
C.4 Clifford Algebra and Spinor Classification

Now that we have studied a little bit about spinors and their property under diffeo-

morphisms, it is high time to take a deeper look, especially at how the spinor bundle 
structure depends on dimensions and the signature. The starting point is again the 
Clifford algebra spanned by the Dirac matrices.

In Euclidean signature, we have Cld algebra spanned by

{γa, γb} = 2δab (C.4.1)

Given these generators, more independent matrices may be constructed from com-

pletely antisymmetric products, i.e., sums

γa1···ap ≡ 1

p!

∑
σ

(−1)|σ|γaσ1 · · · γaσp (C.4.2)

over all possible permutations σ with the parity (−1)|σ|. In particular, when d = 2n,

there exists a special generator γ1···d which, as we saw earlier, is related to the chirality

operator,

Γ = (−i)nγ1 · · · γ2n (C.4.3)

For d = 2n + 1, the same set of γ’s for d = 2n may be used for the first 2n Dirac

matrices, while for the last one, γ2n+1, we would use either Γ or −Γ.

In the Lorentzian signature, the Clifford algebra takes the form

{Γa,Γb} = 2ηab (C.4.4)

and is denoted Cl1,d−1. More generally, we may also consider more negative signs on
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the right hand side, say,

diag(−, · · · ,−︸ ︷︷ ︸
p

,+, · · · ,+︸ ︷︷ ︸
d−p

) (C.4.5)

denoted as Clp,d−p. The familiar spinors are acted on by multiplication by γ’s and Γ’s

on the left, so form a representation. In this final section, we will explore these spinor

representations, with emphasis on how the Lorentz group enter the discussion along

the way. We do not really need a separate construction for these alternate signatures

since we may as well start from γa’s and construct Γa≤p = −iγa≤p’s and identify the

rest intact, Γa>p = γa>p.

The questions here are how these spinor representations of Clifford algebras in

various dimensions and signatures can be characterized and sometimes decomposed

further when we dote on so(p, d−p) subalgebra of Clp,d−p, generated by antisymmetric

products of two distinct Γ’s. For instance, we have seen how even d implies that the

spinor splits into two distinct irreducible representations under so(p, d − p), due to

the existence of the chirality operator. Equally important are the charge conjugation

operations, which can also halve the spinor by imposing reality conditions. Much of

these detail played crucial roles for path integrals of fermions, as we have encountered

numerously in the main text. One well-known phenomenon we will rediscover here is

the so-called Bott periodicity, whereby the structure repeats itself under a shift of d

by 8.

A Canonical Representation

We start with discussion for the first where all γ’s are Hermitian, and come to the

other signatures later. As we saw in earlier discussion of spinors, γab’s play a special

role as the rotation generators, on spinors, of the underlying Lorentz group. As such,

we have a sequence of algebras

so(d) ⊂ Cleven
d ⊂ Cld (C.4.6)

where the middle is a subalgebra spanned by even products of γ’s. The primary

objects of interest are the first two, or more precisely the spin group Spin(d), which

is related to SO(d) group by a Z2 division and can be constructed from Cleven
d , and

the representations thereof, but we will start with a canonical representation of Cld
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which is useful for the rest of the discussions.

To construct the representation explicitly, it is convenient to define

αS ≡
1

2

(
γn+S + iγS

)
, α†S =

1

2

(
γn+S − iγS

)
(C.4.7)

such that the fermionic oscillators,

{αS, α†T} = δST (C.4.8)

may be used to construct a 2n dimensional Fock space,

|0〉 , α†S|0〉 , · · · , α†1α
†
2 · · ·α†n|0〉 (C.4.9)

starting from the vacuum state, αS|0〉 = 0, which serve as a basis that span the Dirac

spinor. The oscillators merely shuffle a basis state to another, with ±1 coefficients, so

γS = −i(αS −α†S) are pure imaginary and antisymmetric while γn+S = αS +α†S’s are

real symmetric. Finally, since the Hermitian γ2n+1 = ±Γ = ±(−i)nγ1 · · · γ2n obeys

(γ2n+1)∗ = (−1)n(−1)nγ2n+1 = γ2n+1 (C.4.10)

γn+S’s are real symmetric all the way for S = 1, . . . , n+ 1 in this representation.

Note that we can repeat the construction for other signatures; the only new el-

ement here is to replace some γ by −iγ as the new Dirac matrices. For a more

streamlined notation, let us introduce a different notation for these anti-Hermitian

Dirac matrices as

Γa ≡ −iγa , a = 1, · · · , p ≤ n

Γb ≡ γb , b = p+ 1, · · · , d (C.4.11)

where we restricted the number of such anti-Hermitian Γa to be no more than n =

bd/2c, the integer part of d/2.

The Fock space construction proceeds the same way as in the Euclidean case,

since we may as well use γa’s and multiply −i for the first p of them in the end.

−iγ1, · · · ,−iγp; γp+1, · · · , γn; γn+1, · · · , γ2n (C.4.12)
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The first p are real antisymmetric, the middle (n− p) are imaginary antisymmetric,

and the last n are real symmetric. In particular, when p = n, we see that all Dirac

matrices are real. The chirality operator, or γ2n+1 modulo sign if d = 2n+ 1,

Γ2n+1 ≡ Γ = (−i)nγ1 · · · γ2n = (−i)n−pΓ1 · · ·Γ2n (C.4.13)

is real and symmetric, regardless of p and n, in this representation.

Complex Conjugations and Majorana Spinors

One may then construct

C ≡ Γp+1 · · ·Γn = γp+1 · · · γn , C−1 = C† (C.4.14)

where one should note that we take product of pure imaginary ones among Γ’s in the

above Fock space representation of the Clifford algebra. With our choice p ≤ n, and

d = 2n or d = 2n+ 1, these constitute no more than half of all Dirac matrices. Later

we will come to the complimentary choice, C, available for d = 2n as the product

of (n + p) real Γ’s down to Γ2n, playing a similar role. For d = 2n + 1, no such

independent C exists since product of all Γ’s is proportional to 1.

This C obey

C−1γa≤pC = −(−1)n−p(γa≤p)∗ , C−1γa>pC = (−1)n−p(γa>p)∗ (C.4.15)

which can be used as a charge conjugation for Γa’s

C−1ΓaC = (−1)n−p(Γa)∗ (C.4.16)

up to a = 2n+ 1, from which we find

(Γab)∗ = C−1ΓabC (C.4.17)

on so(p, d− p) rotation generators for d = 2n, 2n+ 1. Therefore, the Dirac spinor Ψ

and its complex conjugate

ΨC ≡ CΨ∗ (C.4.18)
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transform the same way under so(p, d− p).

If we perform this conjugation operation twice, the spinors come back to itself,

generally modulo a sign,

(ΨC)C = C(CΨ∗)∗ =


Ψ n− p = 0, 3 mod 4

−Ψ n− p = 1, 2 mod 4

(C.4.19)

since

CC∗ = γp+1 · · · γn(−1)n−pγp+1 · · · γn = (−1)(n−p)(n−p+1)/2 (C.4.20)

Since Ψ and Ψc transform the same way under so, one may use this conjugation

operation to project the Dirac spinor to real and imaginary halves. With n−p = 0, 3

mod 4, for which CC∗ = 1,[
1

2
(Ψ + ΨC)

]
C

=
1

2
(Ψ + ΨC) ,

[
i

2
(Ψ−ΨC)

]
C

=
i

2
(Ψ−ΨC) (C.4.21)

which split the Dirac spinor into real and imaginary part.

If we restrict our attention to d = 2n, there is one more choice of the charge

conjugation operator,

C = CΓ = CΓ2n+1 (C.4.22)

again with CC† = 1, and

C−1ΓaC = (−1)n−p+1(Γa)∗ , (Γab)∗ = C−1ΓabC (C.4.23)

The charge conjugation under C,

ΨC ≡ CΨ∗ (C.4.24)

has the property,

(ΨC)C = C(CΨ∗)∗ =


Ψ n− p = 0, 1 mod 4

−Ψ n− p = 2, 3 mod 4

(C.4.25)
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since

CC∗ = (−1)(n−p)(n−p+1)/2+(n−p) = (−1)(n−p)(n−p+3)/2 (C.4.26)

which equals 1 for n− p = 0, 1 mod 4 and allows the split[
1

2
(Ψ + ΨC)

]
C

=
1

2
(Ψ + ΨC) ,

[
i

2
(Ψ−ΨC)

]
C

=
i

2
(Ψ−ΨC) (C.4.27)

in the same manner as above.

Although the nomenclatures on this varies, we will call the projected spinors,

possible with the help of CC∗ = 1 or CC∗ = 1, Majorana. The other case, with CC∗ =

−1 for odd dimensions or CC∗ = CC∗ = −1 for even dimensions, are called symplectic

Majorana. For such symplectic Majorana spinors, the charge conjugation extends the

global symmetry algebra u(1) that act on a single Dirac spinor, to the sp(1) = usp(2),

even though the above split of Dirac spinor into “real” and “imaginary” parts is not

possible

Majorana spinors, with truly half the degree of freedom relative to Dirac spinors,

are possible in odd dimensions under C if n − p = 0, 3 mod 4. These are d =

2n+ 1 = 7, 9 etc for so(2n+ 1)’s and d = 2n+ 1 = 3, 9, 11 etc for so(1, 2n)’s. In even

dimensions, on the other hand, we can use either of C or C, so the Majorana spinor

is possible provided that n − p = 0, 1, 3. For so(2n), these are d = 2, 6, 8 etc while

for so(1, 2n− 1) these are d = 2, 4, 8, 10 etc.

Although we worked with mostly plus sign of the signature, it would be immedi-

ately clear that these classifications is symmetric under so(p, d − p) → so(d − p, p)
since all we need to do is to map Γa → iΓa, under which the rotation generator change

signs at most. In even dimensions, this flip exchanges C and C, for example. Note

that the above discussion of reality and pseudo-reality refers to the representation

under so(p, d− p), rather than those of the Clifford algebra. The (pseudo-)reality of

Clp,d−p representations are another matter, since the much-smaller algebra so(p, d−p)
resides in Cleven

p,d−p consisting of even number of antisymmetrized product of Γa’s, in-

side Clp,d−p. For this reason, the (pseudo-)reality classification of the Clifford algebra

Clp,d−p itself, often found in mathematics literature, looks different from that of so

spinors above.
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(Symplectic) Majorana-Weyl

On the other hand, the Dirac spinor is not irreducible under so(p, 2n− p) given how

ΓaΓ2n+1 are no longer rotation generators. As we have seen earlier, Γ2n+1 = Γ plays

the role of a chirality operator instead, and split the Dirac spinor into a pair of Weyl

spinors

Ψ± =
1

2
(1± Γ)Ψ (C.4.28)

With this, we need to check whether the two types of the above projections can be

simultaneously imposed. The rotation generators for these are respectively,

Σab
± = Γab

(1± Γ)

2
(C.4.29)

and their properties under the charge conjugation are

C−1(Σab
± )∗C = C−1(Γab)∗

(1± Γ∗)

2
C = Γab

(1± (−1)n−pΓ)

2
(C.4.30)

and the same with C,

C−1(Σab
± )∗C = C−1(Γab)∗

(1± Γ∗)

2
C = Γab

(1± (−1)n−pΓ)

2
(C.4.31)

Thus Weyl projection is compatible with either of the charge conjugation if and only

if n− p is even.

Let us first concentrate on so(1, d−1). Recall that, with p = 1, the Majorana pro-

jection was possible for d = 2, 3, 4, 8, 9, 10, 11, respectively with n = 1, 1, 2, 4, 4, 5, 5.

Among even dimensions, therefore, we find the Majorana projection and the Weyl

projections are compatible only in d = 2, 10 dimensions. Spinors projected twice this

way is called Majorana-Weyl. On the other hand, in d = 6 dimensions, we have

n − p = 2 so that the charge conjugation associated with the symplectic Majorana

property there does preserve the Weyl projection. We call the Weyl spinor in such

cases symplectic Majorana-Weyl whose net effect is merely enlargement of the global

symmetry associated with the Weyl spinor.

With the Euclidean signature so(d = 2n), the Majorana projection is available

for d = 6, 8 with n = 3, 4, respectively, so the Majorana-Weyl spinor is possible only

for d = 8.
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Minimal Spinor Representations for so(1, d− 1)

Recall how the two relevant sign factors that entered the above discussion are deter-

mined by the combination, n− p, as

(−1)n−p , (−1)(n−p)(n−p+1)/2 (C.4.32)

The former repeat itself in n−p mod 2 while we have seen that the latter repeat itself

in n−p mod 4. With so(p, d−p) = so(p, q), on the other hand, n−p = (q−p)/2+· · · ,
so the first and the second repeat themselves in q− p mod 4 and mod 8 respectively.

Combined, this implies that the pattern repeats itself in d mod 8 and is invariant

under the shift (p, q) → (p + 1, q + 1). With this understood, it suffices to list the

minimal representation for a particular signature, say, p = 1. In the table, we list

the smallest spinor representations for so(1, d − 1) for d ≤ 11, with the resulting

minimal number of components displayed in the second column. The last column

represents the largest possible global symmetry when N such spinors are simultane-

ously present; N± refers to the numbers of chiral and anti-chiral spinors, respectively,

when applicable.

For d = 4, 8, where one can choose either Weyl or Majorana, we displayed the

Weyl spinor; Weyl is more versatile than Majorana in that it can more naturally

accommodate more diverse gauge representations. We should emphasize again that

“symplectic Majorana” has the same content as a Dirac; the difference is how “sym-

plectic” case admit maximal global symmetry algebra sp(N) = usp(2N) instead of

u(N) for a collection of N such spinors. With N± referring to the number of chiral

and anti-chiral Weyl spinors as above, “symplectic Majorana-Weyl” may have the

symmetry sp(N+)⊕ sp(N−).

Note how these spinors decompose under the reduction so(1, d− 1)→ so(1, 1)⊕
so(d− 2). Starting from the former’s spinor Ψ, there is a universal decomposition,

Ψ → Ψ1/2 + Ψ−1/2 (C.4.33)

where ±1/2 refers to the charge under so(1, 1). Since the latter’s smallest spinor is

a single real component and since the type of the minimal spinor representation is

common between so(1, d − 1) and so(d − 2), the reality property of Ψ is inherited

by Ψ1/2 and Ψ−1/2, each carrying exactly half the component of Ψ. For instance,
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with d = 10, a Majorana-Weyl Ψ carries 16 real components while Ψ±1/2 is again

Majorana-Weyl with 8 real components each, whose chiralities are determined as ±1

times that of Ψ. This exercise is closely tied to how the dynamical contents of fields

transforming covariantly under so(1, d − 1) are classified by the little group, which

for massless cases is effectively so(d− 2).

# of components minimal spinor global symmetry

so(1, 1) 1 real Majorana-Weyl so(N+)⊕ so(N−)

so(1, 2) 2 real Majorana so(N)

so(1, 3) 2 complex Weyl (or Majorana) su(N)⊕ u(1)

so(1, 4) 4 complex symplectic Majorana sp(N)

so(1, 5) 4 complex symplectic Majorana-Weyl sp(N+)⊕ sp(N−)

so(1, 6) 8 complex symplectic Majorana sp(N)

so(1, 7) 8 complex Weyl (or Majorana) su(N)⊕ u(1)

so(1, 8) 16 real Majorana so(N)

so(1, 9) 16 real Majorana-Weyl so(N+)⊕ so(N−)

so(1, 10) 32 real Majorana so(N)
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