transformation, the integrand shifts

by a total derivative, so we need a compact manifold or an additional boundary

condition to make SC.S. invariant. Second, even if the latter conditions are met, SC.S.

shifts under the so-called large gauge transformations by some quantized amount,

depending on the topology of the spacetime. We nevertheless encounter such actions

because the latter shift may be ignored if we consider SC.S. at quantum level, i.e., as

an exponent in some path integral. For a reason we will not go into here, this forces

κ to be an integer multiple of ~.

As with the Maxwell case, the conjugate momentum π0 of A0 is null, such that∫
d2x H =

∫
d2x (πiȦi − LC.S.) =

∫
d2x (πiF0i − LC.S. + πi∂iA0)

= −
∫
d2x A0

(
∂iπ

i +
κ

4π
F12

)
. (A.4.23)

As before π̇0 ≈ 0 induces a secondary constraint,

−∂iπi −
κ

4π
F12 ≈ 0 (A.4.24)

which is a Gauss constraint where we see that the magnetic flux acts like an electric

charge.

The real difference from the Maxwell theory comes about from how the conjugate
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momenta πi of Ai are not independent variables. From

πi ≡ δSC.S.

δȦi
=

κ

4π
εijAj , (A.4.25)

with ε12 = −ε21 = 1, we find two additional primary constraints,

Πi ≡ πi − κ

4π
εijAj ≈ 0 . (A.4.26)

Now it is not difficult to see that Πi’s are second-class while π0 and the Gauss con-

straint remain first-class. The Poisson bracket between the Gauss constraint and Πi’s

are such that there are two potential commutator terms but these two cancel out each

other.

The pair of second-class constraints yield,

[ Π1(x),Π2(y) ]P.B. = − κ

2π
δ(2)(x− y) , (A.4.27)

and they generate the Dirac bracket,

[ A1(x), A2(y) ]Dirac = −
∫
d2z[ A1(x),Π1(z)]P.B.

( κ
2π

)−1

[ Π2(z), A2(y)]P.B.

=
2π

κ
δ(2)(x− y) . (A.4.28)

The precise numerical factor on the right carries an important physical meaning at

quantum level. Although the field theory degree of freedoms are all removed by

these four constraints, two first-class and two second-class, an enumerable number of

quantum mechanical states survive if we put the theory on a finite spatial volume. The

number of such quantum states is proportional to κ, which follows from quantization

of the above Dirac commutator or more simply from the so-called Bohr-Sommerfeld

quantization.

Let us again make a cautionary remark, on the matter of premature use of the

second-class constraints. We have earlier emphasized how the second-class constraint

should not be imposed too early if one is determined to use the Poisson bracket. If we

had computed the Poisson bracket after imposing the secondary constraints, Πi ≈ 0,
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we would have ended up with

[ A1(x), A2(y) ]P.B. ≈
4π

κ
δ(2)(x− y) , (A.4.29)

which is off by factor 2 relative to the Dirac bracket which must be used for the canon-

ical quantization. This also goes against the fundamental premise of the canonical

dynamics that a Poisson bracket between a pair of configuration variables or between

a pair of momentum variables is always zero, again telling us that this procedure

is illegal. One can ostensibly avoid this factor 2, by replacing −A1F02 + A2F01 by

2A2F01, citing an integration by part. One should regard the last approach a quick

and dirty way out and at best as a mere reminder of what the right procedure would

have given.

Such subtleties are always present when the Lagrangian is in the so-called first

order formulation, meaning that the time-derivative occurs only once in the kinetic

terms. The latter in particular is always the case for fermionic systems, yet the

subtleties are often glossed over as most textbooks sidestep the intricacy of the con-

strained dynamics in favor of a faster progression to the dynamics. The same kind of

the factor 2 issue above is present for Majorana fermions, inevitably for exactly the

same reasons as the above Chern-Simons example, while for complex fermions, the

canonical commutators do not come from the Poisson bracket, despite how one seem-

ingly gets the right answer by a naive procedure if one chooses to treat the fermion

fields and their complex conjugate differently.
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