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Types of Machine Learning

e Supervised learning (full and weak supervision)

* Training data with labels (e.g., recognizing photos of cats and dogs)
 Unsupervised learning

* Training data without labels (e.g., analyze and cluster unlabeled datasets)
* Reinforced learning

e Data from interactions with the environment (e.g., chess and Go games)

Supervised Unsupervised Reinforcement

Learning Learning Learning
. https://www.youtube.com/watch?v=Atg-S132vO0o



A Typical Convolutional Neural Network

fully conne.cted .Iayers
) for classification )
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A Higgs to Diphoton Event

: Event parameters:
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Full Supervision —
One Application of CNN to
Collider Physics

CWC, David Shih and Shang-Fu Wei, PRD 107, 016014 (2023)
[talked at High1 2023]




VBF vs GGF o [Tamasens T

s E 2
» VBF processes or the g;,, coupling is essential for FUE / :
studying the role of the Higgs boson in the EWSB. "E Pl
: Wgw/// jﬁﬁgs -
cuestions: . cCEmTT
e For any detected Higgs event, how can we efficiently and .. 1 =
correctly determine/label its production mechanism? B 1 L
e Can it be independent of how the Higgs boson decays? T hicemasieen
ATLAS 2019
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BDT Input Features

 Human-engineered high-level features (kinematic and jet shape variables) used
in BDTs:

Higgs decay

product-related X, A7 ;

1. m;;, the invariant mass of 7; and jo
the absolute difference of the pseudo-rapidities of 737 and 75
ned by the gb difference between the leading di-photon and di—jet

3. gb*e

/\

baseline 4. p., ned by | + pr) X t|, where t = (pr —pP7)/|lpr —PF
ATLAS D018 9. ARmm defined by the minimum 7-¢ separation between v; /72 and 71/
6. n*, defined by |My,~ve — (75, + 14,) /2|, where 1., is the pseudo-rapidity of
the leading di-photon
7. the girth summed over the two leading jets Z? 1 g; = Jj ] ZZGJ;, pf T /pT
shape 8. the central integrated jet shape V. = Zj . xzeﬂ pT Z(O < 7“ < 0. 1)/(229T)
Shelton 2013

9. the sided integrated jet shape W, 43 ] ZZGJ;, pTZ(O 1 < 7“ < 0. 2)/(219”%)
| F

constituent label distance between
the constituent
: and the jet axis



Event Image Preparation for Event-CNN

» Pre-processing: move the p,-~weighted center to the origin along the ¢ direction,

and flip the image vertically or horizontally to make the upper-right quadrant more
energetic than all the others " standardize the images

* Pixelation: from detector responses into 40x40 pixels

6 channels: Tower £, Tower hits, Track £, Track hits, Photon £+, and Photon

h |tS original image preprocessed image
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Comparison of Classifiers

area under the

ROC curves (Receiver Operating Characteristic curves) ROC curve
10° 1A A _ |
R L he
N FPR. ACC  AUC
\\\,\ \\\ . g
N\ BDT: baseline 0.030  0.093  0.820
W\ . - 1.
NN \[‘QSS‘: powerful classifier BDT: baseline + shape 0.097  0.027  0.850
S N N— BDT: baseline + jet-CNN ~ 0.022  0.599  0.870
\. AN AN AN O .
) SN N S Self-attention 0.010  0.604  0.900
e S~ o Nl |
> RSN Event-CNN 0.003  0.607  0.940
= ~ o ~ N
\\\\ \\\\\\\\ ) N | |
~.. . ~ ..
10! ™~ ~_ \ S — \\\ \.\\\\ .
—— BDT: baseline (AUC=0.820) ‘\-\\\\?\\ Performance comparlson
BDT: baseline + shape (AUC=0.850) - \\\\\:\\ at TPR = 0.3
BDT: baseline + jet-CNN (AUC=0.870) NN
—— Self-attention (AUC=0.900) \\\\Q\
Event-CNN (AUC=0.940) N\
10575 0.2 04 0.6 08 0
TPR

- Our jet-CNN score is more useful than jet shape variables.
- Tried the combination of jet shapes and jet-CNN scores, but did not make any further improvement.
u# jet-CNN has learned the information contained in the human-engineered jet shape variables
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Removal of Photon Information

* Using the diphoton mode as an explicit example, we show that the information of
the two photons does not affect the performance of the classifier.

A comparison of performance for BDT: all variables and event-CNN with and
without the information of the photon pair is given as follows.

ROC curves
10— T
P
\ R\ . . . . .
\ \\ - Could train a single VBF vs. GGF classifier that is agnostic
\ ' .
- AN to the Higgs decay mode.
™\ . . . .
- \\\ \\ - Could be applied to a variety of Higgs decay channels in
. S a uniform way.
g SO AN - Could have benefits for data-driven calibration and
= SN N reducing systematic uncertainties.
~ N —
) ™~ N\
10 ~— N\
~ \\\
—— BDT: all variables without photons (AUC=0.893) \\\\
BDT: all variables with photons (AUC=0.905) AN
—— Event-CNN without photons (AUC=0.941) \\
—— Event-CNN with photons (AUC=0.940) \\
%.0 0.2 0.4 0.6 0.8 1.0
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Weak Supervision



Collider Simulations

* Particle experimentalists deal with real data collected
by detectors around colliders.

w just like analyzing real images for CS people

» As particle theorists, we think we are simulating
verisimilar data using various packages.
w N fact, we have been generating fake data all along
w problems: fixed-order in perturbation (e.g., CalcHEP,
MadGraph), model-dependent showering/hadronization

(e.g., Pythia, Herwig), crude detector simulations (e.g., nties://enwixipedia org/uiri/
Garfield (character)
Delphes, GEANT)
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Can We Be More Realistic?

¢ USiﬂg adversarial networks? Louppe, Kagan, Cranmer 2016
w can alleviate model dependence during training, but at the cost of algorithmic
performance and computational resources

* |t would be nice to train directly using real data.
w put real data are unlabeled...

 Introduce classification without labels (CWolLa). Metodiev, Nachman, Thaler 2017
m pelonging to a broad framework called weak supervision, whose goal is to
learn from partially and/or imperfectly labeled data Herna'ndez-Gonz'alez, Inza, Lozano 2016
w first weak supervision application in particle physics for quark vs gluon tagging
using only class proportions during training; shown to match the performance of
fully supervised algorithms Dery, Nachman, Rubbo, Schwartzman 2017
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A Theorem for CWolLa

» Let X represent a list of observables or an image, used to
distinguish signal S from background B, and define:

+ p«(X): probability distribution of X for the signal,

» pp(X): probability distribution of X for the background.

Mixed Sample 1
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Classifier

Metodiev, Nachman, Thaler 201/

» Given mixed samples M, and M, defined in terms of pure events of $ and B

(both being identical in the two mixed samples) using

pum, (T) = fips(Z) + (1 — f1) pB(T)
P, (T) = faps(Z) + (1 — f2) pB(T)

with different signal fractions f; > f,, an optimal classifier (most powerful test

statistic) trained to distinguish M, from M, is also optimal for distinguishing $

from B.
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Remarks

* An important feature of CWol.a is that, unlike the learning from label proportions

(LLP) weak supervision, the label proportions f; and f, are not required for
training as long as they are different.

* This proof only guarantees that the optimal classifier from CWola, if reached, is
the same as the optimal classifier from fully-supervised learning.

» Just like most cases, successful training for CWola also requires a large amount
of samples.

 What happens if available data for the mixed samples are insufficient or limited,
as is often the case of real data for BSM searches?

16



Dark Valley Model —
Application of CWolLa




Dark Valley Model and Dark Jets

 Assume the existence of a dark confining sector that communicates with the

visible sector via a heavy /' portal: dark quarks
| |
LD—-Z, (5|Jq@v“q7; - gqu IDaY"qDa)

respective effective coupling constants

* For our purposes here, we d

e consider Z’ couplings to the d-quarks only,
though other SM particles are also possible;

e give Z' a mass without specifying its source; g

* will not worry about such issues as anomaly
cancellation and Z — Z’ mixing.

Courtesy of Hugues Beauchesne

» The LHC signature is a pair of dark jets with invariant mass consistent with m,..
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Dark Sector Parameter Choices

 The Z' mass is fixed at 5.5 TeV, and its width is fixed at 10 GeV.
w nvariant mass of the two leading jets being around 5.2 TeV (with some
constituents falling outside the reconstructed jets)

» The dark confining scale A, € {1, 5, 10, 20, 30, 40, 50} GeV.

 Dark vector p and pseudoscalar 7, masses and two (prompt) decay scenarios:

m,2 Albouy et al 2022
i) \/5.76 +1.5—22
AD

. Indirect Decay (ID): p, — #,7y, followed by 7, — dd for mﬂD/AD = 1.0

. Direct Decay (DD): p;,, 7, — dd for m, IAp = 1.8

» JTotally 14 “models” from different combinations of the above parameters.
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Dijet Invariant Mass Distributions

ID; Ap = 10 GeV
X103 M;; histogram
i peak usually not | signal SR: 5F8n3| region |
1.6- i so prominent background SB: side-band region
14- i | i m two mixed samples (M,
. SB SR A and M,) with different
pl.2 i i signal/background fractions
c I ]
£0.8 i i
- Madgraph 2.7.3 with -206 i i
PDF = NN23L0O1 | i i
- Pythia 8.307 with 0.4- i i Signal and background
default settings 09- i | events are assumed to be
- Delphes 3.4.2 with i i the same in both SR and
default CMS card and jet 0- 8400 4500 5000 500 6000 SB, which should !ae vglld
radius R = 0.8 M; [GeV] to a good approximation.

Figure 1. Dijet invariant mass distributions for the indirect decaying scenario with Ap = 10 GeV and
for the SM background. Distributions are normalized to unity. Both signal and background satisfy
the selection criteria of table 1(b) except for the SR or SB conditions.
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Jet Images Before/After Preprocessing
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Average jet image
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CNN + Dense Layers

» Prepare each jet image in three resolutions: 25 X 25, 50 X 50, 75 x 75.

* Use the images of the two leading jets as input data.

» Pass each image through a common CNN*, and each returns a score € [0, 1].

* Take the product of these two scores as the output of the full NN.

* The convolutional part of the NN is referred to as the feature extractor, and its

weights and biases are collectively labeled as ©.
w t0 be transferred later

» The weights and biases of the dense layers are collectively labeled as 6.
w10 be fine-tuned later

22



40

351

W
o

N
o)

-
0}

Significance after NN cut
N
o

=
o

Results of Regular CWolLa

try different background efficiencies
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- Below the learning thresholds, the NN fails to learn from data
because it cuts background and signal indiscriminately, resulting
in a significance even worse than without employing the NN.

- Increasing resolution tends to shift the thresholds higher
because more parameters are to be learned inside the NN.




Transfer Learning



Introduction to Transfer Learning

* The phrase “transfer learning (TL)” comes from psychology.
w3 |learner new to a fresh topic (e.g., playing violin or riding a motorcycle)
typically has a higher learning threshold, while a learner experienced In related
topics, even if different, (e.g., playing piano or riding a bicycle) usually has less
difficulty in quickly picking it up

 As an ML technique, TL reuses a pre-trained model developed for one task as
the starting point of a new model for a new task.
m transferring knowledge or experience extracted in the pre-trained model for a
source task/domain to a new model for a target task/domain
- Weights from the pre-trained model used to initialize those of the new model

 TL would only be successful when the features learned from the first model
trained on its task can be generalized and transferred to the second task.
m dataset in the second training should be sufficiently similar to those in the first

training
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Pre-training and Fine-tuning
* Pre-training:

* A neural network would first be trained on a larger dataset (source data) based
upon simulations, which are only required to be sufficiently realistic but not
necessarily faithful, to either learn certain concepts or become a more efficient
learner.

* Fine-tuning:

* The pre-trained model is subsequently trained on a new and possibly smaller
dataset (target data), such as the actual data.

26



Transfer Learning by Pre-training and Fine-tuning

» Step 1: The NN is first trained to distinguish a sample of pure background from a
pure combination of different signals, which includes all the models mentioned

before (ID and DD, different values of A ), except the benchmark on which the

model will be tested.

 pre-training on a large set of simulations as the source data

w 200k S and 200k B events in the SR for training
+ 50k S and 50k B events for validation

w training both ® (from convolutional layers) and @ (from dense layers)

Layers of CNN
subnetwork

(convolutional 2D layer: 64 filters with 5 x 5 kernel size) 9
maxpooling layer: 2 x 2 pool size

convolutional 2D layer: 128 filters with 3 x 3 kernel size
maxpooling layer: 2 x 2 pool size

convolutional 2D layer: 128 filters with 3 x 3 kernel size

flatten layer s cccccc s s s s s cm s s s e -—--——--
(dense layer: 128 units) x 3

dense layer (output): 1 unit
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Transfer Learning by Pre-training and Fine-tuning

» Step 2: The NN is then trained to distinguish the mixed samples (i.e., the SR and
SB regions) using the actual data of the benchmark signal (of the true model) plus
the SM background.

w fine-tuning on the actual data as target data

w freezing © in the convolutional layers and reinitializing and training € in the

dense layers
- fixing the feature extraction part while training the classification part

(convolutional 2D layer: 64 filters with 5 x 5 kernel size) 9
maxpooling layer: 2 x 2 pool size

convolutional 2D layer: 128 filters with 3 x 3 kernel size

Layers of CNN | maxpooling layer: 2 x 2 pool size @
subnetwork convolutional 2D layer: 128 filters with 3 x 3 kernel size
flatten layer = c ccceccccccccccccsc e s s e e et - - -
(dense layer: 128 units) x 3 H

dense layer (output): 1 unit
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Transfer Learning vs Regular CWolLa

ID; Ay = 10 GeV
701 —1— TL-£,=10% ID for 25x25 res. 701 —— TL-£,=10% ID for 50x50 res.
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lower learning

thresholds for TL The amount of signal necessary to claim a 50 discovery can be

reduced by a factor of a few, which is due to the fact that the
NN can better keep the signals.

- Fluctuations in the significance are reduced, due to a smaller
amount of trainable parameters and more successful learning.




Summary

 Weak supervision techniques (CWola) have the advantages of being able to
train on real data and of exploiting distinctive signal properties.
w jdeal tools for anomaly searches
w fail when signals are limited

* We propose to use the Transfer Learning approach.
* First, train an NN on simulations for pre-training.
* Then, train the NN on real data, where signals may be scarce.
* Use scaling and shifting parameters to obtain a better learner.

* TL can drastically improve the performance of CWolLa searches, particularly in
the low-significance region, and the amount of signal required for discovery can
be reduced by a factor of a few (because of better identification of signals).

 Meta Transfer Learning can only slightly improve the performance.
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Thank You!



