
Appendix B

Differential Geometry 101

In the main text, we have gone through the elegant formulation of differential geome-

try based on the concept of bundles. A little more down-to-earth approach to the same

subject is often useful and heavily employed in General Relativity. In this appendix,

we will recall basic notions there such as manifolds, charts, covariant derivatives, and

curvatures with the emphasis on Riemannian geometry. Content of this Appendix is

borrowed from main text of a separate volume “Gravitation for Theorists” published

separately, which in some sense plays the role of a classical precursor for the current

volume.

B.1 Manifolds, Charts, and Tensors

Euclidean geometry, say, Rd allows an intuitive notion of straight lines, a pair of

which parallel to each other never intersect with each other. Such a global property

cannot be expected to hold for more general curved space. On the other hand, even on

curved spaces, we can focus on an infinitesimal neighborhood of any given point where

locally, one can say that the deviation from such Euclidean geometry is arbitrarily

small. If a space can be patched up from such small neighborhoods, each of which

can be regarded as small open subset of Rd, the result is called a manifold. We will

generally denote such objects asMd where d is the dimension, meaning the manifold

looks like Rd locally.

Therefore, the actual content of the manifold starts with the collection of the

local regions each of which could be embedded into Rd and how these patches glue
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together to form the entire space asMd. Each such a patch is called the “chart” Ua.
As a set the manifold is union of such patches covered by local charts,

Md = ∪aUa (B.1.1)

with each Ua equipped with coordinate systems xµ(a). A simple example is a sphere

embedded into R3 by x2 + y2 + z2 = R2. Positions in the upper and the lower hemi-

spheres are respectively labeled by (x, y), and the vertical position is automatically

determined as z = ±
√
R2 − x2 − y2. As with this example, one cannot cover the

entire manifold with a map to Rd.

A rule must be given how to identify things when a pair of chart overlap with

each other. For instance, a point p on Md could be assigned values of coordinates

on any local chart that contain p, and the latter does not change simply because we

change the chart, so

p(xµ(a)) = p(xµ(b)) (B.1.2)

for any pair of charts and their coordinate systems xµ(a) and xµ(b). This gives relation

between the two charts, or a transition map,

xµ(b) = xµ(b)(x
ν
(a)) (B.1.3)

for any pair that share a common region.

A manifoldMd is said to be continuous if x(b) are continuous functions of x(a), and

differentiable if x(b) are differentiable functions of x(a). One can further distinguish

by how many time these are differentiable, but for physics purpose here, we may as

well assume that these transition functions are smooth, meaning differentiable infinite

number of times. In reality, we will also encounter many examples of manifolds below

that admits exceptional places called curvature singularities, where this smoothness

breaks down, so we will proceed with this possibility in mind as well.

A function, which is a map from points on the manifold to numbers, should also

be glued between different charts such that

f(x(a)(p)) = f̃(x(b)(p)) (B.1.4)

This demands, simply, that the function takes a well-defined value at a given position
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p ∈ Md, and does not rely on the choice of the coordinates, or the charts, when

multiple coordinate systems and/or charts can be used to define the same position.

For functions, the gluing rule between overlapping charts is simple enough.

As such, we will often drop the tilde in the latter f̃ , even though the functional

form of f(x(a)), given x(a), and that of f̃(x(b)), given a different coordinate system,

x(b), are not the same. Perhaps more appropriately, we should consider a function

more abstractly as a map,

f : Md → R or C , (B.1.5)

We will go back and forth between the point p and the coordinate values xµ that

label p on M. As such, we will mix notations for value of functions,

f
∣∣
p
, f

∣∣
p(x)

, f(x) (B.1.6)

etc., where p = p(x) is the point on Md represented by the coordinate value x.

The main question is what are the derivatives and the integrations one may use

onMd. Given a local chart, an immediate object we can define is a partial derivative

of functions, namely

∂f(x)

∂xµ
= lim

δ→0

f(x1, · · · , xµ + δ, · · · , xd)− f(x1, · · · , xµ, · · · , xd)
δ

, (B.1.7)

where, as usual, the derivative is computed with all other xν 6=µ held fixed. This means

that the partial derivative requires an entire coordinate system, collectively, near that

point; it cannot be defined if the other coordinates xν 6=µ are not properly specified.

B.1.1 Vectors as Directional Derivatives

In the Euclidean space, the Cartesian coordinate and the vectors often share the

common notation of d-tuple, leaving the impression that the two are interchangeable.

However, this was possible only because the Euclidean space is itself is a vector space,

where addition and subtraction between elements are well-defined. No such luck for

general manifolds, since two positions cannot be added together to yield a third

position, so coordinates do not extend the notation of vectors naturally, although we

label them by µ = 1, · · · , d (or µ = 0, 1, · · · , d − 1). If something is moving along
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a trajectory xµ(s) on Md, its velocity

dxµ(s)

ds
(B.1.8)

can have a meaning as an arrow sitting at xµ(s). But more generally, we need a

working model of tangent vectors on Md, inherent to the manifold, rather than by

the presence of moving objects confined to the manifold.

On general manifolds, vectors make sense only as an infinitesimal deviation from

a given point, and the linear space built out of such objects is called a tangent space.

Indeed a velocity vector of an object at a point belong to such a tangent space sitting

at that point. One can visualize a tangent space at point x as Euclidean space, Rd,

sitting at x and grazing the manifold. On each such tangent space, we can add and

subtract its elements as in the Euclidean geometry of Rd. The very definition of

the manifold is that, at any given point thereof, such a tangent space can be placed

and locally used to label points smoothly in the small neighborhood. This is a nice

visualization but does not immediately give us the computational power of the vector

notations in the Euclidean space. For general manifolds, however, this picture does

lead to a powerful tool called the calculus on manifold.

Given a natural map from the tangent space at x to its immediate neighborhood,

a vector V at x can be phrased in terms of how one compute directional derivatives

of arbitrary function on Md. Given coordinate charts, and arbitrary function f(x),

we define

V [ f ] ≡ V µ ∂

∂xµ
f , (B.1.9)

which, given completely arbitrary but differentiable f ’s defined in an immediate

neighborhood of x, gives an unambiguous characterization of V . Since the func-

tion f is taken to be completely arbitrary, the object V [·] has nothing to do with

particular functions, so this leads us to write abstractly,

V = V µ ∂

∂xµ
(B.1.10)

where the partial derivatives, ∂/∂xµ, serves as convenient basis for vector fields. This

can be easily extended to all points onMd, whereby a vector field, or collection of V

at all x’s, is determined by V [ f ] everywhere for arbitrary function f ’s on Md.
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Under coordinate transformations x → x̃(x), transformation of V follows from

the chain rule as

V µ ∂

∂xµ
= V µ∂x̃

α

∂xµ
∂

∂x̃α
= Ṽ α ∂

∂x̃α
, (B.1.11)

so

Ṽ α = V µ∂x̃
α

∂xµ
, Ṽ α ∂x

µ

∂x̃α
= V µ . (B.1.12)

What must be noted here is that even though the component transforms nontrivially

when we switch between different coordinate systems, the vector V itself does not. Al-

though we often say that vector fields transform under the coordinate transformation

as above, this actually refers to the components V µ’s.

An alternative is to consider the vector as collection of components V µ with the

accompanying transformation rules among them; Most of earlier physics text starts

out this way. On the other hand, if we introduce a vector as the directional derivative

as above, the object is entirely inert under coordinate transformations or any other

changes of basis. The transformation rules among components between coordinate

charts follow from the definition rather than being part of the definition. This way, a

vector and more generally tensors may be defined more intrinsically without having

to refer to coordinate systems.

B.1.2 Differential 1-Forms

On the other hand, given a specific coordinate system, the basis ∂/∂xµ are themselves

vectors in some restrictive sense. A vector, or a tensor more generally, is an object

we try to extend to the entire manifold. This would be the right definition for most

purpose. However, sometimes we need to also think about objects that are defined

on specific chart. Ignoring such global issues, ∂/∂xµ has the defining property,

∂

∂xµ
[xλ] = δ λ

µ . (B.1.13)

The coordinates xλ are defined on a local chart of the manifold covered by the coor-

dinate system in question, but this is no problem as long as the above operation is

performed within that chart.
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Given this, we may invent differential 1-forms, dxλ, with natural bilinear pairing

against vectors as

〈dxλ, ∂

∂xµ
〉 ≡ ∂

∂xµ
[xλ] = δ λ

µ . (B.1.14)

Given the coordinate system, dxλ and ∂/∂xµ are said to be “dual” to each other. An

immediate generalization is differential 1-form df , given a differentiable function f ,

df ≡ ∂f

∂xµ
dxµ . (B.1.15)

An 1-form of this type is said to be “exact” if f is defined globally on the manifold.

The pairing we have introduced above computes the directional derivative,

〈df, V 〉 = V [ f ] = V µ∂µf (B.1.16)

for general vector V .

As with the vectors, which make use of ∂/∂xµ as a basis, we can invent a more

general differential 1-form as

Λ = Λµ dx
µ , (B.1.17)

The above natural pairing against vectors works as

〈Λ, V 〉 = V µΛµ . (B.1.18)

inducing a contraction between these two types of indices. As with vectors, we want

this object to make sense independent of coordinate system choice,

Λµ dx
µ = Λ̃α dx̃

α , (B.1.19)

which demands

Λµ = Λ̃α
∂x̃α

∂xµ
(B.1.20)

since dx̃α = ∂x̃α

∂xµ
dxµ. Note how the pairing 〈Λ, V 〉 is also invariant under such transfor-

mations. This is exactly the opposite chain rule relative to that for vectorial indices,

so the pairing 〈Λ, V 〉 is inert under such coordinate transformation.
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Contravariant and Covariant Tensors

This leads to more general objects with multiple vector indices and 1-form indices.

The former leads to

W µ1 ··· µm ∂

∂xµ1
⊗ · · · ⊗ ∂

∂xµm
. (B.1.21)

known as the contravariant tensors in older literature. Also, this gives the transfor-

mation of W under x→ x̃(x),

∂

∂x̃α
=

(
∂xµ

∂x̃α

)
∂

∂xµ
. (B.1.22)

W itself does not depend on coordinate choices, just as with V , so

W̃α1 ··· αm = W µ1 ··· µm ∂x̃
α1

∂xµ1
· · · ∂x̃

αm

∂xµm
(B.1.23)

component-wise.

Just as how the basis ∂/∂xµ was used to build higher-rank contravariant tensors,

one can imagine higher-rank covariant tensor,

S = Sµ1 ··· µkdx
µ1 ⊗ · · · ⊗ dxµk (B.1.24)

as well, whose components transform similarly as

Sµ1 ··· µk = S̃α1 ··· αk
∂x̃α1

∂xµ1
· · · ∂x̃

αk

∂xµk
, (B.1.25)

so that S itself, with the basis 1-forms attached, remains inert.

Even more generally we may consider tensors of mixed type,

Σ µ1 ··· µm
λ1 ··· λk dxλ1 ⊗ · · · ⊗ dxλk ⊗ ∂

∂xµ1
⊗ · · · ⊗ ∂

∂xµm
. (B.1.26)

The transformation rule should be clear by now.
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B.2 Lie Derivative

Is there a way to take the directional derivative of such tensors along a vector V ?

So far, we have learned only how to take a directional derivative of functions. To

extend the directional derivative to vectors and tensors, a useful first step is to take

directional derivatives on a function twice. That is, let us consider the antisymmetric

combination of two repeated directional derivatives,

V [W [ f ]]− W [V [ f ]] = V µ ∂

∂xµ

(
W ν ∂

∂xν
f

)
−W µ ∂

∂xµ

(
V ν ∂

∂xν
f

)
= (V µ∂µW

ν −W µ∂µV
ν)︸ ︷︷ ︸

Again a vector

∂νf , (B.2.1)

where terms with two partial derivatives acting on f dropped out due to the universal

property of the partial derivatives,

∂

∂xµ
∂

∂xν
=

∂

∂xν
∂

∂xµ
. (B.2.2)

Since the first vector used for the directional derivative is differentiated by the second

vector, we are in effect working with vector fields rather than isolated tangent vectors.

As such, the “commutator” of the two directional derivatives produces another

directional derivative, defining a new vector field,

[V,W ]ν = V µ∂µW
ν −W µ∂µV

ν . (B.2.3)

Of course, we need to make sure that this is a vector, i.e., it transforms correctly as

a vector would under coordinate changes. To see this, we start with

Ṽ α∂̃αW̃
β =

∂x̃β

∂xν
(V µ∂µW

ν) + V µW ν

(
∂2x̃β

∂xµ∂xν

)
, (B.2.4)

which by itself does not transform correctly as a vector, due to the last double-

derivative term.

On the other hand, the above commutator does transform correctly as a vector,

(
Ṽ α∂̃αW̃

β − W̃α∂̃αṼ
β
)

=
∂x̃β

∂xν
(V µ∂µW

ν −W µ∂µV
ν) , (B.2.5)
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since the problematic piece with a double derivative of x̃ by x cancels out. Using

this, we can define a directional derivative of a vector with respect to another vector

called the Lie derivative,

LV [W ] = −LWV ≡ [V,W ] , (B.2.6)

sometime written as a commutator like the last expression. With this, note that the

basis vectors obey [
∂

∂xα
,
∂

∂xβ

]
= 0 . (B.2.7)

Can we extend this Lie derivative to 1-form Λ? For this, we start with the

function 〈Λ, V 〉, on which the Lie derivative is nothing but the directional derivative

on a function,

LV 〈Λ,W 〉 = V µ∂µ〈Λ,W 〉 =
(
V β∂βW

α
)

Λα +
(
V β∂βΛα

)
Wα . (B.2.8)

On the other hand, a derivative must obey the Leibniz rule, so

LV 〈Λ,W 〉 = 〈Λ,LVW 〉+ 〈LV Λ,W 〉

=
(
V β∂βW

α −W β∂βV
α
)

Λα +Wα(LV Λ)α . (B.2.9)

Equating the two right hand sides, we find

Wα (LV Λ)α = Wα
(
V β∂βΛα

)
+Wα

(
∂αV

β
)

Λβ , (B.2.10)

which defines the Lie derivative of the 1-form as

(LV Λ)α = V β∂βΛα +
(
∂αV

β
)

Λβ . (B.2.11)

Similarly with the Lie derivative of a vector, one can see that this Lie derivative of a

1-form is again a 1-form, transforming properly,

V β∂βΛα +
(
∂αV

β
)

Λβ =
[
(Ṽ · ∂̃)Λ̃µ + (∂̃µṼ

λ)Λ̃λ

]
· ∂x̃

µ

∂xα
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+ Ṽ µΛ̃ν

[
∂̃µ

(
∂x̃ν

∂xα

)
+ ∂α

(
∂xβ

∂x̃µ

)
∂x̃ν

∂xβ

]
︸ ︷︷ ︸

= ∂̃µ( ∂x̃ν∂xα )−∂̃µ( ∂x̃ν∂xα ) = 0

,(B.2.12)

where we used

∂α

(
∂x̃ν

∂xβ
∂xβ

∂x̃µ

)
= ∂α(δνµ) = 0 , (B.2.13)

and the chain rule.

Given how LV acts on vectors and 1-forms, generalizations to all tensors follow,

(LV Σ) µ1µ2 ···
λ1λ2 ··· = V α∂αΣ µ1µ2 ···

λ1λ2 ···

+
(
∂λ1V

αΣ µ1µ2 ···
αλ2 ··· + ∂λ2V

αΣ µ1µ2 ···
λ1α ··· + · · ·

)
−
(
∂αV

µ1Σ αµ2 ···
λ1λ2 ··· + ∂αV

µ2Σ µ1α ···
λ1λ2 ··· + · · ·

)
.(B.2.14)

The tensorial transformation of LV Σ follows again by repeating the above compu-

tation index by index. Partial derivatives on a tensor do not give a new tensor,

generally, but we have identified how a directional derivative defined by a vector can

take a derivative on a tensor and map it to another tensor.

Pull-Back and Push-Forward

A useful concept to learn is a map between manifolds, which can be used in turn to

related tensors on the respective manifold. A pair of manifolds M and N may be

sometimes connected by a map,

σ : M −→ N (B.2.15)

With p ∈ M and σ(p) ∈ N , the map pulls back any function h on N to a function

on M,

σ∗h (p) = h(σ(p)) (B.2.16)

When the dimension of the two manifolds are equal this pulls back local charts {yα}
on N to ones on M, say, Y α ≡ σ∗(yα), which allows pull-back of differential forms
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and other covariant tensors via

dY α = σ∗(dyα) (B.2.17)

In particular, with M = N , such a map relates different points of the manifold.

Now we can understand the Lie derivative LV more geometrically. For this, take

M = N and consider an infinitesimal shift of position,

σεV : xµ 7−→ xµ + εV µ (B.2.18)

or more precisely,

σεV : p(xµ) 7−→ p(xµ + εV µ) , (B.2.19)

where p(x) is a position on the manifold, represented by particular values of xµ in the

given coordinate system. One should be mindful that this σ{εV } is not a coordinate

transformation but a map from the manifold onto the same manifold. We will also

write this, in a slight abuse of notation, also as

p 7−→ p+ εV , (B.2.20)

which makes sense in the infinitesimal limit of ε.

Given a function f , this shift can be used to define a new function fεV , given f ,

as

fεV

∣∣∣∣
p

≡ σ∗εV f

∣∣∣∣
p

= f

∣∣∣∣
p+εV

. (B.2.21)

This is a special case of a more general operation called the pull-back. The Lie

derivative of a function f along V is then

LV f

∣∣∣∣
p

= lim
ε→0

fεV − f
ε

∣∣∣∣
p

= V µ∂µf

∣∣∣∣
p

(B.2.22)

as advertised.

The above infinitesimal pull-back is easily generalized to covariant tensors S,

S = Sαβ ··· γ dx
α ⊗ dxβ ⊗ · · · ⊗ dxγ (B.2.23)
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as

SεV

∣∣∣∣
p

≡ σ∗εV S

∣∣∣∣
p

= S

∣∣∣∣
p+εV

. (B.2.24)

For infinitesimal ε, one can see that

SεV

∣∣∣∣
p

= Sαβ ··· γ(x+ εV ) d(x+ εV )α ⊗ d(x+ εV )β ⊗ · · · ⊗ d(x+ εV )γ

= S

∣∣∣∣
p

+ε (LV S)αβ ··· γ dx
α ⊗ dxβ ⊗ · · · ⊗ dxγ +O(ε2) , (B.2.25)

which defines

LV S = lim
ε→0

SεV − S
ε

(B.2.26)

similarly. Writing things out in terms of the components,

(LV S)αβ ··· γ = V µ∂µSαβ ··· γ + Sµβ ··· γ∂αV
µ + · · ·+ Sαβ ··· µ∂γV

µ (B.2.27)

follows immediately, which confirms the earlier generalization of the Lie derivative to

all contravariant tensors.

For contravariant tensors, with the basis ∂
∂x

, on the other hand, σ induces some-

thing different, called “push-forward” and denoted as σ∗. Consider a vector field W

on M and a function h on N . Using the pull-back above, we can bring h onto M
and then take the directional derivative,

W [σ∗h] (B.2.28)

on M where σ∗ denotes the pull-back we have used above on the functions and

covariant tensors above. This also means that, given W on M, one can define σ∗W

on N such that

(σ∗W )[f ]

∣∣∣∣
σ(p)

= W [σ∗f ]

∣∣∣∣
p

. (B.2.29)

Recall that the vectors are defined precisely by such directional derivatives. Hence

this defines σ∗W unambiguously on N as long as we demand this to hold for all

differentiable f ’s on N .
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Now let us consider again σεV which merely shift position infinitesimally on M
along V direction with N =M. Unlike the covariant tensors, which can be pulled-

back from the forward position and compared, we must do things backward, comput-

ing a derivative as

lim
ε→0

W
∣∣
p
−W−εV

∣∣
p

ε
, W−εV

∣∣∣∣
p

≡ (σεV )∗W

∣∣∣∣
p

= W

∣∣∣∣
p−εV

. (B.2.30)

Does this equal the Lie derivative defined above purely on the basis of the tensorial

property? One can see this rather easily from

W−εV (x) = W µ(x− εV )
∂

∂(x− εV )µ

= W µ(x)∂µ − ε [V µ∂µW
α −W µ∂µV

α] ∂α . (B.2.31)

Therefore,

lim
ε→0

(
W −W−εV

ε

)
= (V α∂αW

µ −Wα∂αV
µ)

∂

∂xµ
= LVW (B.2.32)

as expected. The generalization to higher-rank contravariant tensors should be im-

mediate, which gives

(LVW )αβ ··· γ = V µ∂µW
αβ ··· γ −W µβ ··· γ∂µV

α − · · · −Wαβ ··· µ∂µV
γ (B.2.33)

component-wise, again confirming the general formulae earlier for the case of con-

travariant tensors.

The Lie derivative L is also a derivative; therefore, it must obey the Leibniz rule.

This means that when acting on a tensor product of two different types of tensors,

LV (S ⊗W ) = LV (S)⊗W + S ⊗ LV (W ) . (B.2.34)

Since the partial derivative obeys the Leibniz rule, the rotating action of LV on

various types of indices occurs linearly and independently. All of this brings us back

to (B.2.14) for general tensors.

By the way, the pull-back and the push-forward operations we used above is

available not only for infinitesimal shift on M but for any smooth map between a
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pair of (differentiable) manifolds. Given such a map,

σ : p 7−→ σ(p) (B.2.35)

fromM and N , a covariant tensor S on N can be used to define a pull-back σ∗S as

σ∗S

∣∣∣∣
p

= S

∣∣∣∣
σ(p)

. (B.2.36)

The push-forward σ∗ can be similarly defined between contravariant tensors on M
and N .

Diffeomorphisms vs. Coordinate Transformations

Consider smooth bijective maps for M = N . One potential outfall of such a “dif-

feomorphism” is a coordinate change, although not strictly necessary. Given a chart

{yµ} over N =M and a map p 7→ σ(p), the pull-back of the coordinates effectively

induces a new set of coordinates on M as

yµ(p) 7−→ xµ(p) ≡ σ∗yµ(p) = yµ((σ(p)) (B.2.37)

However, as noted earlier, although σ∗ may be thus used to induce a coordinate

change, σ∗ itself is not the same as the nominal coordinate transformation. Unlike

coordinate transformation, σ∗ relate coordinates of two different points p and σ(p).

On the other hand, recall that, given a local chart, we may perform a coordinate

transformation, say from {xµ} to {x̃µ}, which has nothing to do with such diffeomor-

phisms. Functions (and tensors) do not change its value at a given point p, say,

f(x(p)) = f̃(x̃(p)) (B.2.38)

where we revive the notation f̃ for f̃(x̃) to emphasize that the different functional form

of f̃ written as a function of x̃. What does change with the coordinate transformation

is the functional dependence f , for instance, on the coordinates simply because the

coordinate values for a given point p have changed. This should be contrasted against

how the pull-back/push-forward operations under the diffeomorphism do actually

change values of functions and tensors at a given point p.

On a real line M = R1, for instance, suppose we have f(x) = x3. Using a new
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coordinate x̃ = x3, we find the same function is represented by f̃(x̃) = x̃. An even

simpler case of f(x) = x and x̃ = x − 1, we fine f̃(x̃) = x̃ + 1. These are different

from what happens with the diffeomorphisms

σ(x) = x3 , σ(x) = x− 1 (B.2.39)

Yet, they are often said to be “equivalent”. Exactly what is the nature of the claimed

equivalence?

Consider an infinitesimal shift x̃(x) = x − εξ(x) with ε � 1. Since the function

value itself should be the same in the end, we cannot use the same functional form

in the new coordinates and let us represent the necessary change as f̃ = f + εδξf .

Then,

f(x) = (f + εδξf)(x̃) = f(x) + ε (−ξµ∂µf + δξf)

∣∣∣∣
x

+O(ε2) (B.2.40)

so that we obtain

δξf(x) = ξµ∂µf

∣∣∣∣
x

= Lξf

∣∣∣∣
x

(B.2.41)

as the “variation” of the function, bringing us back to the Lie derivative again. The

same works for more general tensors, and again we recover a Lie derivative dictating

the “variation”. We leave this as an exercise.

Since the function f as a map from M to R does not change at all under such

coordinate changes, δξf computes the difference of the same f at two different places

in the given chart; these two different points p and p′ on M are determined such

that the values of the coordinates x(p) happen to be equal to those of x̃(p′). Note

how we again end up comparing the function in two nearby places, although for

a very different reason. In the end, on a local chart U , we are employing a local

diffeomorphism p′ 7→ p, which is of course why we again end up with a Lie derivative.

This “variation” makes sense only locally, since the map relies on the coordinate

values. Even though it cannot be extended to a proper diffeomorphism, the infinites-

imal transformation rule under it is no different than those under globally defined

diffeomorphism, so the invariance of a theory under one implies the invariance under

the other. In the literature, these two types of transformations are called the active,

for the diffeomorphism, and the passive, for the coordinate transformation. The pas-
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sive one represents an ambiguity in the description and is a close analog to the gauge

ambiguity of Maxwell theory.

Be mindful that when we perform physics computations the explicit form of quan-

tities are expressed in concrete functional forms. For instance, V µ∂µ is a perfectly

sensible invariant object, yet we often deal with the components V µ(x)’s whose func-

tional form is also equally important. The choices we make for the sake of such

explicit form are redundant in view of the final fully invariant quantities, but often

we can perform more detailed manipulation by dealing with V µ(x)’s. Of course,

along the way, we need to make much effort to be sure of whatever the final results

being independent of coordinate and basis choices. This is a sort of tautology but an

important one; the final sensible answers we extract should not depend on the redun-

dant choices, yet the redundant description is often more convenient than otherwise.

Such redundances associated with coordinate and basis choices here are part of much

bigger concept called the gauge principle which we will encounter many times over

as we develop General Relativity and other related theories.

B.3 Exterior Calculus

B.3.1 Differential Forms and the Exterior Derivative

Another interesting derivative is called the exterior derivative. For this, we need

to introduce differential forms, generalizing differential 1-forms, which are covariant

tensors whose components are totally antisymmetric. Namely, any exchange of a pair

of indices results in the sign flip of the components in question,

Ω ··· α ··· β ··· = −Ω ··· β ··· α ··· . (B.3.1)

One can impose such constraints more simply by inventing the wedge product between

differential 1-forms, such that

df ∧ dg = −dg ∧ df . (B.3.2)

which may be translated to ordinary tensor product as

df ∧ dg ≡ df ⊗ dg − dg ⊗ df . (B.3.3)
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With this, a differential k-form Ω(k) has the form,

Ω(k) =
1

k!
Ωα1 ··· αkdx

α1 ∧ · · · ∧ dxαk . (B.3.4)

Differential forms obey simple multiplicative rules,

Ω(k) ∧ Ω′(p) = (−1)kp Ω′(p) ∧ Ω(k) (B.3.5)

derived from the basic relation (B.3.2).

On this special class of covariant tensors, one can define another type of derivatives

that maps a k-form to (k + 1)-form,

dΩ =
1

k!
∂µΩα1 ··· αkdx

µ ∧ dxα1 ∧ · · · ∧ dxαk , (B.3.6)

or equivalently,

(dΩ)α1 ··· αk+1
= ∂α1Ωα2 ··· αk+1

− ∂α2Ωα1α3 ··· αk+1
+ · · ·+ (−1)k∂αk+1

Ωα1 ··· αk (B.3.7)

The simplest example is k = 0, where we obtain the differential 1-form df out of a

function.

Does dΩ(k) make sense as a tensor for k ≥ 1? Under the coordinate transformation

x → x̃, a potential problem comes from pieces where ∂µ acts on the transformation

matrix rather than on components of Ω such that an extra term with factors like

∂

∂xµ

(
∂x̃β

∂xα

)
=

∂2x̃β

∂xµ∂xα
(B.3.8)

show up and may potentially interfere with the tensorial property of dΩ. However,

in dΩ, all such pieces are contracted with

dxµ ∧ dxα , (B.3.9)

and the latter’s antisymmetric property removes any such terms, as partial derivatives

of any given coordinate system always commute among themselves.

One of the most important properties of this so-called exterior derivative d is that
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it is nilpotent. That is

dd = 0 (B.3.10)

identically. Again this follows from the commuting property of the partial derivative

since

ddΩ =
1

k!
∂[µ∂ν]Ωα1 ··· αk dx

µ ∧ dxν ∧ dxα1 ∧ · · · ∧ dxαk = 0 . (B.3.11)

Another useful fact about the exterior derivative is

d
(
Ω(k) ∧ Ω′(p)

)
= dΩ(k) ∧ Ω′(p) + (−1)kΩ(k) ∧ dΩ′(p) , (B.3.12)

whose sign follows from the antisymmetric property of the wedge product.

One example of this we encountered earlier is Fµν of Maxwell in flat spacetime,

F ≡ 1

2
Fµνdx

µ ∧ dxν = F0idx
0 ∧ dxi +

1

2
Fijdx

i ∧ dxj . (B.3.13)

Recall that one can introduce the gauge field A such that

Fµν = ∂µAν − ∂νAµ . (B.3.14)

In turn, if the gauge field is regarded as 1-form, although this is not quite correct

since A is really a connection,

A ≡ Aµdx
µ , (B.3.15)

upon which we can write

F = dA . (B.3.16)

The tensorial property of F is guaranteed by the above, but we may also spell out

the transformation rule and see this more explicitly,

∂βAα − ∂αAβ =
∂x̃µ

∂xβ
∂x̃ν

∂xα

(
∂̃µÃν − ∂̃νÃµ

)
. (B.3.17)
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One simple consequence of the above new formalism is

dF = ddA = 0 (B.3.18)

identically, which gives half of the Maxwell equations,

εαβγλ∂βFγλ = 0 , (B.3.19)

which do not come with source terms on the right-hand side. One can see now that

this half is a trivial consequence of dd = 0 and F = dA. This type of identities is

called the Bianchi identity. In fact, this example offers the simplest possible prototype

for the notion of curvature. We will come back to the gauge field in a later section

as a motivation of the Riemann curvature.

Finally, we say that Ω is closed if it obeys

dΩ = 0 . (B.3.20)

If Ω can be written as

Ω = dw (B.3.21)

for some differential form w, we say it is exact. As such, 2-form field strength F of

the Maxwell theory is closed since dF = 0.

However, F = dA does not mean that F is exact because A is not a differential

form, per se. A is not a tensor but a connection, or a gauge field well-defined only

modulo A → A + dθ for arbitrary gauge function θ. When we glue A across over-

lapping local charts, this additional shift is allowed in addition to the usual tensorial

coordinate transformation via chain rules.

B.3.2 Lie Derivative on Differential Forms

Given a differential form Ω, we define a contraction with a vector field V

V yΩ , (B.3.22)
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say, for example,

Ω = Ω123 dx
1 ∧ dx2 ∧ dx3 (B.3.23)

⇒ V yΩ = V 1Ω123 dx
2 ∧ dx3 − V 2Ω123 dx

1 ∧ dx3 + V 3Ω123 dx
1 ∧ dx2

The same can be more generally written in terms of the antisymmetrized summation

form (B.3.4) as

(V yΩ)(k−1)
µ1µ2···µk−1

≡ V αΩ(k)
αµ1µ2···µk−1

. (B.3.24)

The combinatorial factors 1/k! and 1/(k−1)! are taken into account in the definition

of the components in the latter general form, while for the former samples these

factors and the summations are used up for the formula for Ω and the contraction

rule for V yΩ.

With this, the Lie derivative along V has a succinct form

LV Ω = d(V yΩ) + V y dΩ . (B.3.25)

We can read off an important identity from (B.3.25)

dL = L d , (B.3.26)

as

[d,LV ]Ω = d[d(V yΩ) +���
�V y dΩ]− [d(���

�V y dΩ) + V y ddΩ] = 0 , (B.3.27)

with dd = 0, for any vector field V and any differential form Ω.

Two special limits of this is when k = 0 and k = d. For the former, Ω is a function,

say f ,

LV f = V y df = V [f ] , (B.3.28)

giving the directional derivative along V as expected. For a differential form of the

highest possible rank,

Ω(d) = µ(x) dx1 ∧ · · · ∧ dx d , (B.3.29)
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we find

LV Ω(d) = d(V yΩ(d)) = ∂α(µ(x)V α) dx1 ∧ · · · ∧ dx d , (B.3.30)

since dΩ(d) = 0 identically.

B.3.3 Integration and Stokes’ Theorem

Differential forms are naturally integrable. For instance, given a 1-form∫
Ω(1)
µ (x) dxµ , (B.3.31)

let us choose a path C1 : s → xµ(s), with s ∈ I ≡ [0, 1], whereby one can define the

integration of the 1-form along D1 which is the image of C1 as∫
D1

Ω(1)
µ (x) dxµ =

∫ 1

0

(
Ωµ(x(s))

dxµ

ds

)
ds︸ ︷︷ ︸

pull-back of Ωµdxµ to I

, (B.3.32)

which brings us to the ordinary integral by pulling-back Ω(1) back to I ⊂ R.

If Ω(2) is a 2-form,

Ω(2) =
1

2
Ωµν(x) dxµ ∧ dxν . (B.3.33)

We define the integral over C2 : si 7→ xµ(s1, s2) similarly via the pull-back of Ω to

I× I by C2 as∫
D2

Ω(2) =

∫
D2

1

2
Ωµν(x) dxµ ∧ dxν =

∫
I×I

1

2
Ω(2)
µν (x(s))

∂xµ

∂si
∂xν

∂sj
dsi ∧ dsj. (B.3.34)

The generalization to higher-rank forms Ω(k) and higher-dimensional surfaces Dk

should be clear, ∫
Dk

Ω(k) =

∫
Ik

C∗k
(
Ω(k)

)
, (B.3.35)

where Ck is a map from Ik onto Dk and C∗k is the pull-back.

Thus, the local form of the integration on curved manifold is inherited from that
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on Rk. We have not yet declared what we mean by the integration of a differential

k-form on Rk. Most of it follows from the usual multi-integration rule,∫
Ik
f(s) ds1 ∧ · · · ∧ dsk =

∫ 1

0

ds1 · · ·
∫ 1

0

dsk f(s) . (B.3.36)

The only new parts are (1) the normalization chosen such that the integration of

w ≡ 1

k!
wi1···ik ds

i1 ∧ · · · ∧ dsik (B.3.37)

over Ik is ∫
Ik
w =

∫ 1

0

ds1 · · ·
∫ 1

0

dsk w123···k (B.3.38)

and (2) the choice of the sign can which is fixed by the ordering of ds’s as above. The

latter choice is called the orientation. We usually assume that such a self-consistent

orientation can be chosen; if a manifold does not allow one, we call the manifold

unorientable.

What shall we do if the integration region cannot be covered by Dk inside a single

chart? For this, we invoke a concept of the partition of unity. The latter is merely a

set of smooth functions, ua supported on local charts Ua such that at any given point

p, we have

1 =
∑
a

ua

∣∣∣∣
p

. (B.3.39)

With such a device, we can define integral over a k-dimensional surface Σk, covered

by multiple coordinate patches so that Σk = ∪aD(a), and the maps C(a) : Ik → D(a),

as ∫
Σk

Ω(k) =

∫
Σk

(∑
a

ua

)
× Ω(k) =

∑
a

∫
Ik

C∗(a)

(
ua × Ω(k)

)
. (B.3.40)

One immediate consequence of this definition is that all the usual integration rules

on Euclidean planes will carry over to general manifold.

Among one such is the Stokes theorem. In the language of differential forms, this

theorem relates an integration of dΩ(k) over Σk+1 to that of Ω(k) over the boundary
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of Σk+1, say, (∂Σ)k, ∫
Σk+1

dΩ(k) =

∫
(∂Σ)k

Ω(k) . (B.3.41)

There is a potential sign confusion with this in terms of how one defines the orientation

of (∂Σ)k, given Σk+1; however, this is easily resolved by recalling how this theorem

worked in Euclidean spaces over the rectangle Ik, by the above definitions.

One immediate consequence is that by taking the special case of Σd =Md,∫
Md

dΩ(d−1) =

∫
(∂M)d−1

Ω(d−1) → 0 if Md has no boundary , (B.3.42)

so that, for instance,∫
Md

LV Ω(d) =

∫
(∂M)d−1

V yΩ(d) → 0 if Md has no boundary , (B.3.43)

for any V and Ω(d).

B.4 Riemannian Geometry

Our discussion so far involves the differential structure on manifolds but fall shy of

the Riemannian geometry proper. Various objects we have accumulated, such as

partial derivatives and vector fields, differential forms and tensors, the Lie derivative,

the exterior calculus, and Stokes’ theorem, belong to a study commonly termed as

Calculus on Manifolds. The Riemannian geometry builds upon these structures by

adding the metric and the accompanying Levi-Civita connection.

Strictly speaking, between the differential structure and the Riemannian geometry

sit some more flexible and universal concepts of bundles and connections that we

went through quickly in the main text. The main difference of the Riemannian

geometry from the general geometry of (co-)tangent bundles and affine connection is

of course the existence of the metric whose covariantly constancy, in the language of

the holonomy, forces the structure group to shrink from GL(d) to O(d). The main

aim of this last Section is to recall more practical and elemantary formulae of the

Riemannian geometry. In next Chapter, we will continue on but shift gears somewhat

to the so-called Cartan-Maurer formulation and the accompanying theory of spinors.
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B.4.1 Covariant Exterior Differential and the Curvature

The Yang-Mills curvature we have encountered and used repeatedly in this volume

shares the common structures with the Riemann curvature tensor in that both arise

from a commutator of covariant derivatives and how each measures rotation around

an infinitesimal loop of in the spacetime. Although the Yang-Mills theories became

relevant for fundamental physics much later that the Riemannian geometry, motivat-

ing the Riemann curvature as a special case of Yang-Mills curvature gives us a much

simpler and unifying view on the matter.

One simple way to incorporate this universal structure of the connection and the

curvature is the language of differential forms. For this, recall the exterior derivative

d, which maps k-form Ω to (k + 1)-form dΩ and obey dd = 0. When Ω carries

additional indices transforming homogeneously when gluing between adjacent charts,

i.e. a section of some vector bundle in abstract geometrical language,

ΩI (B.4.1)

one can extend d to a covariant version, say,

dA ≡ d+A . (B.4.2)

with the connection A is matrix-valued in a Lie Algebra g of some Lie group. The

exterior derivative is thus elevated to a covariant exterior derivative

(dAΩ)I = dΩI +AIJ ∧ ΩJ (B.4.3)

on the differential form ΩI belonging to some representation R of g. When ΩI is real,

AIJ is antisymmetric while for complex ΩI , AIJ may be taken as anti-Hermitian.

What happens if we take dA twice? Does it vanish like dd? One can see clearly

that this is not going to happen in general, since

dAdAΩ = d(A ∧ Ω) +A ∧ dΩ +A ∧A ∧ Ω

= (dA+A ∧A) ∧ Ω , (B.4.4)

where the surviving d acts only on A and not on Ω. Therefore (dA)2 produces a
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matrix-valued differential 2-form,

F IJ = (dA+A ∧A)IJ . (B.4.5)

The same may be written component-wise as,

F IJ =
1

2
F IJµνdxµ ∧ dxν , (B.4.6)

with

F IJµν = (∂µAν − ∂νAµ + [Aµ,Aν ])IJ , (B.4.7)

which is precisely the field strength of the general gauge connection we have encoun-

tered when motivating the Riemann curvature tensor.

An important fact is that the curvature transform homogeneously under the

“gauge” transformation

d+A → U−1(d+A)U ⇒ F → U−1FU (B.4.8)

even though the former means A → U−1AU + U−1dU . This occurs because (d +

A)2 contains no left-over derivative operation that can act on U on the right. An

infinitesimal version of the same is also well known, which, with U = eΦ, gives

d+A → e−Φ(d+A)eΦ → δΦA = dΦ +AΦ− ΦA (B.4.9)

Note that we did not specify to which group U belongs, nor in which algebra A takes

value. The above definitions and relations hold regardless these details.

Another such universal fact is that the field strength obeys

dAF ≡ dF +A ∧ F − F ∧A

= d(A ∧A) +A ∧ (dA+A ∧A)− (dA+A ∧A) ∧ A

= ���
��

dA ∧A−XXXXXA ∧ dA+
XXXXXA ∧ dA−�����dA ∧A = 0 , (B.4.10)

called the Bianchi identity. In the Maxwell theory, the Bianchi identity simplifies to

dF = 0.
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The reason why A ∧ F − F ∧ A enter the definition of dAF is because F itself

carries two indices I and J , belonging to the “adjoint” representation. Or more

straightforwardly, the above form of dAF may be motivated from a Leibniz rule,

(dAF) ∧ Ω = dA(F ∧ Ω)−F ∧ dAΩ

= (dF) ∧ Ω + (A ∧ F − F ∧A) ∧ Ω . (B.4.11)

B.4.2 Levi-Civita Connection and Riemann Tensor

It is worthwhile to note how one can adapt this general structure of the connection

and the curvature 2-form in a manner consistent with the existence of the metric.

Imagine a manifold equipped with a metric tensor, a symmetric covariant tensor of

rank two,

g = gαβ dx
α ⊗ dxβ . (B.4.12)

The Riemannian geometry starts from the statement that the metric should be co-

variantly constant,

∇µgαβ = 0 (B.4.13)

in any coordinate system {xµ}.

Starting with the general form of the covariant derivative such that

∇µV
α = ∂µV

α + ΓαµλV
λ ,

∇µWβ = ∂µWβ − ΓλµβWλ , (B.4.14)

there always exist a universal solution of the above vanishing condition as

Γµβγ = gµα Γαβγ ,

2Γαβγ ≡ ∂βgαγ + ∂γgαβ − ∂αgβγ (B.4.15)

called the Christoffel symbols. This is not the most general solution to the require-
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ment ∇µgαβ = 0 but assumes an additional requirement known as the torsion-free

condition. This torsion-free and metric-preserving covariant derivative is called the

Levi-Civita connection.

The Riemann curvature tensor R is constructed from a commutator of two co-

variant derivatives ∇µ and ∇ν such that

[∇µ,∇ν ] V
α = Rα

βµνV
β , (B.4.16)

whose detailed form is

Rα
βµν = ∂µΓαβν − ∂νΓαβµ + ΓαµλΓ

λ
βν − ΓανλΓ

λ
βµ , (B.4.17)

as one can see from some of the above.

A more succinct formulation of this Levi-Civita connection and the curvature can

be modeled after the gauge connection and the field strength thereof as follows. We

start by defining the Christoffel connection 1-form as

� α
β ≡ −Γαµβ dx

µ . (B.4.18)

The matrix-valued curvature 2-form, similar to the gauge analog we have encountered

earlier,

R α
β = (d� + � ∧ �) α

β , (B.4.19)

translates to the usual Riemann curvature as

R α
β µν = −Rα

βµν (B.4.20)

component-wise.

Given the widely known combinatorial properties of the Riemann tensor and thus

of R under exchanges of indices,

Rαβµν = Rµναβ , Rαβµν = −Rβαµν = −Rαβνµ , (B.4.21)

the two are really one and the same

Rα
βµν = Rαβµν , (B.4.22)
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when the indices are raised and lowered via the metric.

One important fact about this connection 1-form is its transformation property

under an infinitesimal coordinate shift, x → x − εξ, or equivalently under an in-

finitesimal diffeomorphism by +εξ. One can compute the latter by demanding a

Leibniz-type rule, for example,

Lξ(∇V ) = δξ(∇)V +∇(LξV ) . (B.4.23)

where we used the notation δξ on connections in place of the usual Lξ to emphasize

that the connection is not a tensor by itself.

Reading off how the diffeomorphism acts on the Levi-Civita connection Γ. In

terms of �, we find the following suggestive form,

L′ξ� + d(−∂ξ) + [�,−∂ξ] = L′ξ� + d�(−∂ξ) , (B.4.24)

where both L′ξ and d treat � as if the latter is a (matrix-valued) 1-form tensor. Note

that this is a combination of translation by L′ξ and an infinitesimal gauge transfor-

mation of A = �, as in (B.4.9), under a GL(d) gauge function Φ α
β = −∂βξα. Despite

the appearance of a GL(d) gauge transformation here, the condition ∇g = 0 implies

that the action of any metric-preserving connection is O(d) in secret (or O(1, d− 1)

if Lorentzian).

B.4.3 Volume Form, Signatures, and Orientations

The Levi-Civita connection is designed to keep g constant under the covariant deriva-

tive thereof. Once this is done, it turns out one gets another covariantly constant

object called the volume-form. For this, let us recall the totally antisymmetric symbol

εα1 ··· αd and try to build a d-form of the type

1

d!
εα1 ··· αd dx

α1 ∧ · · · ∧ dxαd . (B.4.25)

This expression if one try to use it across all coordinate systems does not define a

tensor, but one can compensate the unwanted Jacobian by multiplying,

√
g ≡

√
|detg| (B.4.26)
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which has the transformation property

√
g

x→x̃−−→
∣∣∣∣det

∂x̃

∂x

∣∣∣∣√g̃ , (B.4.27)

regardless of the sign of detg.

For most physics applications, the signature of the metric is either the Lorentzian,

sometimes denoted as (− + · · ·+), or the Euclidean, (+ + · · ·+). We thus have a

tensorial object,

V ≡ 1

d!

√
g εα1 ··· αd dx

α1 ∧ · · · ∧ dxαd , (B.4.28)

which remains inert under coordinate transformations, provided that the Jacobian,

J ≡ det

(
∂x̃

∂x

)
> 0 . (B.4.29)

is everywhere positive. This V measures the volume element of the manifold, and

thus is called the volume-form.

One can also show this volume-form V is covariantly constant under the Levi-

Civita connection, ∇V = 0. For this, it suffices to compute

∇µ(
√
gε123 ··· d) = (∂µ

√
g)ε123 ··· d − Γαµ1

√
gεα23 ··· d − Γαµ2

√
gε1α3 ··· d − · · ·

= (∂µ
√
g)ε123 ··· d −

√
g(Γαµα)ε123 ··· d . (B.4.30)

On the other hand, we find

Γαµα =
1

2
gαλ(∂µgλα +

��
��∂αgλµ −��

��∂λgµα) =
1

2
gαλ∂µgλα =

1
√
g
∂µ
√
g (B.4.31)

so that

∇µ(V123 ··· d) = (∂µ
√
g)ε123 ··· d − (∂µ

√
g)ε123 ··· d = 0 . (B.4.32)

Despite all these, there is a fundamental question of whether this so-called volume-

form exists globally. Note that V ’s sign gets flipped under a simple innocuous opera-

tion of x1 ↔ x2. Performing the coordinate transformations sequentially but coming
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back to the same chart in the end, we would come back to the same volume form

modulo a sign,

V → V ′ → V ′′ → · · · → ±V . (B.4.33)

If one can find a collection of charts that cover the entire manifold and choose order-

ings in each local chart, such that one ends up + sign for all possible such sequences,

the manifold is called “orientable”. If not, the sign of V cannot be defined unambigu-

ously, so V does not exist.

For the current volume, we will be content with orientable manifolds for classical

theory of gravity in this note. This overall sign choice for V thus made is called

the Orientation. With V chosen, one can now perform integrations over the entire

manifold. Since the differential d-form V is a quantity that can be naturally integrated

over the entire manifold, the following integration is also naturally defined∫
Vf (B.4.34)

where f is any piece-wise continuous function on the manifold. The same integration

is written at times as ∫
Vf →

∫
d dx
√
g f (B.4.35)

which we also use in this note. In this form, the combination
√
g f is sometimes called

a “tensor density”, reflecting how it transforms nontrivially under general coordinate

change by a factor of Jacobian. The name is misleading since “
√
g f” is not a sensible

stand-alone object that can be separated from “d dx”, It should suffice to remember

that the only sensible integral over the manifold is via the integration of a d-form;

since the volume form V exists universally on any orientable manifold with a metric,

this also means that a function f may be integrated over an oriented manifold via

the associated d-form, Vf .

In particular, a Lie derivative on the volume form is such that,∫
Lξ(Vf) =

∫
d(ξyVf) = 0 (B.4.36)

on any closed manifold, i.e., on any manifold without boundary.
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