
8.2.1 Hamilton-Jacobi

One alternate version of the classical dynamics goes by the name of the Hamilton-

Jacobi, which has profound implications toward quantum mechanics. Let us dwell 
on this, with the relativistic particle motion in black hole spacetimes as an excuse.

The main object of interest is the Hamilton-Jacobi function, SHJ, whose definition 
looks superficially similar to that of the action in that it is obtained by integrating the 
Lagrangian L. Unlike the action S, SHJ is something we evaluate on actual solutions. 
Given an initial time τi and a point xi, one defines SHJ(τ, x) by integrating over the 
trajectories that connect the initial time and the initial postion, to their final 
counterparts τ and x,

SHJ(τ, x) =

∫ τ

τ0

dτ ′L(xsol(τ
′), ẋsol(τ

′))

∣∣∣∣x(τ)=x

x(τ0)=x0

. (8.2.1)

rendering it a function rather than a functional.

One important assumption here is that given the initial and the final points,

and also, given the time span τ − τ0 specified, there is generically a unique solution

xsol(τ
′) that interpolates the two. Instead of specifying two sets of initial conditions,

say the position and the momentum, we fix initial and final points. This may not
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actually hold. Take for instance a free particle on a circle. Even if we declare the

initial and the final point, for example take them to be identical, there are infinite

number of Newtonian trajectories, each of which is characterized by how many times

the trajectory move around the circle. Therefore, SHJ are in principle classified by

additional labels, which in this last example, are the winding numbers, even if we fix

the inial and the final condition. The point is that what follows is applicable to one

such class each at a time.

The key property of SHJ is that the derivatives with respect to its argument com-

putes the conjugate momenta and the energy of the classical trajectory in question.

Suppose we shift the final point slightly so that one of coordinate values, say xµ, is

shifted slightly as xµ → xµ + δ. This of course shift the solution to xsol + ∆xsol which

also obeys the equation of motion with the initial position at τ0 fixed, ∆xν 6=µsol (τ) = 0,

and ∆xµsol(τ) = δ.

Taking a derivative with respect to x, therefore, we have

∂SHJ

∂xµ
= lim

δ→0

1

δ

∫ τ

τ0

ds (L(xsol + ∆xsol)− L(xsol))

= lim
δ→0

1

δ

∫ τ

τ0

ds

(
∆xλ

δL(x, ẋ)

δxλ
+ ∆ẋλ

δL(x, ẋ)

δẋλ

) ∣∣∣∣
x→xsol

= lim
δ→0

1

δ

∫ τ

τ0

ds
d

ds

(
∆xλ

δL

δẋλ

) ∣∣∣∣
x→xsol

= pµ(x(τ), τ)

∣∣∣∣
x→xsol

, (8.2.2)

where the last is meant to be the value of the conjugate momenta pµ at τ for the

solution xsol(s). We emphasize that in the last step the lower end of the integral does

not contribute since ∆xsol(τ0) = 0.

We can also take a derivative with respect to τ by keeping the final point x fixed

but rather requires the trajectory to take a slightly longer time (τ − τ0) + δτ . Again

this shifts the trajectory to something nearby xsol + ∆̃xsol,

∂SHJ

∂τ
= lim

δ→0

1

δτ

(∫ τ+δτ

τ0

dsL(xsol + ∆̃xsol)−
∫ τ

τ0

dsL(xsol)

)
. (8.2.3)

There are two types of terms on the right. The first is from δτ shift in the integration
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range, which simply gives

L(x(τ), ẋ(τ))

∣∣∣∣
x→xsol

. (8.2.4)

The latter is more subtle. Since we are interested in the linear deviation due to ∆̃x

inside the Lagrangian, this second contribution become quite similar to the above

spatial derivative,

lim
δτ→0

1

δτ

∫ τ

τ0

ds
(
L(xsol + ∆̃xsol)− L(xsol)

)
= lim

δτ→0

1

δτ

∫ τ

τ0

ds
d

ds

(
∆̃xλ

δL(xsol)

δẋλ

)
= lim

δτ→0

1

δτ

∫ τ

τ0

ds
d

ds

(
∆̃xλ

δL(xsol)

δẋλ

)
. (8.2.5)

On the other hand, xsol + ∆̃xsol is supposed to arrive at x at s = τ + δτ , so at s = τ ,

it falls short by small amount,

∆̃xλsol

∣∣∣∣
τ ′=τ

= −δτ ẋλsol , (8.2.6)

whereas xsol + ∆̃xsol is still anchored at x0 at τ0. Therefore the second contribution

gives

−ẋλ(τ)pλ(τ)

∣∣∣∣
x→xsol

. (8.2.7)

Combining, we find the time derivative gives the minus of the conserved energy,

∂SHJ

∂τ
= −

(
ẋλ(τ)pλ(τ)− L(x(τ), ẋ(τ))

) ∣∣∣∣
x→xsol

= −E(xsol) . (8.2.8)

where the extra sign on the right should be noted.

There is actually a simpler way to see these facts, if somewhat formal. Recall how

the action may be written in the canonical form as,

S =

∫
dτ (pµẋ

µ −H(x, p)) =

∫
(pµdx

µ − dτ H(x, p)) (8.2.9)
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Applying this to actual trajectories, xsol(s) and psol(s), we find

SHJ(τ, x) =

(∫ x

x0

dyµ pµ −
∫ τ

τ0

dsH(y(s), p(s))

)∣∣∣∣
y=xsol(s), p=psol(s)

(8.2.10)

or

dSHJ = dxµ pµ − dτ E(xsol, psol) (8.2.11)

which gives the same relations as above.

So what do we do with these? Suppose we have a simple one-dimensional New-

tonian problem,

L =
1

2
mẋ2 − V (x) (8.2.12)

for example, we always have at least the Hamiltonian as one conserved quantity,

H(x, p) =
1

2m
p2 + V (x) = E , (8.2.13)

where we insert the above to find a partial differential equation for SHJ

1

2m

(
∂SHJ

∂x

)2

+ V (x) = −∂SHJ

∂t
= E . (8.2.14)

Solving this for SHJ, we find

SHJ = −E (t− t0)±
∫ x

x0

dx′
√

2m (E − V (x′)) . (8.2.15)

defining the Hamilton-Jacobi function for this simple one-dimensional mechanics.

The assertion, which can be verified through standard Lagrangian dynamics, is

that the classical trajectories emerge by extremizing SHJ with respect to the param-

eters, namely the values of the conserved quantities. In this simple case, E is the

parameter in question, so the trajectories obey

0 =
∂SHJ

∂E
= −(t− t0)±

∫ x

x0

dx′

√
m/2

E − V (x′)
. (8.2.16)

One can see that if one takes a derivative with respect to t, this gives the energy
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conservation H = E precisely, so this is nothing but the integrated conservation law.

Clearly, the same works if the number of conserved quantities is the same as the

number of dynamical variables. For Newtonian central force problems, where we may

set the spherical coordinates such that the trajectory lies along the plane, θ = π/2,

we find

1

2m

(
∂SHJ

∂r

)2

+
1

2mr2

(
∂SHJ

∂φ

)2

+ V (r) = −∂SHJ

∂t
(8.2.17)

with

∂SHJ

∂φ
= L , −∂SHJ

∂t
= E , (8.2.18)

leading us to

SHJ = −E (t− t0) + L(φ− φ0)±
∫ r

r0

dr′
√

2m (E − V (r′))− L2

r2
, (8.2.19)

and again extremizing with respect to E and L produces the classical trajectories.

The fact that SHJ should be extremized for actual trajectories is, of course, the

mathematical consequence of the classical dynamics, which ultimately connects to the

usual action principle. As is well known, the path integral representation of quantum

mechanics has the measure

eiS/~ , (8.2.20)

where S is the action. The path integral sum over all possible trajectories, not just

the classical ones, but at the same time, the classical trajectories are still special in

that the phase is extremized along such paths. Since the path integral is essentially

sum over all possible waves between the starting point and the end point, and since

extremization means constructive interference of such nearby wave forms, the emer-

gence of classical path from the condition of extremization of S is quite natural from

the quantum mechanics viewpoint.

Taking one more step, then, where we constrain our infinite-dimensional possi-

bilities of paths down to those parameterized by those few conserved quantities, the

extremization of SHJ follows from the same principle of constructive interference. Re-

call that SHJ is a rather special quantity from the path integral viewpoint as well,
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since it represents the value of the action in a semi-classical approach of the saddle 
point approximation.

Another important observation along the same line of reasoning tells us why the 
motion should be geodesics on the curved spacetime once we apply the same principle 
of constructive interference. By the way, although we say the trajectories are geodesics, 
which usually means the shortest path, the time-like trajectories can be seen to 
maximize the proper time accumulated relative to infinitesimally nearby paths.
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