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A common assumption in standard machine learning methods is that the data used for 
training a predictor follow the same probability distribution as the data used for testing 
the prediction performance in the inference phase. However, in many real-world 
applications, this common assumption is often violated, e.g., due to changing 
environments over time or sample selection bias caused by privacy concerns. Such a 
situation is called distribution shift, and how to overcome the distribution shift is an 
urgent challenge in the machine learning community. 

In this talk, I will first give an overview of the classical importance weighting 
approach to distribution shift adaptation, which consists of an importance estimation 
step and an importance-weighted training step [1,2]. Then, I will present a more recent 
approach that simultaneously estimates the importance weight and trains a predictor. I 
will also discuss a more practical scenario of sequential distribution shifts, where the 
data distributions change sequentially over time. Finally, I will discuss ongoing 
challenges such as joint distribution shift, out-of-distribution adaptation, and more. 
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