Part 1: Regurgitated Dark Matter

Philip Lu Korea Institute for Advanced Study 2024 Korea-France STAR Workshop November 21, 2024

Phys.Rev.D 110 (2024) 5, L051702arXiv:2309.05703T. Kim, **P. Lu**, D. Marfatia, V. Takhistov

Weakly Interacting Massive Particles

WIMP Miracle

Can be produced by thermal freeze-out

Required cross-sections in the range of weak interactions

Lightest supersymmetric particle

Focus of large direct detection experiments

Not found

Primordial Black Holes

Macroscopic dark matter candidate

Can comprise all of dark matter within the "mass window"

Natural consequence of inflation*

Formation scenarios usually result in gravitational waves (NanoGRAV?)

Emits Hawking Radiation

space.com

Timeline

Dark Sector Model

Simple model with (asymmetric) fermion and scalar

$$\mathcal{L} = \mathcal{L}_{ ext{SM}} - rac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - rac{\mu^2}{2} \phi^2 - rac{\kappa}{2} \phi^2 (H^{\dagger}H) - V(\phi) + ar{\chi} i \partial \!\!\!/ \chi - y_{\chi} \phi ar{\chi} \chi$$

Higgs portal and Yukawa terms

Particle trapping:

$$M_{\chi}^* \equiv y_{\chi} v_* \gg T_*, \quad M_{\phi}^* \equiv \left(\frac{\partial^2 V_{\text{eff}}(\phi, T_*)}{\partial \phi^2}\right)^{1/2} \Big|_{\phi = v_*} \gg T_*$$

Initial Collapse

True bubble walls expand

Trapped particles confined to compact remnants

SM Portal Cooling

Thermal balls support by thermal pressure against vacuum pressure Trapped ϕ particles annihilate through Higgs coupling

$$\dot{C} = n^2 \langle 2E \rangle \sigma v_{\rm rel} = \frac{0.051 \kappa^2 T_1^7 m_f^2}{m_H^4}$$

Cooling leads to thermal ball ->Fermi ball transition (Fermi Pressure)

$$T_{\rm SM}^{\rm tr} \simeq 10^4 \,\,{\rm GeV}\,\kappa \left(\frac{T_1}{1\,\,{\rm GeV}}\right)^{3/2}$$

Cooling should end before BBN, lower bound on coupling

PBH Formation

Yukawa force becomes long range: $y_{\chi}\phi\bar{\chi}\chi$

$$L_{\phi}(T_D) = m_{\phi}(T_D)^{-1} = \frac{1}{\sqrt{\mu^2 + cT_D^2}}$$

Rapid collapse to PBH

Light average mass:

$$\overline{M}_{\rm PBH} \sim 7 \times 10^6 \ g \ \left(\frac{\beta/H}{10^4}\right)^{-3} \left(\frac{\eta_{\chi}}{10^{-15}}\right) \left(\frac{T_*}{1 \ {\rm GeV}}\right)^{-2}$$

Evaporating PBH

Recent interest on very light PBH

Hawking Temperature

$$T_{\rm PBH} = 1.06 \times 10^5 \,\,{\rm GeV} \left(\frac{M_{\rm PBH}}{10^8 {
m g}}\right)^{-1}$$

Hawking evaporation emits particles based on mass-> DM emission

What if DM produced PBH that produced DM?

Getty Images

PBH Domination

PBH density grows relative to plasma density

PBH domination before evaporation if

$$\beta\gtrsim 10^{-13}\left(\frac{M_{\rm PBH}}{10^8g}\right)^{-1}$$

Reheating temperature

$$T_{\rm RH} = 50.5 {\rm MeV} \left(\frac{10^8 {\rm g}}{M_{\rm PBH}}\right)^{3/2}$$

Dark Matter Density

Initial abundance: $\frac{\rho}{\rho}$

 $rac{
ho_{\phi,\chi}}{
ho_{
m SM}} = rac{g_{H,(\phi,\chi)}}{g_{
m H,SM}}$

Non-relativistic emission:

Particles heavier than Hawking temperature

Suppressed by particle emission threshold

$$\frac{M_{\rm PBH}^{\rm em}}{M_{\rm PBH}} = \epsilon_{\rm em} \left(\frac{M_{\rm PBH}}{10^8 g}\right)^{-1} \left(\frac{m_{(\phi,\chi)}}{10^5 \text{ GeV}}\right)^{-1}$$

Relativistic emission:

Particles lighter than Hawking temperature

Suppressed by redshift after emission

$$v \sim \frac{m_{\rm (}\phi,\chi)}{\epsilon T_{\rm PBH}}$$

WIMP Regurgitation

Conclusions

- 1. First order phase transition can trap particles and form compact remnants, which eventually collapse into PBH.
- 2. The three endpoints of this process, thermal balls, Fermi balls, and PBH can all be dark matter candidates.
- 3. Regurgitated dark matter is a novel production mechanism in which dark matter particles form PBH which reemit dark matter particles.
- 4. Due to the disassociation of interaction strength and abundance, WIMP parameter space is increased.

H. G. Choi, S. Jung, **P. Lu**, V. Takhistov *Phys.Rev.Lett.* 133 (2024) 10, 101002

GW Halo Lensing Constraint

• Distinguishability of "dressed" and "bare" lens can imply the existence of PBH

- Binary black hole mergers produce reliable "chirp" signals
- Intervening PBH lens and amplify GW signals
- Dark halos around PBH improve constraints by ~O(10)
- Frequency scan can probe structure of dark halo

Part 2: Q-balls in the Presence of Attractive Force

Philip Lu Korea Institute for Advanced Study 2024 Korea-France STAR Workshop November 21, 2024

JHEP 08 (2024) 242 arXiv:2407.11115 Y. Hamada, K. Kawana, T. Kim, **P. Lu**

Q-Ball Models

Friedberg-Lee-Sirlin

- One complex + one real scalar
- Symmetric vacuum inside
- "Non-topological Solitons"
 - Both
 - Conserved charge Q
 - Evades Derrick's Theorem with time-dependent phase
 - Stable macroscopic objects

Coleman

- One complex scalar
- "Q-ball"

FLS Lagrangian w/ Yukawa Force

Complex scalar Φ with U(1) symmetry

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \chi)^2 + |\partial_{\mu} \Phi|^2 - V(\chi, \Phi)$$

Quartic interaction promotes stability, new Yukawa interaction destabilizes $V(\chi,\Phi) = U(\chi) + \Lambda \chi |\Phi|^2 + \kappa \chi^2 |\Phi|^2$

Real scalar X potential induces symmetry breaking

$$U(\chi) = \frac{\lambda}{4!}(\chi^2 - v^2)^2$$

Equations of Motion

X EOM enforces constant value inside Q-ball

$$\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{d\chi}{dr}\right) - \frac{dU(\chi)}{d\chi} - \frac{\Lambda}{2}\phi^2 - \kappa\phi^2\chi = 0$$

 Φ sinc function satisfies Helmholtz equation

$$\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{d\phi}{dr}\right) + \omega^2\phi - (\Lambda\chi + \kappa\chi^2)\phi = 0$$

Conserved charge ensures stability w.r.t. decays

$$Q = 4\pi\omega\int_0^\infty r^2 dr\,\phi^2(r)$$

Approximate Solution

$$\chi(r) \simeq \begin{cases} -\frac{\Lambda}{2\kappa} & r < R_{\Lambda} \\ -\frac{\Lambda}{2\kappa} + \left(v + \frac{\Lambda}{2\kappa}\right) \left[1 - e^{-m_{\chi}(r - R_{\Lambda})}\right] & r > R_{\Lambda} \end{cases}, \qquad \phi(r) \simeq \begin{cases} \phi_0 \frac{\sin \omega_{\Lambda} r}{\omega_{\Lambda} r} & r < R_{\Lambda} \\ 0 & r > R_{\Lambda} \end{cases}$$

Effective radius:

$$rac{\pi}{R_\Lambda}=\omega_\Lambda=\sqrt{\omega^2+\Lambda^2/4\kappa}$$

Solving for $\boldsymbol{\omega}$

Total energy of the Q-ball:

$$E = \omega Q + \frac{\lambda \pi^4}{18\omega_{\Lambda}^3} \left(\frac{\Lambda^2}{4\kappa^2} - v^2\right)^2 + \frac{2\pi^3 v^2 m_{\chi}}{\omega_{\Lambda}^2} a_1 + \frac{4\pi^2 v^2}{\omega_{\Lambda}} a_2 + \frac{4\pi v^2}{m_{\chi}} a_3$$

Thin wall approximation: drop surface terms

$$\frac{dE}{d\omega} = Q - \frac{\lambda \pi^4 \omega}{6\left(\omega^2 + \frac{\Lambda^2}{4\kappa}\right)^{5/2}} \left(\frac{\Lambda^2}{4\kappa^2} - v^2\right)^2 = 0$$

Thick wall approximation: drop volume term

$$\frac{dE}{d\omega} = Q - \frac{\lambda \pi^4 \omega}{6\omega_{\Lambda}^5} \left(\frac{\Lambda^2}{4\kappa^2} - v^2\right)^2 - \frac{4\pi^3 v^2 m_{\chi} \omega}{\omega_{\Lambda}^4} a_1 - \frac{4\pi^2 v^2 \omega}{\omega_{\Lambda}^3} a_2 = 0$$

Maximum Stable Charge

Conclusions

- 1. The inclusion of the Yukawa interaction term alters the Q-ball profile
- 2. Even at low interaction strengths, a meaningful upper bound on the charge is imposed
- 3. Unstable Q-balls may not collapse into PBHs, as an attractive interaction would suggest, but could paradoxically expand and grow.