# Second Leptogenesis for large baryon-lepton asymmetry discrepancy

Yechan Kim KAIST

Based on JHEP 03 (2024) 003, and arXiv: 2406.19694

Collaborated with YeolLin ChoeJo, Kazuki Enomoto, and Hye-Sung Lee

*The 12th KIAS Workshop on Particle Physics and Cosmology* & 2024 Korea-France STAR workshop (Nov. 2024)

## Baryon Asymmetry of the Universe (BAU) $\eta_B \equiv \frac{n_B - n_{\bar{B}}}{n_{\gamma}} \simeq (6.14 \pm 0.25) \times 10^{-10}$ Baryon Asymmetry of the Universe (BAU)

Baryon-to-photon ratio from BBN/CMB



## Baryogenesis models:

EWBG, GUTBG, ADBG, LG, ...

#### Sakharov conditions

- 1. B violation
- 2. C and CP violations
- 3. Out-of-equilibrium

SM satisfies them, but not enough



Lepton Asymmetry of the Universe (LAU)

$$\eta_L \equiv \frac{n_L - n_{\bar{L}}}{n_{\gamma}} \simeq \frac{\pi^2 \sum_{i=e,\mu,\tau} \xi_{\nu_i}}{6\zeta(3)} \left( \frac{T_{\nu}}{T_{\gamma}} \right)^3 \simeq (7.5^{+4.5}_{-3.0}) \times 10^{-2}$$
$$\xi_{\nu_e} \equiv \frac{\mu_{\nu_e}}{T} = 0.05^{+0.03}_{-0.02}$$

reported by EMPRESS (Extremely Metal-Poor Representatives Explored by the Subaru Survey) with  ${}^{4}\mathrm{He}$  abundance observation

A. Matsumoto et al (2022)











7

#### Realization of "Second Leptogenesis" with Wave Dark Matter

#### Realization of "Second Leptogenesis" with Wave Dark Matter



#### Majorana mass term variation

 $\mathcal{L} \supset -g \; \phi \, \overline{N^c} N + h.c.$ 

## A. Dev, G. Krnjaic, P. Machado, H. Ramani (2022) Constraint on the coupling between \_\_\_\_\_ Wave DM & RHN



#### Realization of "Second Leptogenesis" with Wave Dark Matter







#### Realization of "Second Leptogenesis" with Wave Dark Matter







#### Parameter space for Second LG



#### Parameter space for Second LG



#### Boltzmann equation (density matrix form)

 $N_{N_i}, N_{lphaeta}$  : Comoving number density of  $N_i, B-L$ 



where  $z = M_{01}/T$ , i = 1, 2, 3, and  $\alpha, \beta = e, \mu, \tau$ .

 $D_i$ : Decay term

 $S_i$ : Scattering term  $\bullet$  Boltzmann suppression are includes in those terms

 $W_i$ : Washout term

 $\varepsilon_{\alpha\beta}^{(i)}$ : *CP* asymmetry

 $N_{N_i}^{\mathrm{eq}}$  : Equilibrium density

### **Decay channel alternation**

under heavy neutrino mass variation

(1) Before EWSB:  $N o \ell \Phi$ 

— — — — EWSB —

(N decay to massless lepton & Higgs doublets)

(2)  $N \to h\ell, N \to Z\nu, N \to W\ell$ (*N* decay to massive on-shell bosons)

after 
$$M(T) = m_H$$
 or  $m_{W,Z}$ 

(3)  $N \to 3\nu, N \to \nu_{\mu}\bar{\mu}e, N \to \nu_{e}\pi^{0}$  ... (*N* decay to leptons & mesons ...)

### Scattering channel $N\nu \rightarrow \ell\ell$ via Z

has resonance when M(T) is around Z boson mass



## **CP** asymmetry

: resonant LG is adopted for enough BAU in relatively small scale of M.

$$\varepsilon_{\alpha\beta}^{S(i)} = \frac{1}{16\pi(yy^{\dagger})_{ii}} \sum_{j \neq i} \left\{ i \left[ y_{i\alpha}^{*} y_{j\beta}(yy^{\dagger})_{ji} - y_{i\beta} y_{j\alpha}^{*}(yy^{\dagger})_{ij} \right] \frac{M_{j}}{M_{i}} + i \left[ y_{i\alpha}^{*} y_{j\beta}(yy^{\dagger})_{ij} - y_{i\beta} y_{j\alpha}^{*}(yy^{\dagger})_{ji} \right] \right\} \frac{(M_{j}^{2} - M_{i}^{2})M_{i}^{2}}{(M_{j}^{2} - M_{i}^{2})^{2} + M_{i}^{4}\Gamma_{j}^{2}/M_{j}^{2}}$$

$$i = 1, 2, 3, \text{ and } \alpha, \beta = e, \mu, \tau.$$
**Resonant condition**

$$|M_{j} - M_{i}| \simeq \Gamma_{j}/2$$

$$(almost degenerate mass of N's)$$

$$\varepsilon_{\alpha\beta}^{S(i)} = \frac{\Gamma_{i}}{2M_{i}\{(R^{\dagger}R)_{ii}\}^{2}} \sum_{j \neq i} \left\{ i \left[ R_{\alpha i}R_{\beta j}^{*}(R^{\dagger}R)_{ji} - R_{\beta i}^{*}R_{\alpha j}(R^{\dagger}R)_{ij} \right] \frac{(M_{j}^{2} - M_{i}^{2})M_{i}^{2}}{(M_{j}^{2} - M_{i}^{2})^{2} + M_{i}^{4}\Gamma_{j}^{2}/M_{j}^{2}}.$$

$$Active-sterile mixing matrix R_{\alpha i} = y_{\alpha i}v/(\sqrt{2}M_{i})$$

$$= \frac{\Gamma_{i}}{2M_{i}\{(yy^{\dagger})_{ii}\}^{2}} \sum_{j \neq i} \left( \frac{M_{i}}{M_{j}} \right)^{2} \left\{ i \left[ y_{\alpha i} y_{\beta j}^{*}(y^{\dagger}y)_{ji} - y_{\beta i}^{*}y_{\alpha j}(y^{\dagger}y)_{ji} \right] \frac{(M_{j}^{2} - M_{i}^{2})M_{i}^{2}}{(M_{j}^{2} - M_{i}^{2})^{2} + M_{i}^{4}\Gamma_{j}^{2}/M_{j}^{2}}.$$

$$Active-sterile mixing matrix R_{\alpha i} = y_{\alpha i}v/(\sqrt{2}M_{i})$$

$$= \frac{\Gamma_{i}}{2M_{i}\{(yy^{\dagger})_{ii}\}^{2}} \sum_{j \neq i} \left( \frac{M_{i}}{M_{j}} \right)^{2} \left\{ i \left[ y_{\alpha i} y_{\beta j}^{*}(y^{\dagger}y)_{ji} - y_{\beta i}^{*}y_{\alpha j}(y^{\dagger}y)_{ji} \right] \frac{(M_{j}^{2} - M_{i}^{2})M_{i}^{2}}{(M_{j}^{2} - M_{i}^{2})^{2} + M_{i}^{4}\Gamma_{j}^{2}/M_{j}^{2}}.$$

$$Active-sterile mixing matrix R_{\alpha i} = y_{\alpha i}v/(\sqrt{2}M_{i})$$

$$= \frac{\Gamma_{i}}{2M_{i}\{(yy^{\dagger})_{ii}\}^{2}} \sum_{j \neq i} \left( \frac{M_{i}}{M_{j}} \right)^{2} \left\{ i \left[ y_{\alpha i} y_{\beta j}^{*}(y^{\dagger}y)_{ji} - y_{\beta i}^{*}y_{\alpha j}(y^{\dagger}y)_{ji} \right] \right\} \frac{(M_{j}^{2} - M_{i}^{2})M_{i}^{2}}{(M_{j}^{2} - M_{i}^{2})^{2} + M_{i}^{4}\Gamma_{j}^{2}/M_{j}^{2}}}.$$

 $D_i$ : Decay term

### **CP** asymmetry

: resonant LG is adopted for enough BAU in relatively small scale of M.

$$\begin{split} \varepsilon_{\alpha\beta}^{S(i)} = & \frac{1}{16\pi(yy^{\dagger})_{ii}} \sum_{j\neq i} \left\{ i \left[ y_{i\alpha}^* y_{j\beta}(yy^{\dagger})_{ji} - y_{i\beta} y_{j\alpha}^*(yy^{\dagger})_{ij} \right] \frac{M_j}{M_i} \right. \\ & \left. + i \left[ y_{i\alpha}^* y_{j\beta}(yy^{\dagger})_{ij} - y_{i\beta} y_{j\alpha}^*(yy^{\dagger})_{ji} \right] \right\} \begin{bmatrix} (M_j^2 - M_i^2) M_i^2 \\ (M_j^2 - M_i^2)^2 + M_i^4 \Gamma_j^2 / M_j^2 \end{bmatrix} \\ i = 1, 2, 3, \text{ and } \alpha, \beta = e, \mu, \tau. \end{split}$$
Resonant condition

Casas-Ibarra parametrization of Yukawa matrix

$$y = \sqrt{2} \hat{M}_N^{1/2} R \hat{m}_{\nu}^{1/2} U^{\dagger} / v$$
  
$$\omega_1 = \omega_2 = 0, \ \omega_3 = 0.2 e^{i\pi/4}$$
 Complex phase in *R* (source of *CP* violation)



 $|M_i - M_i| \simeq \Gamma_i/2$ 

(almost degenerate mass of N's)

0.1



solid, dashed, small-dashed

= e,  $\mu$ ,  $\tau$  components





Photon dilution and Sphaleron factors

$$f = \frac{n_{\gamma}(t)}{n_{\gamma}(t_*)} = \frac{g_*^s(T_*)}{g_*^s(T)}$$
 Photon number increases by  
the annihilation process of th  
particles.

$$g(T_{*,1}) = 106.75 \text{ (SM)} + \frac{7}{8} \cdot 3 \cdot 2 \text{ (3N)} = 112$$
$$g(T_{*,2}) = 2 (\gamma) + \frac{7}{8} \cdot 2 \cdot 2 (e) + \frac{7}{8} \cdot 3 \cdot 2 (\nu) + \frac{7}{8} \cdot 3 \cdot 2 = 16$$
$$g(T_{\text{BBN}}) = 2 (\gamma) + \frac{7}{8} \cdot 3 \cdot 2 \cdot \left(\frac{T_{\nu}}{T_{\gamma}}\right)^3 (\nu) = \frac{43}{11}$$

$$f = 1232/43$$
 Photon dilution  
from 1st LG to BBN  
 $f' = 176/43$  Photon dilution  
from 2nd LG to BBN

$$a_{\rm sph} = \frac{8N_F + 4N_\phi}{22N_F + 13N_\phi} = 28/79$$

Sphaleron factor (with the # of fermion generations & Higgs doublets)

$$\eta_B = \frac{a_{\rm sph}}{f} N_{B-L} \simeq 6.14 \times 10^{-10} \text{ BAU}$$
$$\eta_L = \frac{1}{f'} N_{B-L} \simeq 0.85 \times 10^{-3} \text{ LAU}$$
Slightly smaller than desired value



$$\eta_B \equiv \frac{n_B - n_{\bar{B}}}{n_{\gamma}} \simeq (6.14 \pm 0.25) \times 10^{-10}$$
$$\eta_L \equiv \frac{n_L - n_{\bar{L}}}{n_{\gamma}} \simeq (7.5^{+4.5}_{-3.0}) \times 10^{-2}$$

 $n_{\gamma}$ 

19

## Summary

- The temperature-dependent mass of the heavy Majorana neutrino by using wave DM provides the second
   leptogenesis with two moments of production and decay of *N*.
- The second leptogenesis can explain the baryon-lepton asymmetry discrepancy of the universe if the sphaleron decoupling appears between 1st and 2nd LG.



"Second Leptogenesis"

## **Thank You!**