

Value Gradient Sampling

KIAS CAINS Fall Workshop 2024-11-08 Sangwoong Yoon

Generative Modeling

Reinforcement Learning

 $\min_{\pi\in\Pi} D(\pi,p)$

2

Problem: Sampling from Unnormalized Density

$$q(x) = \frac{1}{Z} e^{-E(x)/\tau}$$

- Energy E(x)
- Temperature τ
- Normalization constant \boldsymbol{Z}

Task: Given E(x) (and τ), draw $x \sim q(x)$

Markov Chain Monte Carlo (MCMC)

Langevin Monte Carlo (LMC) Sampling

 $t = 0, \dots, T \qquad \mathbf{x}_0 \sim \text{Noise distribution}$ $\mathbf{x}_{t+1} = \mathbf{x}_t - \frac{\lambda_1}{2} \nabla_{\mathbf{x}} E(\mathbf{x}_t) + \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(0, \lambda_2) \qquad \begin{array}{c} \mathbf{x}_0 \\ \text{Input Space} \end{array}$

- \mathbf{x}_T : A sample from $q_{\theta}(\mathbf{x})$
- λ_1, λ_2 : Step size and noise strength.

Parametric Sampler

 $\min_{\phi} KL(\pi_{\phi}||q)$

- Faster (at the expense of training time)
- Adaptive Parameter ϕ is optimized for given q(x)
- Re-usable

Sampling is MaxEnt RL

$$\min_{\pi} KL(\pi(x)||q(x))$$

=
$$\min_{\pi} \mathbb{E}_{\pi}[-\log q(x)] - \mathcal{H}(\pi(x))$$

- Policy is $\pi(x)$
- Reward is $\log q(x)$ (cost is $-\log q(x) = E(x)$)
- MaxEnt regularization: $-\mathcal{H}(\pi(x))$

Langevin-like Parametric Sampler

 x_2

 x_0

$$x_{0} \sim \mathcal{N}(0, I)$$

$$x_{t+1} = a_{t}x_{t} + f_{\theta}(x_{t}, t) + \sigma_{t}\epsilon_{t}, \quad \epsilon_{t} \sim \mathcal{N}(0, I)$$

$$\pi(x_{t+1}|x_{t}) = \mathcal{N}(\mu_{t} = a_{t}x_{t} + f_{\theta}(x_{t}, t), \sigma_{t}^{2}I)$$
The last step x_{T} (= x) is taken as a sample.
A sequential decision making problem

 χ_4

7

 $x_t \in \mathbb{R}^D$

Example: Diffusion Model

$$x_0 \sim \mathcal{N}(0, I)$$

$$x_{t+1} = x_t + f_{\theta}(x_t, t) + \sigma_t \epsilon_t, \qquad \epsilon_t \sim \mathcal{N}(0, I)$$

$$f_{\theta}(x_t, t) = \sigma_t^2 \nabla_x \log p_t(x)$$

- $p_t(x)$: Diffused data distribution
- We don't have access to data points only energy.

Example: SDE-Based Samplers

Zhang and Chen. ICLR 2022 Berner, Richter, and Ullrich. TMLR 2024

• Formulated in continuous time.

X

• Requires fine-grained simulation.

Proposal: Value Gradient Sampling

$$\begin{aligned} x_0 \sim \mathcal{N}(0, I) \\ x_{t+1} &= a_t x_t - \frac{\sigma_t^2}{\tau} \nabla_{x_{t+1}} V_{t+1} \left(x_{t+1} \right) + \sigma_t \epsilon_t \end{aligned}$$

Target Density

$$V(x, t = 0)$$
 $V(x, t = 1)$
 $V(x, t = 2)$
 $V(x, t = 3)$
 $V(x, t = 4)$
 $E(x)$
 $(= V(x, t = 5))$

 Image: Comparison of the second second

Value Function $V_t(x)$

"How good is the current state?"

Value Function
$$V_t(x)$$

Expected reward/cost from the current state x_t $V(x_t) = \mathbb{E}_{\pi(x_{t+1:T}|x_t)} \left[\sum_{t'=t+1}^{T} R(x_{t'}) \right]$

Optimal action:

 $\pi^*(x_{t+1}|x_t) = \operatorname{argmax}_{\pi} \mathbb{E}_{\pi(x_{t+1}|x_t)}[V(x_{t+1})]$

Difficulty

$$\min_{\pi} KL(\pi(x)||q(x))$$

=
$$\min_{\pi} \mathbb{E}_{\pi} \left[-\log q(x) + \log \pi(x) \right]$$

- 1. We can not evaluate $\log \pi(x)$ analytically.
- 2. Backprop through time is difficult.

Data Processing Inequality

 $KL(P(X)||Q(X)) \le KL(P(X, Y)||Q(X, Y))$

 $\min_{\pi} KL(\pi(x_T)||q(x_T))$

Auxiliary distribution

 $KL(\pi(x_T)||q(x_T)) \le KL(\pi(x_{0:T})||q(x_T)\tilde{q}(x_{0:T-1}|x_T))$

Minimize THIS

Choice of Auxiliary Distribution $\tilde{q}(x_{0:T-1}|x_T)$

Let each $\tilde{q}(x_t | x_{t+1})$ be Gaussian:

$$\tilde{q}(x_{0:T-1}|x_T) = \prod_{t=0}^{T-1} \tilde{q}(x_t|x_{t+1})$$

$$\tilde{q}(x_t|x_{t+1}) = \mathcal{N}(x_{t+1}, s_t^2 I)$$

Optimal Control Formulation

$$\min_{\pi} KL(\pi(x_{0:T}) || q(x_T) \tilde{q}(x_{0:T-1} | x_T))$$

becomes an optimal control problem:

$$\min_{\pi} \mathbb{E}_{\pi} \left[E(x_{T}) + \tau \sum_{t=0}^{T-1} \log \pi(x_{t+1} | x_{t}) + \sum_{t=0}^{T-1} \frac{\tau}{2s_{t}^{2}} \|x_{t+1} - x_{t}\|^{2} \right]$$

Terminal Cost Running Cost

Value Function
$$V_t(x_t)$$

Expected future return at (x_t, t) Running Cost

$$V_t(x_t) = \min_{\pi} \mathbb{E}_{\pi} \left[E(x_T) + \tau \sum_{t'=t}^{T-1} \log \pi(x_{t'+1}|x_{t'}) + \sum_{t'=t}^{T-1} \frac{\tau}{2s_{t'}^2} \|x_{t'+1} - x_{t'}\|^2 \right]$$

$V_t(x_t)$ is parametrized as a neural network.

Value Function Learning

Temporal Difference Learning $\min_{V_t} \mathbb{E}_{\substack{x_t, x_{t+1} \sim \pi}} \left[\left(V_{t+1}(x_{t+1}) + \tau R(x_t, x_{t+1}) - V_t(x_t) \right)^2 \right]$

Running cost

$$R(x_t, x_{t+1}) = \log \pi(x_{t'+1} | x_{t'}) + \frac{1}{2s_{t'}^2} \|x_{t'+1} - x_{t'}\|^2$$

(Approximate) Optimal Policy

$$\begin{aligned} \pi(x_{t+1}|x_t) &= \mathcal{N}(x_t + \mu_t, \sigma_t^2 I) \\ \min_{\pi(x_{t+1}|x_t)} \mathbb{E}_{x_t, x_{t+1} \sim \pi}[V_{t+1}(x_{t+1}) + R(x_t, x_{t+1})] \end{aligned}$$

(Under some assumptions)

$$\mu_{t} = -\frac{s_{t}^{2}}{\tau} \nabla_{x_{t+1}} V_{t+1} (x_{t+1})$$
$$\sigma_{t}^{2} = s_{t}^{2}$$

Value Functions

Samples

Application: Training Energy-Based Model

Maximum Likelihood Training of EBM

 $\nabla_{\theta} \log p_{\theta}(\mathbf{x}) = -\nabla_{\theta} E_{\theta}(\mathbf{x}) + \mathbb{E}_{\mathbf{x}^{-} \sim p_{\theta}(\mathbf{x})} [\nabla_{\theta} E_{\theta}(\mathbf{x}^{-})]$ (\mathbf{x}^{-}) $(\mathbf{x}^{-$

Anomaly Detection

Feature map 14x14 272D

Model	DET	LOC
DRAEM [56]	88.1	87.2
MPDR [57]	96.0	96.7
UniAD [58]	$96.5{\scriptstyle\pm0.08}$	$96.8{\scriptstyle\pm0.02}$
EBM-VGS	97.0 ±0.11	97.1 ± 0.02

• E(x) is used as anomaly score

Maximum Entropy Inverse Reinforcement Learning of Diffusion Models with Energy-Based Models

NeurIPS 2024 Oral Presentation

Sangwoong Yoon

KIAS

Himchan Hwang

Seoul National Univ.

Dohyun Kwon

Univ. of Seoul KIAS

Yung-Kyun Noh

Hanyang Univ. KIAS

Frank C. Park

Seoul National Univ. Saige Research

Generative Modeling is Imitation Learning

Generative Modeling is Imitation Learning

Data Generating Process ↔ Expert

Data ↔ Demonstration

Generation ↔ **Action**

 $\log p(x) \leftrightarrow \text{Reward}$

Fine-tuning Diffusion Models for Small T

Sample quality deteriorates significantly when fewer steps are used.

Diffusion model trained on T=1000 & generating on T=10

 $\pi(x)$: Diffusion Model p(x): Data, q(x): EBM

Generalized Contrastive Divergence

Inspired by Contrastive Divergence (Hinton, 2002)

$$\min_{q} \max_{\pi} KL(p||q) - KL(\pi||q)$$
Normalization
constant
cancelled out

- Same equilibrium: $p(\mathbf{x}) = q(\mathbf{x}) = \pi(\mathbf{x})$
- Equivalent to a previously known objective function in EBM literature but we are the first to use a diffusion model as $\pi(\mathbf{x})$.

Fine-tuning Diffusion Models for Small T

Diffusion model trained on T=1000 / generating on T=10

Fine-tuned T=10 with DxMI

ImageNet 64 Conditional Image Generation

	T	FID (↓)	Prec. (个)	Rec. (个)
EDM (Karras et al., 2022)	79	2.44	0.71	0.67
Consistency Model (Song et al., 2023)	2	4.70	0.69	0.64
	1	6.20	0.68	0.63
DxMI (Ours)	10	2.68	0.78	0.600
DxMI (Ours)	4	3.21	0.76	0.522

Thank you for listening!

