Vacuum Stability of Orbifold Gauge Breaking in 5D

Application to asymptotic GUTs

Wanda Isnard

Institut de Physique des 2 Infinis (IP2I), Lyon University

Based on 2409.16137 [hep-ph]

Wanda Isnard (IP2I)

Supervisors and Collaborators

Giacomo Cacciapaglia Paris, France

Aldo Deandrea Lyon, France

Anca Preda Lund, Sweden

Roman Pasechnik Lund, Sweden

Alan Cornell Johannesburg, South Africa

Zhi Wei Wang Chengdu, China

Motivation: Asymptotic Unification

- ► The Standard Model relies on local gauge symmetries: $SU(3)_c \times SU(2)_L \times U(1)_Y$
- At $\Lambda_{GUT} \sim 10^{16}$ GeV, the gauge couplings meet: enlarge gauge structure (SU(5), SO(10)...)
- Traditional GUTs have limitations (proton decay, doublet-triplet splitting, Landau poles...)
- New paradigm: No exact unification, gauge couplings tend to the same UV fixed point

▶ Need power law running of the couplings → introduce 1 extra-dimension

Wanda Isnard (IP2I)

- I. Introduction to 5D Orbifolds
- II. Gauge-Higgs Unification (GHU)
- III. Orbifold Stability
- IV. Example: SU(6)

I. Introduction to 5D Orbifolds

Adding 1 extra dimension

Action of the parity on the fields Φ:

$$P_1: \Phi(x^{\mu}, y) \sim P_1 \Phi(x^{\mu}, -y), \qquad P_2: \Phi(x^{\mu}, y') \sim P_2 \Phi(x^{\mu}, -y')$$

- Choose diagonal basis for P_1 and P_2 : $P_{1,2} \Phi(x^{\mu}, -y) = \pm \Phi(x^{\mu}, y)$
- Classify fields according to their eigenvalues $(P_1, P_2) = (\pm, \pm)$

I. Introduction to 5D Orbifolds

Parities and Symmetry Breaking

KK Decomposition:

$$\phi(x, y) = \sum_{n=0}^{+\infty} \phi^{(n)}(x) f_n(y) \quad \text{with} \quad f_n(y) = \begin{cases} (++) & \frac{1}{\sqrt{2\pi R}} + \frac{1}{\sqrt{\pi R}} \cos\left(\frac{ny}{R}\right) \to m_n = \frac{n}{R} \\ (+-) & \frac{1}{\sqrt{\pi R}} \cos\left(\frac{(n+1/2)y}{R}\right) \to m_n = \frac{n+1/2}{R} \\ (-+) & \frac{1}{\sqrt{\pi R}} \sin\left(\frac{(n+1/2)y}{R}\right) \to m_n = \frac{n+1/2}{R} \\ (--) & \frac{1}{\sqrt{\pi R}} \sin\left(\frac{(n+1)y}{R}\right) \to m_n = \frac{n+1}{R} \end{cases}$$

- Low energy effective theory: KK towers integrated out, only zero modes coming from (++) states remain
- Each parity breaks the GUT gauge group \mathcal{G} at low energies:

$$\left. \begin{array}{c} P_1: \mathcal{G} \to \mathcal{H}_1 \\ P_2: \mathcal{G} \to \mathcal{H}_2 \end{array} \right\} (P_1, P_2): \mathcal{G} \to \mathcal{H}_1 \cap \mathcal{H}_2$$

Wanda Isnard (IP2I)

I. Introduction to 5D Orbifolds Parities for $\mathcal{G} = SU(N)$

• Most general parities (p + q + r + s = N):

$$P_{1} = \text{diag}(+1, \dots, +1, +1, \dots, +1, -1, \dots, -1, -1, \dots, -1),$$

$$P_{2} = \text{diag}(\underbrace{+1, \dots, +1}_{p}, \underbrace{-1, \dots, -1}_{q}, \underbrace{+1, \dots, +1}_{r}, \underbrace{-1, \dots, -1}_{s}),$$

• Action of the parities on A_{μ} :

$$(P_1, P_2)(A_{\mu}) = \begin{pmatrix} p & q & r & s \\ (+, +) & (+, -) & (-, +) & (-, -) \\ (+, -) & (+, +) & (-, -) & (-, +) \\ (-, +) & (-, -) & (+, +) & (+, -) \\ (-, -) & (-, +) & (+, -) & (+, +) \end{pmatrix} \begin{pmatrix} p \\ p \\ r \\ r \\ s \end{pmatrix}$$

► At low energy, only the (++) degrees of freedom remain:

 $SU(N) \rightarrow SU(p) \times SU(q) \times SU(r) \times SU(s) \times U(1)^3$

Wanda Isnard (IP2I)

II. Gauge-Higgs Unification

Potential for the gauge-scalar

- The 5D gauge field A_M decomposes as a 4D vector field A_μ and a scalar A_5
- Gauge invariance forbids tree level potential for A₅ but consider quantum corrections → Higgs mechanism, Gauge-Higgs unification
- ▶ 1-loop effective potential (Coleman Weinberg) for *I* fields:

$$V_{\text{eff}}(A_5) = \frac{1}{2} \sum_{I} (-1)^{F_I} \int \frac{d^4 p}{(2\pi)^4} \log \left(p^2 + m_I^2\right) \quad \text{with} \quad F_I = \{0, 1\}$$

$$(Quiros 1999)$$

$$P = Bulk field: m_{n,I}^2 = \frac{(n+ca)^2}{R^2} \rightarrow V_{\text{eff}}(a) = \frac{\mp 1}{32\pi^2} \frac{1}{(\pi R)^4} \mathcal{F}(ca) \quad \text{with} \quad \mathcal{F}(a) = \sum_{n=1}^{\infty} \frac{\cos(2\pi na)}{n^5}$$

$$\rightarrow \quad Finite potential$$

Wanda Isnard (IP2I)

II. Gauge-Higgs Unification

Gauge Transformation and VEV

- ▶ If A₅ develops a VEV, can use gauge transformations to cancel it
- However, gauge transformations modify the boundary conditions, can lead to different symmetry breaking patterns
- Use gauge transformation to build equivalence class of parities:

$$\mathrm{SU}(N): \quad (p,q,r,s) \sim (p-1,q+1,r+1,s-1) \sim (p+1,q-1,r-1,s+1)$$

Wanda Isnard (IP2I)

Contributions to the effective potential coming from all kind of fields:

$$V_{\text{eff}}(A_5) = V_{\text{eff}}^{\text{gauge}}(A_5) + V_{\text{eff}}^{\text{fermion}}(A_5) + V_{\text{eff}}^{\text{scalar}}(A_5)$$
(1)

- ▶ $V_{\text{eff}}^{\text{gauge}}(A_5)$ can't lead to the breaking of the gauge group $(\langle A_5 \rangle \neq 0)$ as it would make the theory inconsistent
- ► If it does, can use gauge transformation to remove the VEV → modification on the parities, different breaking patterns

Orbifold Stability

 $V_{\text{eff}}^{\text{gauge}}(A_5)$ must have its minimum $\langle A_5 \rangle = 0$

Wanda Isnard (IP2I)

12th KIAS workshop

November 22, 2024 10/16

III. Orbifold Stability

Example with SU(6)

III. Orbifold Stability

Classification of stable orbifolds

Model	Breaking pattern	Stability criteria
SU(N)	$SU(N) \rightarrow SU(A) \times SU(N-A) \times U(1)$	stable ∀ A
	$SU(N) \rightarrow SU(p) \times SU(q) \times SU(s) \times U(1)^2$	$p \ge N/2$
Sp(2 <i>N</i>)	$\operatorname{Sp}(2N) \to \operatorname{Sp}(2A) \times \operatorname{Sp}(2(N-A))$	stable ∀ A
	$\operatorname{Sp}(2N) \to \operatorname{Sp}(2p) \times \operatorname{Sp}(2q) \times \operatorname{Sp}(2s)$	$p \ge N/2$
	$\operatorname{Sp}(2N) \to \operatorname{SU}(p) \times \operatorname{SU}(q) \times \operatorname{U}(1)^2$	stable $\forall p, q$
SO(2 <i>N</i>)	$SO(2N) \rightarrow SO(2A) \times SO(2(N-A))$	stable ∀ A
	$SO(2N) \rightarrow SO(2p) \times SO(2q) \times SO(2s)$	$p \ge N/2$
	$SO(2N) \rightarrow SU(p) \times SU(q) \times U(1)^2$	stable $\forall p, q$

IV. Example: SU(6)

Choice of parities leading to a stable orbifold:

$$P_{1} = \operatorname{diag}(+1, \dots, +1, +1, \dots, +1, -1, \dots, -1),$$

$$P_{2} = \operatorname{diag}(\underbrace{+1, \dots, +1}_{p=3}, \underbrace{-1, \dots, -1}_{q=2}, \underbrace{-1, \dots, -1}_{s=1}).$$
(2)

• Orbifold breaking: $SU(6) \rightarrow SU(3) \times SU(2) \times U(1)^2$

- Gauge-Higgs: $\phi_{A_5} = (\mathbf{3}, \mathbf{1})_{-1/3, 3}$
- Fermion representations leading to SM zero modes:

$$\Psi_{15}^{(+,-)} \supset q_L + l_L^c \quad \text{and} \quad \Psi_{\overline{15}}^{(-,-)} \supset u_R + e_R + d_R^c$$
(3)

Scalar that contains the SM Higgs field:

$$\Phi_{15}^{(-,+)} \supset \phi_h \tag{4}$$

Wanda Isnard (IP2I)

12th KIAS workshop

November 22, 2024 13/16

IV. Example: SU(6)

Effective potential:

• Gauge Higgs doesn't break the gauge group, $SU(3) \times SU(2) \times U(1)^2$ preserved

IV. Example: SU(6)

• Compute mass of the gauge scalar ϕ_{A_5} :

$$m_{\phi_{A_5}}^2 = \frac{R^2}{2} \left. \frac{\partial^2}{\partial a^2} V_{\text{eff}}(a) \right|_{a=0} = \frac{3}{16} \zeta(3) \frac{1}{\pi^4 R^2} , \qquad (5)$$

Bulk gauge interactions allow leptoquark coupling with the gauge scalar:

$$\mathcal{L} \supset \overline{\Psi}_{15}^{(+,-)} i D_M \Gamma^M \Psi_{15}^{(+,-)} \supset \overline{q}_L \phi_{A_5} l_L^c \tag{6}$$

- Leptoquark searches at LHC: $m_{\phi_{A_5}} \ge 2 \text{ TeV}$
- Constraints on the compactification scale:

$$m_{KK} = \frac{1}{R} \ge 50 \text{TeV} \tag{7}$$

November 22, 2024 15/16

- aGUTs: alternative to traditional GUTs, can be realized in 5D
- Orbifolds come in handy to build realistic models
- Stable Orbifold: the Gauge-Higgs scalar has to preserve the gauge part of the theory
- Only a few scenario are compatible with the orbifold stability criteria, constrains on aGUTs theories that can be built

Thank you for your attention

Asymptotic Unification: α running

• In 5D, α carries a mass dimension, define effective t'Hooft coupling:

$$\tilde{\alpha} = \mu R \alpha$$
 (8)

1-loop 5D Beta function:

$$2\pi \frac{\mathrm{d}\tilde{\alpha}}{\mathrm{d}\ln\mu} = 2\pi\,\tilde{\alpha} - b_5\,\tilde{\alpha}^2\tag{9}$$

$$b_5 = \frac{7}{3}C(\mathcal{G}) - \frac{4}{3}\sum_f T(R_f) - \frac{1}{3}\sum_s T(R_s)$$
(10)

• UV fixed point for
$$b_5 > 0$$
:

$$\tilde{\alpha}^* = \frac{2\pi}{b_5} \tag{11}$$

Similar for Yukawa couplings, RGE given by:

$$2\pi \frac{\mathrm{d}\tilde{\alpha}_y}{\mathrm{d}\ln\mu} = 2\pi \,\tilde{\alpha}_y + c_y \,\tilde{\alpha}_y^2 - d_y \tilde{\alpha} \,\tilde{\alpha}_y \tag{12}$$

Fixed point when $d_y > 0$, $c_y > 0$ and $d_y \tilde{\alpha}^* > 2\pi$:

$$\tilde{a}_y^* = \frac{d_y \tilde{a}^* - 2\pi}{c_y} \tag{13}$$

Wanda Isnard (IP2I)

12th KIAS workshop

November 22, 2024 16/16

Asymptotic Unification: SU(6)

SU(6) Beta function:

$$b_5 = \frac{61 - 16n_g}{3} \tag{14}$$

- ▶ $b_5 > 0$ for $n_g \le 3$
- Vukawa term: $\mathcal{L} \supset -Y_u \overline{\Psi}_{\overline{15}} \Phi_{15} \Psi_{15}$
- We get the following fixed point:

$$d_y = 28, \qquad c_y = 144 \qquad \tilde{\alpha}_y = \frac{23 + 16n_g}{72(61 - 16n_g)}\pi$$
 (15)

• We can have at most $n_g \leq 3$

November 22, 2024 16/16