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1 Introduction
Standard model contains no scale (i.e., dimensionful) parameter except

only the Higgs mass term.
This suggests that the fundamental theory of our world may have no

scale parameter.
For instance, Salvio and Strumia (2017) proposed ‘Agravity’ theory (adi-

mentional gravity theory), whose action looks like

L = R2 +R2
µν︸ ︷︷ ︸

LPureQuad.Gravity

+ L′SM︸ ︷︷ ︸
m2|H|2omitted

+ξ|H|2R. (1)

(plus singlet scalar terms).
Such a theory is renormalizable and UV complete, and the scale of the

world would be generated by spontaneous breaking of scale invariance owing
to quadratic gravity dynamics which is asymptotically free and IR strong
around Planck scale. So it is wonderful if it could give a fundamental theory
for all the interactions.

But it contains fourth order derivative terms of gravity field, thanks to
which the theory is made renormalizable but simultaneously causes the prob-
lem of negative metric ghost. We discuss this problem in this talk.
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Fourth order derivative theories

Lee-Wick: Finite QED ’69 L = −1
4
Fµν

(
1− □

m2

)
F µν

Quadratic Gravity Theory L = m2R + αR2 + βRµνR
µν

Propagator

⟨ϕϕ⟩ =
1

k2 + k4/m2
=

1

k2
− 1

k2 +m2

massless massive (ghost)
positive metric negative metric

⇒ Finite QED becomes finite.
Quadratic Gravity becomes renormalizable and UV complete!

But, Massive Ghost =⇒ Physical Unitarity is violated



4

Lee-Wick noted:
massive ghost can ”decay” into lepton pair
Pole at one-loop : lepton-loop graph Σ(q)

q2 + q4/m2 − Σ(q) = 0 → q2 =M 2, M ∗2

M 2 = m2 + iγ2

Complex poles on the physical sheet! for ghost

Complex energy Eq =
√
q2 +M 2 ⇒ Complex Ghost
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⟨ϕϕ⟩ = 1

q2
−1
2

( 1

q2 +M 2
+

1

q2 +M ∗2

)
⟨AA⟩ ⟨φφ⟩

〈
φ†φ†

〉
M 2 = m2 + iγ2

−→ ϕ = A +
1√
2

(
φ + φ†

)

Lee-Wick and their successors claim the Physical Unitarity based mainly
on two grounds (reasoning):

1. Energy Conservation

Complex ghosts will never be produced by collisions of physical particles
possessing real energy → physical unitarity holds

2. Massive ghost is unstable

Even if the ghosts are produced, they will decay into lighter ordinary
particles and eventually disappear after sufficiently long time. → So
physical unitarity holds in any case.
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In this talk we show

These are totally wrong

and that

1. Complex ghost can actually be created by physical particle collisions with
finite probability, consistently with energy conservation.

2. The ghost has strong stability, which may be called as “Anti-instability”;
that is, the more it ‘decays’ into ordinary particles, the larger the prob-
ability it remains as itself becomes.

Strangely enough,

N. Nakanishi → Lorentz inv. broken

S. Coleman → Causality, broken

criticize, nevertheless seem to approve the reasoning of Physical Unitarity
by Energy conservation law (“in particular, because of the conservation of
the imaginary part of the energy” (Coleman)).
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Even recently, in Quadratic Gravity (or in ‘Lee-Wick standard model’),
this Lee-Wick’s complex ghost theory is revived:
Anselmi(2017,2018), Donoghue(2019, 2021),
(Grinstein, O’Connell and Wise (2008 – 2009))

If this is OK, Quadratic Gravity theory, in particular, a fascinating scale-
invariant ‘Agravity’ theory, already gives perturbatively renormalizable and
UV complete gravity theory!

→ Unfortunately, however, this is not true.
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2 Complex ghost can be created
2.1 Energy Conservation and Complex Delta Function

”What is Energy Conservation Law?”∫ ∞
−∞

e−iEtdt = 2πδ(E), E =
∑
i

Ei

where Ei: energy of i-th particle coming into a interaction vertex.
If some Ei are complex energies, we need regularization

Lint(t) → e−a
2t2Lint(t)

and take lima→0 finally.
Then, δ(E) replaced by

∆a(z) :=
1

2π

∫ ∞
−∞

dt e−a
2t2e−izt =

1

2
√
π a

e−z
2/a2 . (1)

Its a→ 0 limit defines Complex Delta function (distribution)

lim
a→0

∆a(z) =
1

2π

∫ ∞
−∞

dt e−izt =: δc(z) , (2)
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The support of this distribution is not localized at z = 0!

Consider the single ghost production in Lee’s scalar model1

ψ(p1) + ψ(p2)→ ϕ(q), by Lint =
f

2
ψ2ϕ

. Then, the invariant amplitude square (Ghost production probabolity) is
proportional to

|M|2 ∼ f 2
(

1

ωq
δc(E − ωq) +

1

ω∗q
δc(E − ω∗q)

)
ωq =

√
q2 +M 2

and E =
√
p2
1 + µ2 +

√
p2
2 + µ2 is the incident Energy (real).

So let us examine

∆a(E − ω) ∝
1

a
e−(E−ω)

2/a2 =
1

a
exp

[
−(E − Reω)2 − (Imω)2

a2

]
· eiΘ

with Θ =
2

a2
(E − Reω)Imω.

Since

(E − Reω)2 − (Imω)2 = (E − Reω + Imω)(E − Reω − Imω)
1next section
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we have

δc(E − ω) = lim
a→0

∆a(E − ω) = 0 for

{
E < Reω − Imω

Reω + Imω < E
. (3)

So, in the limit a→ 0, it has the support only in |E−Reω| ≤ Imω. On the
support, it has no definite limit; since it is divergent and rapidly oscillating.
It gives a well-defined distribution. It is as usual for the distribution.

Figure of δc(E − ω) = lima→0∆a(E − ω)

• Dirac delta δ(E − ω): ω = 1 + 0i, 1/a = 5, 20
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• Complex delta δc(E − ω): ω = 1 + 0.5i, 1/a = 4, 10
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Property of δc
For test fn ∀f (E): analytic in a rectangular strip D,∫

R

dE δc(E − ω) f (E) = f (ω) (4)

(∵)∫ ∞
−∞

dE δc(E − ω) f (E) = lim
a→0

∫ ∞
−∞

dE
1

2a
√
π
exp

[
−(E − ω)

2

a2

]
f (E)

is evaluated by deforming the contour

R ⇒ C1 +R(ω) + C2

If f (E) is analytic in the rectangular do-
mainD (surrounded by [C1+R

′+C2−R])∫
R(ω)

dE δc(E − ω)f (E) =
∫ ∞
−∞

dE ′ δ(E ′ − Reω)f (E ′ + iImω)

= f (Reω + iImω) = f (ω) . q.e.d.

But, in actual Feynman graph calculations, f (E) is meromorphic.



14

δc : Well-defined distribution?

In the actual experiment, there is a finite width σ in the incident energy:

fP 0(E) =
1√
2πσ2

exp

[
−1
2

(E − P 0

σ

)2]
Then, the ghost production probability becomes

Pφ = −Re
[
f 22π

∫ ∞
−∞

dE fP 0(E)δc(E − ω)
1

2ω

]
= −Re

[
f 2
π

ω
fP 0(ω)

]
= − f 2√

2πσ2
Re

[
π

ω
exp
[
−1
2

(ω − P 0

σ

)2]]
.

This is finite.

We conclude:
Complex Ghost is produced with a finite probability for the energy range

Reω − Imω < E < Reω + Imω.
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2.2 Lee’s Model in “Quanta”

Asymptotic field: ghost ϕ = A
′photon′

+
1√
2

(
φ + φ†

)
︸ ︷︷ ︸

=B

matter ψ

L = Lϕ + Lψ + Lint

Lϕ = −
1

2

[
(∂µA)

2 + δ2A2
]
+
1

2

[
(∂µB)2 +m2B2

]
− 1

2

[
(∂µC)

2 +m2C2
]

−γ2BC

= −1
2

[
(∂µA)

2 + δ2A2
]
+
1

2

[
∂µφ∂

µφ +M 2φ2 + ∂µφ
† ∂µφ† +M ∗2φ†

2
]
,

Lψ = −1
2
(∂µψ)

2 − 1

2
µ2ψ2

where M 2 = m2 + iγ2 and

φ =
1√
2
(B − iC) or

{
B = (φ + φ†)/

√
2

C = i(φ− φ†)/
√
2

.
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Lint(ϕ, ψ) = fψ2ϕ, fψ2ϕ2, · · · (5)

’Photon’ A and ghost φ , anti-ghostφ† interact only through Lint(ϕ, ψ)

This system is canonically quantized.

Free fields:

A(x) =

∫
d3q√

(2π)32νq

(
a(q)eiqx−iνqx

0
+ a†(q)e−iqx+iνqx

0
)
, νq =

√
q2 + δ2

ψ(x) =

∫
d3p√

(2π)32Ep

(
d(p)eipx−iEpx

0
+ d†(p)e−ipx+iνpx

0
)
, Ep =

√
p2 + µ2 .

[a(p), a†(q)] = [d(p), d†(q)] = +δ3(p− q),
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Ghost

φ(x) =

∫
d3q√

(2π)32ωq

(
α(q)eiqx−iωqx

0
+ β†(q)e−iqx+iωqx

0
)

where ωq is the complex energy

ωq =
√
q2 +M 2 =

√
q2 +m2 + iγ2 (6)

CCR

[α(p), β†(q)] = [β(p), α†(q)] = −δ3(p− q),

[α(p), α†(q)] = [β(p), β†(q)] = 0.

1-ghost states

|α(p)⟩ := α†(p) |0⟩ , |β(p)⟩ := β†(p) |0⟩

have off-diagonal innerproduct structure

⟨α(p) |α(q)⟩ = 0, ⟨β(p) |α(q)⟩ = −δ3(p− q),

⟨β(p) |β(q)⟩ = 0, ⟨α(p) |β(q)⟩ = −δ3(p− q).
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Propagator:

⟨0|Tφ(x)φ(y) |0⟩

=

∫
d3qd3p

(2π)3
√
2ωq2ωp

{
θ(x0 − y0)ei(qx−ωqx0)−i(py−ωpy0) ⟨0|α(q)β†(p) |0⟩

+ θ(y0 − x0)ei(py−ωpy0)−i(qx−ωqx0) ⟨0|α(p)β†(q) |0⟩
}

= −
∫

d3q

(2π)32ωq

{
θ(x0 − y0)eiq(x−y)−iωq(x0−y0) + θ(y0 − x0)e−iq(x−y)+iωq(x0−y0)

}
Note that the over-all minus sign imply-
ing negative norm.
This 3d expression over d3q can be
rewritten into the usual 4d form over
d4q = d3qdq0

= −
∫

d3q

(2π)3
eiq(x−y)

[∫
C

dq0

2πi

e−iq
0(x0−y0)

q2 +M 2

]
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2.3 Lee-Wick’s mistake: property of complex delta function

To compute the cross section of “single ghost ϕ + matter ψ” production

ψ(p1) + ψ(p2) → ϕ(q) + ψ(p− q)

(p1 + p2 ≡ p), they calculate the forward scattering amplitude

ψ(p1) + ψ(p2) −→
(ϕ(q)+ψ(p−q) Loop)

ψ(p1) + ψ(p2)

whose imaginary part gives the desired cross
section.

Lint =
1

3!
ψ3ϕ

ϕ = A +
1√
2
(φ + φ†)
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Lee wrote [ ϕi = (A,φ, φ†), M 2
i = (δ2,M 2,M ∗2) ]

Σ(p) = −f 2
∑
j

∫
Cj

d4q

i(2π)4

Dϕ(q)

1

q2 +M 2
j

Dψ(p−q)
1

(p− q)2 + µ2 − iε
(7)

and computed it by contour integration (k ≡ p− q) to find

=
f 2

32π2

∫
d3q

×

{
1

νqEk

(
1

p0 − ν − E + iε
− 1

p0 + ν + E − iε

)
← Aψ

− 1

2

[
1

ωqEk

(
1

p0 − ω − E
− 1

p0 + ω + E

)
← φψ

+
1

ω∗qEk

(
1

p0 − ω∗ − E
− 1

p0 + ω∗ + E

) ]}
← φ†ψ

Sum of the last two terms is real, has no imaginary part! He concluded
Ghost is not produced.

What’s wrong?
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Shocking fact!

Naive Feynman rule is incorrect.

∫
C

d4q Dψ(p− q)Dϕ(q)

̸=
∫
C

d4q

∫
R

d4k δ4c(k + q − p)Dψ(k)Dϕ(q)

The latter is the correct one.
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Starting Feynman rule is wrong. Correct one is:

−Σ(p) = f 2
∫

d3q

i(2π)4

∫
d3k δ3(k + q − p)

×
∫
C

dq0
∫
R

dk0 δc(k
0 + q0 − p0)

Dφ(q)

1

q2 +M 2

Dψ(k)

1

k2 + µ2 − iε
The usual substitution rule k0 → p0 − q0 does not apply for k0 integration!
because q0 is complex on the contour C.
So perform q0 integration first and then k0 integration∫

C

dq0 =

∫
R

dq0 +

∫
C(−ω)

dq0 +

∫
C(+ω)

dq0
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The latter two pole contributions read∫
d3q

(2πi
2ωq

)∫
R

dk0
[
δc(p

0 + ω − k0) + δc(p
0 − ω − k0)

]
1

E2
k − k0

2

When performing k0 integration, the contour R should be lifted (lowered)
by Imω for the first (second) term in order to make the argument of δc real so
that they reduces to the usual Dirac delta function. All the terms for which
the δc reduced to the usual delta function rproduce the naive Feynman rule
term.
But, on the way to lift (lower) the k0 integration contour R to R(ωq)

(R(−ωq)), we encounter the k
0 poles:

The two extra contributions are

EXTRA = −f 2
∫

d3q

i(2π)4

{
(2πi)2

2ωq 2Ek

(
δc(p

0 + ωq + Ek) + δc(p
0 − ωq − Ek)

)}
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The usual delta function terms gives the naive Feynman rule terms which
gave no imaginary part for the ghost production. The imaginary part for
the ghost production solely come from the EXTRA terms:

ImΣ(p) = f 2
−π2

(2π)4

∫
d3qRe

[
1

ωqEk

(
δc(p

0 + ωq + Ek) + δc(p
0 − ωq − Ek)

)]
This agrees with the result obtained from the direct calculation of the pro-
duction amplitude.

——

We thus have found where Lee (and Wick) made an error, and has proven
that the complex ghost is actually created by the collision of ordinary parti-
cles.
Let us next see that the produced complex ghost state is really very stable

(‘Anti-Unstable’), and exist as an asymptotic state.
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3 Complex ghost is anti-unstable
3.1 The ghost 2-point vertex function Γ

(2)
ϕ (p)

To examine the ghost (in-)stability, consider an O(N) scalar model:

L = −ϵg
1

2
(∂µϕ∂

µϕ +m2
0ϕ

2)−
N∑
i=1

1

2
(∂µψi∂

µψi + µ2ψ2
i ) +

N∑
i=1

1

2

g√
N
ϕψiψi .

ϕ : heavy (m) ghost with metric ϵg = ±1, ψ : light (µ) normal particle

In the leading order in 1/N -expansion, ϕ’s 2-point vertex Γ
(2)
ϕ (p) is given as

Γ
(2)
ϕ (p) = −ϵg (p2 +m2) + Σ(p). (7)

Here Σ(p) is the self-energy diagram in Fig.1 ( + δm2 = m2
0 − m2):

N∑

i=1

φ

ψi

φ

Figure 1: ϕ’s self-energy diagram

Σ(p) =
g2

32π2

[
ε̄ −1 + δm2 + 2− lnµ2 + f (s)

]
,

f (s) =

√
1− 4µ2

s
ln

(√
1− 4µ2/s− 1√
1− 4µ2/s + 1

)
s ≡ −p2, ε̄−1 ≡ 2

4− n
− γ + ln 4π.
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Σ(s = −p2) develops an imaginary part on the real axis for s > 4µ2:

lim
ε→+0

ImΣ(s± iε) = ±π
√
1− 4µ2

s
θ(s− 4µ2).

So the zero(s) of Γ
(2)
ϕ (s), pole(s) of propagator Dϕ(s) = i/Γ

(2)
ϕ (s), is at{

a real point s = m2 if m2 < 4µ2,

complex conjugate points s =M 2 = m2 + iγm and M ∗2 if m2 > 4µ2.

The imaginary part γm is determined by γm = −ϵg ImΣ(s = m2 + iγm)
from Eq.(1).

γm > 0 for the ghost case ϵg = −1

→

Complex ghost poles appear on the
physical sheet!
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3.2 Dispersion relation for the ϕ propagator

Consider the following contour integration

I ≡ 1

2πi

∫
C

ds
Dϕ(s)/i

s + p2
(9)

of the propagatorDϕ(s = −p2) = i

Γ
(2)
ϕ (p)

(for a general complex value of−p2)

along the closed contour on the physical sheet, C = C1 + CR + C2 + Cr,
depicted in Fig. 2. The integrand function has poles and a cut as shown there

Im s

Re s

s

4µ2

•

0

•

−p2

•

M2

•

M∗2

Cr

C2

C1

CR

Figure 2: Contour C = C1 + CR + C2 + Cr on the physical sheet.

for the ghost ϕ case ϵg = −1.
This integral can be evalu-

ated
by summing the pole residues

at s = −p2 and complex
poles s =M 2 and M ∗2,
or,
by the integral of the

discontinuity ρ(s) = Im (−Dϕ(s)/i)
from s = 4µ2 to ∞ on C1.
Equating both evaluation,
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we obtain a dispersion relation for our ϕ propagator Dϕ(−p2):

Dϕ(−p2) =
iZ

M 2 + p2
+

iZ∗

M ∗2 + p2
+

1

iπ

∫ ∞
4µ2

ds
ρ(s)

s + p2
. (10)

This dispersion relation takes the form of Källen-Lehman’s spectral repre-
sentation, so that we can understand the meaning of each term:
· 3rd integral term: Contrib. to Im part from 2-body continuum spectrum

state of physical two ψiparticles.
· 1st and 2nd pole terms: Contrib. of complex ghost 1-particle states with

complex squared masses s =M 2 and s =M ∗2.
Note that the poles appearing on the physical sheet mean the existence

of the corresponding one-particle asymptotic states in the complete set
of states of the theory.
Indeed, this can be easily understood if we consider the same propagator

Dϕ(−p2) for the other parameter value cases in the present system.
Consider, first, the case m2 < 4µ2 for ordinary stable particle (ϵg = +1) :

This case, Dϕ(s) has only a single particle pole at s = m2 on the real axis,
so that the above dispersion relation (10) reads

Dϕ(−p2) =
ϵg
i

Z

m2 + p2
+

1

iπ

∫ ∞
4µ2

ds
ρ(s)

s + p2
for m2 < 4µ2 case .
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This is the usual spectral representation for stable particle; the 1-particle
pole term implied the existence of an asymptotic field (□−m2)ϕas(x) = 0.

Next, the case m2 > 4µ2 with positive metric ϵg = +1：This case, the
complex pole M 2 and its conjugate pole M ∗2 move into the second sheet
and disappear from the physical sheet, as seen above. So these poles do not
exist inside the integration contour C in Fig. 2, so that the above dispersion
relation (10) is now replaced by

Dϕ(−p2) = +
1

iπ

∫ ∞
4µ2

ds
ρ(s)

s + p2
(Unstable particle) .

This has no 1-particle pole term, which agrees with the fact that there is
no asymptotic fields corresponding to an unstable particle. This is because,
however small the decay probability is, any unstable particle decays out into
lighter stable particles and eventually disappears in sufficiently long time.
The present dispersion relation (10) for the ghost field ϕ with negative met-

ric ϵg = −1 implies that the Heisenberg field ϕ has the complex conjugate
pair of asymptotic ghost fields, φ and φ†, (□−M 2)φ(x) = 0:

ϕ(x) −−−−−→
x0→∞

Z1/2φ(x) + Z∗1/2φ†(x),
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3.3 Spectral representation for ⟨0|[ϕ(x), ϕ(0)]|0⟩
Dispersion relation for the propagator (10) is rewritten via Fourier-trf into

the spectral representation for the propagator ⟨0|Tϕ(x)ϕ(0) |0⟩ in x-space:

⟨0|Tϕ(x)ϕ(0) |0⟩ = −Z∆F(x;M
2)− Z∗∆F(x;M

∗2) +

∫ ∞
4µ2

ds
ρ(s)

π
∆F(x; s) ,

where ∆F(x;m
2) denotes the Feynman propagator function for the (positive

metric) free field with mass squared m2 including also the complex m2 case.
Any type of 2-point function other than propagator also, can be written

by using the same spectral function. So we can immediately write down the
VEV of the ϕ commutator also as

⟨0| [ϕ(x), ϕ(0)] |0⟩ = −Zi∆(x;M 2)− Z∗i∆(x;M ∗2) +

∫ ∞
4µ2

ds
ρ(s)

π
i∆(x; s) .

in terms of the invariant commutator function i∆(x;m2) = [ψ(x), ψ(0)] for
the positive metric free field ψ with (generally complex) mass squared m2.

This eq, gives an important relation which we want. Take a time derivative
∂/∂x0 and set x0 = 0 on both sides, Then, the LHS is reduced to the
equal time commutator between the Heisenberg field operator ϕ(0) and its
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conjugate momentum operator π(x) ≡ ∂L/∂ϕ̇(x) = ϵg ϕ̇(x) at x
0 = 0:

LHS = ⟨0| [ϵg π(x, 0), ϕ(0)] |0⟩ = −iϵg δ3(x) .
The RHS can also be evaluated by using free field CCR i∆̇(x, 0;m2) =
−iδ3(x). Since both sides ∝ −iϵg δ3(x), the coefficients leads to

−1 = −(Z + Z∗) +

∫ ∞
4µ2

ds
ρ(s)

π
for ghost field ϵg = −1 case. (11)

If we apply the same procedure to to the dispersion relations for ordinary
stable and unstable particle cases, respectively, we obtain

+1 = Z +

∫ ∞
4µ2

ds
ρ(s)

π
for stable particle case with ϵg = +1, (12)

+1 =

∫ ∞
4µ2

ds
ρ(s)

π
for unstable particle case. (13)

Eq. (12) for stable particle has the usual interpretation:
· Z: probability ϕ(x) |0⟩ contains the one-particle state

∣∣p;m2
〉
,

·
∫∞
4µ2 ds ρ(s)/π =: c > 0: probability ϕ(x) |0⟩ contains continuum many

particle states. So, the Eq. (12) says that the total probability that ϕ(x) |0⟩
contains one-particle and many-particle states adds up to 1.
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Similarly, Eq. (13) for unstable particle case shows that ϕ(x) |0⟩ contains
no one-particle asymptotic state and the total probability is saturated only
by the contribution c =

∫∞
4µ2 ds ρ(s)/π from the continuum many particle

states consisting of lighter particles produced by decays.

Finally, the Eq. (11) for the ghost field case is interpreted as follows:
· Z + Z∗ represents the probability ϕ(x) |0⟩ contains the complex ghost
asymptotic 1-particle state, the superposition of φ(x) |0⟩ and φ†(x) |0⟩.
· The state ϕ(x) |0⟩ also contains continuum many particle states which
appear as the ‘decay products’ of the original ghost ϕ. This probability
of the ‘decay products’ state,

∫∞
4µ2 ds ρ(s)/π = c > 0, is the same as the

previous two cases and hence positive. Then, the relation (11) tells us a very
interesting but counter-intuitive relation:

Z + Z∗ = 1 + c . (14)

Surprisingly, the probability Z+Z∗ that the ghost remains as itself becomes
even larger as c increases; that is, the more the ghost ‘decays’ into lighter
ordinary particles, the larger the probability the ghost remains as itself
becomes.
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Coleman once suggested to call the complex ghosts “antistable particles”
noticing the radical difference of situations from the ordinary unstable par-
ticles. But it would be more appropriate to call this strange property of
ghost “Anti-Instability”.
But, actually, this Anti-Instability property of ghost was already pointed

out in our first paper by a brief argument based on the norm conservation
of the total S-matrix: There we essentially wrote as

Since Hamiltonian is hermitian, the norm is conserved. When the parent
particle is a complex ghost, initial state is of negative norm, so that it cannot
decay into the sum of states which consist of positive norm particles alone.
Negative norm particles have to remain among those final states.



34

4 Conclusion

• Complex ghosts are created by the collisions of ordinary (positive metric,
real energy) particles with finite (non-zero) probability consistently with the
energy-momentum conservation law.

• Complex ghost is NOT an unstable particle, but rather an anti-unstable
particle which cannot totally decay into ordinary lighter particles.

• Once the complex ghosts are created, therefore, they will not disap-
pear by themselves. Since they carry negative norms, the physical S-matrix
unitarity (i.e., unitarity of physical particles alone) is violated.

• Complex ghost theory is mathematically a consistent theory.
But it is an inconsistent theory as the physical theory.

• In the low energy region with energy E below Lower threshold,
E < Re

√
M 2−Im

√
M 2, the theory is a good effective quantum field the-
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ory satisfying unitarity and renormalizablity, since no ghosts are produced.

To save the fascinating ‘Agravity’ theory, or other quadratic gravity the-
ories, as a renormalizable UV complete theory, we need more drastic new
ideas.
– Since the coupling constants related with Quadratic Curvature terms are

asymptotically free, we need totally novel non-perturbative understanding
of their dynamics in the energy region around E ∼MPlanck.
– Below the Planck energy E < MPlanck, Einstein(-Hilbert) theory will

emerge as the low-energy effective theory, so that the metric field gµν there
may be different from that appearing in the Quadratic gravity theory.
– We should probably discard ‘vierbein postulate’, (expressing the spin-

connection in terms of vierbein)

D[µeν]
a = 0 → ωµab = eνa∂[µeν]b − eνb∂[µeν]a − eρaeσb ecµ∂[ρeσ]c

and treat vierbein eaµ and spin-connection as quite independent variables.
Then, the quadratic curvature terms are no longer higher derivative terms
but merely second order derivative terms in the spin-connection variable
ωµ

ab. The theory is a Yang-Mills theory of the Local Lorentz group SO(3, 1) =
SL(2;C).
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– Although the group is non-compact, the negative metric component of
the ωµ

ab gauge field would be harmless if it is confined just as the QCD
gluons. After spontaneous breaking of scale invariance, the usual Einstein-
Hilbart gravity will appear as a low energy effective theory which is valid
below the Planck scale.
– But spin should not be confined! How is it possible?


