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Outline

Introduction of Dark Matter
- Unitarity Bound and Heavy Thermal Dark Matter

Stellar Evolution for Probing DM
- Red Giant, Triple Alpha Fusion, and Helium Flash

Effects of Dark Matter on the evolution of RG and Constraints
- Capture, Thermalization and Self Gravitational Collapse
- Ignition of Helium fusion earlier than the Standard Prediction
- Constraints

Summary



Introduction of Dark Matter
(thermal heavy dark matter)



Two triumphs in 20t century: General Relativity & The Standard Model

EfQ%1012mm

gravity = curved spacetime

10~ ?mm
,u C L
ld s biz
V. VEV,
L e 10~ mm

Image from CERN

elementary particles = quark, lepton, gauge bosons, Higgs



Content of the Universe

Dark Energy
69%

It is very difficult to properly understand the origin of the each content
from GR and the list of particles of the SM
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Content of the Universe - DM

Image of Galaxy Messier 33 Image of Bullet Cluster 1E 0657-558

Observa tions
from starlight

Velocity
(km s-1)

10,000 20,000 30,000 40,000

Distance (light years)

Galaxy Scale

" Image from PLACK Image from SDSS

Cosmic Microwave Background 6 Large Scale Structure of the Universe



Content of the Universe - DM

Image of Galaxy Messier 33 Image of Bullet Cluster 1E 0657-558

Velocity
(km s-1)

10,000 20,000 30,000 40,000

Distance (light years)

Galaxy Scale

<Dark Matter>

Feels Gravity,
Cosmologically Stable,
No Light Emission, No EM Charge

CANNOT be explained by the
particle contents of the SM

Image from SDSS

LA " Image from PLACK
Cosmic Mlcrowave Background 7 Large Scale Structure of the Universe



What is the nature of dark matter?
The unit of DM

Galaxy (Stars, Gases, Planets)



What is the nature of dark matter?

How to interact with each other

Dark
Matter

How stable How many
different types

Wave-like @ @
Particle-like @

Any other interactions gravity

How to create
Compact & Macroscopic



Candidates of DM for its mass
p_DM = MDM ﬁDM = (025 — 0'27)ﬁt0t ~ 1.2 X 10_6GeV/Cm3

1 hc 19
G=— |Mp= |==122x10"GeV
M2, G
NpmAe 1 = 1 qs Ry > A
Npm Compton > Rpy = 2GIVIDM < ACompton - m_DM < Npm BH Compton

neutrino  electron proton

| 1 11 | |

1072%eV peV keV 100 GeV Mp = 10"7m, Mg = 1057m,,
Fuzzy DM QCD axion Warm DM WIMP DM Heavy DM Primordial Black Hole,
Sterile neutrino Ultra Compact Mini Halo

Wave like (boson) Particle like Compact object
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Candidates of DM for its mass and interactions
p_DM = MDM T_lDM = (025 — 0'27)p_t0t ~ 1.2 X 10_6GEV/Cm3

A

Interaction with SM particles other than gravity

?

Their Masses and Interactions determine
1) How they were produced in the early Universe

2) How we can detect them now
Interactions between

(among) dark matters

neutrino  electron proton

| 1 11 | |

1072%eV peV keV 100 GeV Mp = 10"7m, Mg = 1057m,,
Fuzzy DM QCD axion Warm DM WIMP DM Heavy DM Primordial Black Hole,
Sterile neutrino Ultra Compact Mini Halo

Wave like (boson) Particle like Compact object
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Thermal Dark Matter

Weakly Interacting Massive Particle (WIMP) : (0.1 ~ 1000) GeV

Dark matter density is determined by its annihilation cross-section
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Thermal Dark Matter

Weakly Interacting Massive Particle (WIMP) : (0.1 ~ 1000) GeV

Dark matter density is determined by its annihilation cross-section

X X
) 3 x 107%%cm3/s
X 'Q'DMh - 01
Y % <0XXU>T
X Y z
14 @ 402 ]
()] o
S Decreasing
WIMP (Mpy ~ 100 GeV, a,, ~ 0.01) 5 |
is one of the best candidates for DM E
c
E 108
£ 1
3 10 freeze-out]
€ \
10722ev eV keV 100 GeV S 1012l ‘ ‘ ‘ LN
0.5 1 5 10 50
WIMP My /T

Dark matter cross-section is limited by its mass and the velocity

41T 2
The perturbative Unitarity bound: (O'XXU>T < Y Qpyh? > 0.1 (131)‘(4)1311:46\,)
bMm V)T
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Thermal Dark Matter

Weakly Interacting Massive Particle (WIMP) : (0.1 ~ 1000) GeV

—_ 10—38 J
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Thermal Dark Matter

Weakly Interacting Massive Particle (WIMP) : (0.1 ~ 1000) GeV

Dark matter density is determined by its annihilation cross-section

X X
3 x 107%6cm3/s
X .Q.DMhz = 0.1
14 % (UXXU>T
X Y
14

WIMP (MDM ~ 100 GeV, C(X ~ 001)
is one of the best candidates for DM

1072%eV peV keV 100 GeV Mp = 10"7m, Mg = 1057m,,
WIMP Heavy DM

HOWEVER, No hints for WIMP DM so far:
Strong motivation of the beyond WIMP paradigm
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Thermal DM Beyond the Unitarity Bound

How can the Unitarity bound be overcome to allow various DM masses?

M 2
2 > DM
{omh* 2 0.1 (130 TeV)

What are the predictions for observables?
production of ultra-heavy dark matter

composite

asym. & WI|MP
diluted

moduli decay ), chemical potential during

GUT radiation

preheating domination
WIMPzilla

during
matter
domination

asymmetric
leak-in

supercooled

filtered

topo defect

during vacuum
energy domination

Snowmass2021 Ultra-heavy particle dark matter arXiv:2203.06508
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Thermal DM Beyond the Unitarity Bound

How can the Unitarity bound be overcome to allow various DM masses?

2

Mpm

Opmh? 2 0.1 [ e
pmh” 20 <130TeV>

What are the predictions for observables?
production of ultra-heavy dark matter

composite

asym. & WI|MP
diluted

moduli decay ), chemical potential during

GUT radiation

preheating domination
WIMPzilla

during
matter
domination

asymmetric
leak-in

One can think the origin
supercooled

: S of dark matter mass
tightly related with

production mechanism

topo defect

during vacuum
energy domination

Snowmass2021 Ultra-heavy particle dark matter arXiv:2203.06508
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Origin of Mass for particle DM: Expectation value of scalar field

Higgs field (giving mass to

the elementary particles)

Nonzero expectation value of the scalar field imposes DM mass

3

Temperature drops: £&7| > 0|& Universe expands—> Temperature
decreases - Bubbles of scalar
condensation form!

Scalar Field (giving DM Mass)
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Origin of Mass for particle DM: Expectation value of scalar field

Higgs field (giving mass to

the elementary particles)

Nonzero expectation value of the scalar field imposes DM mass

3

Temperature drops: 57| > 0|& Universe expands—> Temperature
decreases > Bubbles of scalar
condensation expand!

Scalar Field (giving DM Mass)
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Origin of Mass for particle DM: Expectation value of scalar field

Higgs field (giving mass to

the elementary particles)

Nonzero expectation value of the scalar field imposes DM mass

3

Temperature drops: £&7| > 0|& Universe expands—> Temperature
decreases - Bubbles of scalar
condensation collide!

Scalar Field (giving DM Mass)
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Origin of Mass for particle DM: Expectation value of scalar field

Higgs field (giving mass to

the elementary particles)

Nonzero expectation value of the scalar field imposes DM mass

%

Temperature drops: 37| = 0|&

Scalar Field (giving DM Mass)

Universe expands—> Temperature
decreases 2 Bubbles of scalar
condensation fill the Universe

- Cosmic 15t order phase transition

26



Phys. Rev. D 101, 095019 (2020)

Origin of DM mass & its abundance
D. Chway, T. H. Jung, CSS

Proposing the mechanism working in a wide range of DM mass

100 GeV/c? Mpianck . . .
e Filtering-out Mechanism
| | Exponential suppression of heavy DM relic by Filtering Effects
Ppm (pDM)beforee_M/zwaC = present value

(#)=0

light particles
(yr ei' Vi, Qi )

Cosmic 15t order phase transition
- Production of Gravitational Waves

22

Simulation from D. Cutting et al. 1802.05712



Origin of DM mass & its abundance

Proposing the mechanism working in a wide range of DM mass D. Chway, T. H. Jung, CSS
Phys. Rev. D 101, 095019 (2020)
100 GeV/c? Mpjanck

Filtering-out Mechanism
Exponential suppression of heavy DM relic by Filtering Effects

Ppm (pDM)beforee_M/zwac = present value

light particles @r=0

v, et vi,qi )

Understanding the origin of DM

e .
Cosmic 15t order phase transition by GW observations

| > Production of Gravitational Waves

Simulation from D. Cutting et al. 1802.05712 23



Stochastic Gravitational Waves

Proposing the mechanism working in a wide range of DM mass

S Le—"_

100 GeV/c? Mpjanck

Understanding the origin of DM
by GW observations

24



Origin of DM mass & GW observations

Proposing the mechanism working in a wide range of DM mass

S Le—"_

100 GeV/c? Mpjanck

Mass=100PeV

— vy =09

fHz]

M. Ahmadvand 2108.00958

107
1078}
10}
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10—11 L

< 1072}

& 1013

1014 [
10715
10716 [

1017+

10-18

Mass=100TeV

V4

DECIGO /
4

— vy =0.9

1072
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GW observatory

Understanding the origin of DM
by GW observations




DM Probe via Stellar Evolution

The mechanism working in a wide range of DM mass : Interaction with the SM particles

S Le—"_

100 GeV/c? Mpjanck

Dark Matter around the Star can be captured and accumulated in the core of the star.

It can trigger the earlier nuclear reaction in a certain stage of stellar evolution by new
heating sources.

ﬁ -0

Recent review of dark matter effects New Sta ge of
on compact stars such as White Dwarf, Neutron Stars .
Phys.Rept. 1052 (2024) 1-48 arXiv:2307.14435 Stellar Evolution N

Heavy DM in WD: 1505.04444, 1505.07464, 1805.07381,
1905.00395, 2203.09054, 2404.16272, etc.
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Steller Evolution
(Red Giant and the Helium Flash)

27



Stellar Evolution

Star: an astronomical object consisting of a luminous spheroid of plasma
held together by its own gravity
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Stellar evolution could be changed if there is an extra energy heating/leakage source



Low Mass Stellar Evolution

(0.5MO < M < 5MQ)

Outer layers: no thermonuclear reactions

f\_ Helium
108
Flash
—_— 41— 1
: 10 %”b Red Giant
_ S, Hydrogen- Hydrogen-
= Branch : 3
o 1021 burning shell burning shell
=
[42]
g 1t
£ exhaustion
S 0ok
10 44— §meonng Helium-burning
thermonuclear
- | | | | 5 (6(0) (S
40,000 20,000 10,000 5,000 2,500 reactions

Temperature (K) . .
Main Sequence Star Red Giant Helium Flash

Graphic by R. Pogge

Envelope

. . . H burning shell
Each phase experiences a different nuclear reaction

He intershell

He core burning
CO in centre builds up

Horizontal Branch
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Low Mass Stellar Evolution

(0.5MO < M < 5MQO)

Outer layers: no thermonuclear reactions

A
1057
~ 10 g,
j S, Hydrogen- Hydrogen-
= 107 burning shell burning shell
3
£ 1+
£ exhaustion
S 0ok
10 44— §meonng Helium-burning
thermonuclear
- | | | | 5 (6(0) (S
40,000 20,000 10,000 5,000 2,500 reactions

Temperature (K)

. Main Sequence Star Red Giant Helium Flash
Graphic by R. Pogge

Envelope
. . . H burning shell
Each phase experiences a different nuclear reaction

He intershell

He core burning
CO in centre builds up

Main Sequence (core H fusion = He) O(10Gyr)

- Red Giant (inert He core, shell H fusion > He) O(1Gyr)

- Helium Flash (with triple alpha (He) fusion 2 C in the core) O(minutes)
- Horizontal Branch (core He fusion > C+0) O(0.1Gyr)

Horizontal Branch
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0.5

Low Mass Stellar Evolution

M5 (NGC 5904)

®RGB
ARR
HB
BAGB
* Star
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Red Giant and Helium Flash

The Nuclear Reactions (especially triple alpha process) highly depend on the temperature

Efficiency
D OH
\/
/i:v
2H 1
\/
v/l
QoHe ( ‘jHe 4He
gn HD Unstable
p— . / \ / \ %
e \r i4|_|e W
. 12C
Trlple (0 J Proton
PP Chain J Neutron Gamma ray Y
| | Temperature

5x 10°K 15 x 10°K 108K
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Efficiency

log €

Red Giant and Helium Flash

The Nuclear Reactions (especially triple alpha process) highly depend on the temperature

PP Chain

Ny
i}“He

|
|
5x 10°K 15 x 10°K

33

Temperature

2 44.0
— ;3 P 31.12 , T. erg
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Red Giant and Helium Flash

The Nuclear Reactions (especially triple alpha process) highly depend on the temperature

The Helium Flash
Fusion Ignition in degenerate core of the RG: a bomb ready to explode

= Runaway Helium Burning: 100 billion times the solar output in a few seconds

increase in Exothermic
reaction rate reaction

heat

heat escape
slows reaction
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Red Giant and Helium Flash

The Nuclear Reactions (especially triple alpha process) highly depend on the temperature

The Helium Flash
Fusion Ignition in degenerate core of the RG: a bomb ready to explode

= Runaway Helium Burning: 100 billion times the solar output in a few seconds

Dark Matter could be a new ignition source for the triple-alpha process due to its heating
effects at the core of Red Giant.

Ignition

a Earlier transition to
Change of the Luminosity of TRGB Horizontal Branch,
Cooling from Axion-Electron Coupling (Review 2401.13728) Lower Brightness of

Heating from Capture and Annihilation of DM: 2407.08773 Tip of the RG Branch
35




Dark Matter Probe via Red Giant

Sougata Ganguly, Minxi He, CSS, Oscar Straniero, Seokhoon Yun In progress
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Red Giant — Dark Matter Interactions

Helium core governs properties of star
- Mass fractions of O(1)M¢

e Burning Shell
- Density up to prg ~ 10° g/cm3, Radius of Rg; ~ 10*km ! ,J

(™
- Maintained mainly by degenerate electron pressure

not by thermal pressure
- The core temperature is gradually increasing to

0(10®)K, which initiates triple alpha fusion process.

{=
©
©)
ke,
o)
o

Scale = 200 Earth Radii
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Red Giant — Dark Matter Interactions

Helium core governs properties of star
- Mass fractions of O(1)M¢

Burning Shell

- Density up to prg ~ 10° g/cm3, Radius of Rg; ~ 10*km ! ,J

- Maintained mainly by degenerate electron pressure e
not by thermal pressure

- The core temperature is gradually increasing to

0(10®)K, which initiates triple alpha fusion process.

Dark Matter can be captured by the nucleon-dark matter

elastic scattering and gravitational attraction.

Red Giant

Considering the cross section oy,, and the DM mass m,,

Scale = 200 Earth Radii

we can estimate the evolution of DM for
DM Capture - Ingress (trapped inside the core)

= Thermalization (accumulation in the core) > DM Self Gravitational Collapse and Heating
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Dark Matter Capture

We considering the heavy Dark Matter : m, » my and only the core of Red Giant

@ Initial DM speed: v; ~ 103¢
e Local DM density: p, ~ 0.1 GeV/cm?
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Dark Matter Capture

We considering the heavy Dark Matter : m, » my and only the core of Red Giant

@ Initial DM speed: v; ~ 103¢
e Local DM density: p, ~ 0.1 GeV/cm?

Scattering:
x + He - y + He

Expected Number of Scattering: ny.oye,Rrg

SEX ~ 2mye

" Losing Energy Per Each Scattering:

X my

Dark Matter Captured When AE, ~ m, v}

\

\

\

)

\ /
\ J
o /

~ P d : :
~AL _ /7 Negative Orbital Energy
1 GMgpgm
E, = -m,v* — !
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Dark Matter Capture

@a Almost all incident DM captured
Geometric capturing rate ~ 4mRign, v;

\

0g;ol Capturing rate [s71]]

\ E :
\ 181 ]
- \ :
p— 4
17 = PR S U (R S S ST R S S PR R R S SR N NI (N
7/‘{ -385 -380 -375 -370 -365 -36.
2
m, v; p.
x Vi
nHeO'HeXRRG ~ > loglo[ O-NX [Cm ] ]
Mye Vesc
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Ingress Transition

- The Orbital Energy = Kinetic + Potential Energy < 0

ZmHe

- Losing Energy Per Each Scattering: SEEX ~

X My

- Dark Metter Ingress When The Orbital Energy < —%mxvezsc

' "'V\
\‘--.\ \\\
‘\\ \
\ \_/ \
f \ ! \
\ } \
\ \\ / ‘
\ \‘h—*/ :
(X ] )
\\ I
S
~a_ x
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Thermalization

As the DM falls into the core, the initial kinetic energy around the core is much greater than
the background temperature. Therefore, DM constantly interacts with background nuclei to
achieve thermal equilibrium.
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Thermalization

Dark Matters are gradually accumulated at the core. Dark Matter clump has the virial radius as

44



Gravothermal Collapse and Heating of RG

DM density increases over time.
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Gravothermal Collapse and Heating of RG

DM density increases over time. Eventually the DM density can be bigger than the
background RG density: p, > pge.

/0

Py = PRG
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Gravothermal Collapse and Heating of RG

DM density increases over time. Eventually the DM density can be bigger than the
background RG density: p, > pgg. Then the Dark Matter sphere becomes unstable:

Gravothermal Collapse > DM Virial Radius decreases - DM Kinetic Energy Increases

47



Gravothermal Collapse and Heating of RG

DM density increases over time. Eventually the DM density can be bigger than the
background RG density: p, > pgg. Then the Dark Matter sphere becomes unstable:

Gravothermal Collapse > DM Virial Radius decreases - DM Kinetic Energy Increases

Enhanced DM Kinetic Energy is
Transferred to the Nuclei by

Scatterings: Heating

DM Energy Transfer Rate

- 2
Q)( ~ NXnHeGHeXUXmHeUX

48



Cooling vs Heating

Diffusion is important for runway fusion. However, if the diffusion is so efficient compared to
the DM heating effect, the nuclear fusion will not be efficiently triggered. This is because
the locally enhanced temperature is quickly decreasing to the background value before the

fusion happens.

Cooling from Diffusion , ,
Qy > Qarr

Conductive
Diffusion Rate

AE

Qarr ~ P
dff

Heating from
DM-Nucleus Scattering

DM Energy Transfer Rate

- 2
Q)( ~ NXnHeGHerXmHevX



Burning vs Diffusion

Assuming that triple alpha fusion is induced by a local heating effect, runway Helium
fusion is achieved when the “burning time scale” is shorter than the “diffusion time scale”.

** Burning Time Scale (Heating Time Scale by Triple alpha Nuclear Reaction)

Etn

SSa

€:n = Generated energy per unit mass by burning
maintaining heated regime ~ Capacity x (Tyurn — Trc)

tburn ~

Ss¢ = 3alpha nuclear reaction rate for heating ~ Q34 X 734/Prg

** Diffusion Time Scale (Cooling Time Scale by Electronic/Radiation Conduction)

fZ
tagr ~ —
dff D

¢ = The width of heated region
D = Thermal Diffusivity ~ A.¢r X v,

*** Sparkled frame persists and expands when t,,.n < tgss
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Trigger Mass for Helium Burning

The condition

Deth
S3a

tburn = tagr = ‘gtrigger =

Gives the Trigger radius fyigger, OF Trigger Mass defined as

4 3
Mtrigger — ?pRGftrigger

10714 ¢ i

10716 - I |

=7 qo-181 Runaway fusion |
5
>

< 10790+ ]

——)
10722 1 A8 ]
Tra/10°K = [0.8,0.9, 1]
1024 - |
2 4 6 8 10
Thurnl10°K]

Burning temperature 91



Trigger Mass for Helium Burning

The condition

Deth
S3a

tburn = tagr = ‘gtrigger =

Gives the Trigger radius fyigger, OF Trigger Mass defined as

4 3
Mtrigger — ?pRGftrigger

1014 .
_ The Helium flash occurs only when the area

10-16 | I heated by the DM satisfies these conditions —\
=7 qo-181 Runaway fusion |
S
g 10—20_

10—22 L

10—24 L i

2 4 6 8 10
Ty urn10°K]

Burning temperature 32




Constraints on Heavy Dark Matter

Simplified example with fixed the density pgrg ~ 10° g/cm3, and radius of Rzg ~ 10*km.
Heaviness of DM is relevant for reducing the time scale of DM self-gravitational collapse.

- Smaller m,,, larger N jj,pse required

- Geometric rate as a threshold F;..' S

T
|}

-35 N

'—
-
-
—#
[

-
-ﬂ

log ol oy, [cm?] ]

Preliminary -
6 7 8 9 10 11 12 13

105%10[ m, [GeV]]




Considering the full evolution of RG from its birth to 1Gyr, we can refine the constraints

Constraints on Heavy Dark Matter

1030 S

— 10731 o Self-gravitation |

S 10321 ot Ingress I

< 1033 ,f Direct detection |

_ | //, ® * -

= ’ - e -
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Summary

Heavy dark matter and its phenomenological implications are well-motivated these
days. We provide the example of heavy dark matter that can have sizable interactions
with the SM particles and observational consequences

The stellar evolution can be altered by the surrounding dark matter. This talk focused
on the tip of the Red Giants just before the Helium Flash. Their dynamics can be
highly affected by the Dark Matter heating.

We examine the effect of heavy dark matter capturing and its evolution inside the
core of the Red Giants. A detailed study based on the statistics of Horizontal vs RG
branches and the data of the luminosity of TRGB is necessary to provide more
concrete predictions.
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