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Bilevel optimization

o Bilevel optimization (Colson et al., 2007) is a fundamental optimization problem that abstracts various
applications characterized by two-level hierarchical structures.
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Bilevel optimization

o Bilevel optimization (Colson et al., 2007) is a fundamental optimization problem that abstracts various
applications characterized by two-level hierarchical structures.

o Consider the minimization problem:

mig F(x) == f(x,y*(x))
x€eRIx

st. y*(x) € arg min g(x,y),
yeRY

where f, g : R% x R% — R are continuously-differentiable functions.
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Bilevel optimization

o Bilevel optimization (Colson et al., 2007) is a fundamental optimization problem that abstracts various
applications characterized by two-level hierarchical structures.

o Consider the minimization problem:
min  F(x) :=f(x,y"(x))
xERx
st. y*(x) € arg min g(x,y),
yeRY

where f, g : R% x R% — R are continuously-differentiable functions.

@ There are various applications, including adversarial networks (Goodfellow et al., 2020; Gidel et al., 2018),
game theory (Stackelberg et al., 1952), hyper-parameter optimization (Franceschi et al., 2018; Bao et al.,
2021), model selection (Kunapuli et al., 2008; Giovannelli et al., 2021) and reinforcement learning (Konda
& Tsitsiklis, 1999; Sutton & Barto, 2018).
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Bilevel optimization

mir; F(x) == f(x,y"(x))
x€eR

st. y*(x) € arg min g(x,y). (P)
yeRY

@ The hyperobjective F(x) depends on x both directly and indirectly via y*(x).

@ y*(x) is a solution for the lower-level problem of minimizing another function g.
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Bilevel optimization
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Bilevel optimization

mir; F(x) == f(x,y"(x))
x€eR

s.t.  y*(x) € arg min g(x,y).
yeRY

@ The hyperobjective F(x) depends on x both directly and indirectly via y*(x).
@ y*(x) is a solution for the lower-level problem of minimizing another function g.

o Typically, we assume that the lower-level problem is strongly convex: g(X,y) is strongly convex in y for all
% € R%.
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Problem

mir; F(x) == f(x,y"(x))
xERIX

sit. y*(x) € arg min g(x,y). (P)
yerY

Problem

Find an e-stationary point: a point x satisfying [|[VF(x)|| < e.
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Problem

mir; F(x) == f(x,y"(x))
xERIX

sit. y*(x) € arg min g(x,y).
yerY

Problem

Find an e-stationary point: a point x satisfying [|[VF(x)|| < e.

@ The explicit expression of VF(x) can be derived from the implicit function theorem:

VF(x) 1= Vaf(x,y* () — V3,806, 5" ()) (V3,8(x, v (x)) Yy f(x,y*(x)).

@ Prior approaches require an explicit extraction of second-order information from g with a major focus on
estimating the Jacobian and inverse Hessian efficiently with stochastic noises.
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Problem

mir; F(x) == f(x,y"(x))
xERIX

sit. y*(x) € arg min g(x,y).
yerY

Problem

Find an e-stationary point: a point x satisfying [|[VF(x)|| < e.

@ The explicit expression of VF(x) can be derived from the implicit function theorem:

VF(x) 1= Vaf(x,y* () — V3,806, 5" ()) (V3,8(x, v (x)) Yy f(x,y*(x)).

@ Prior approaches require an explicit extraction of second-order information from g with a major focus on
estimating the Jacobian and inverse Hessian efficiently with stochastic noises.

@ Algorithms are not applicable to nonconvex objectives g and are hard to extend to the constrained case.
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Our goal

mir; F(x) = f(x,y*(x))
xERIx

s.t.  y*(x) € arg min g(x,y). (P)
yerd

Develop a fully first-order approach for stochastic bilevel optimization. Find an e-stationary solution of F using
only first-order gradients of f and g.

@ Some works only use first-order information, but these works either lack a complete finite-time analysis or
are applicable only to deterministic functions.
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Stochastic bilevel optimization

mir; F(x) == f(x,y"(x))
x€eR

sit. y*(x) € arg min g(x,y), (P)
yeRY

o We consider the first-order algorithm class that accesses functions through first-order oracles that return
estimators of first-order derivatives Vf(x, y; (), Vg(x,y; ) for a given query point (x,y).
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Stochastic bilevel optimization

mir; F(x) == f(x,y"(x))
x€eR

st. y*(x) € arg min g(x,y),
yERY

o We consider the first-order algorithm class that accesses functions through first-order oracles that return
estimators of first-order derivatives Vf(x, y; (), Vg(x,y; ) for a given query point (x,y).
We assume that
@ The estimators are unbiased:

E[Vf(x,y; )] = VF(x,y),
E[Vg(x,y:£)] = Ve(x,y),
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Stochastic bilevel optimization

mir; F(x) == f(x,y"(x))
x€eR

st. y*(x) € arg min g(x,y),
yERY

o We consider the first-order algorithm class that accesses functions through first-order oracles that return
estimators of first-order derivatives Vf(x, y; (), Vg(x,y; ) for a given query point (x,y).
We assume that
@ The estimators are unbiased:

E[Vf(x,y; )] = VF(x,y),
E[Vg(x,y:£)] = Ve(x,y),

@ The variance of the estimators are bounded:
E[[[VF(x,y: ) — E[VF(x,y: OllP] < o7,
E[|[Ve(x,y:€) — E[Ve(x,y: ©)]I°] < o3

for constants O'% >0 and aé > 0.
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Penalty method for stochastic bilevel optimization
0O@0000

Penalty method

min  F(x) :=f(x,y"(x)) st y*(x)€arg min g(x,y), (P)
xERx yeRY

@ The starting point of our approach is to convert (P) to an equivalent constrained single-level version:

min fix,y) st g(xy)—g"(x) <0,
x€EX, yeRY

where g*(x) := g(x, y*(x)).
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Penalty method for stochastic bilevel optimization
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Penalty method

min  F(x):= f(x,y*(x)) st y*(x) €arg min g(x,y),
xERIx yeRdy

o The starting point of our approach is to convert (P) to an equivalent constrained single-level version:
min f(va) s.t. g(X7_y)—g*(X)§07
x€X, yeRY
where g*(x) == g(x,y* (x)).
o The Lagrangian £y with multiplier A > 0 is
‘C)\(va) = f(X,y) + A(g(X7y) - g*(X))

@ The gradient of £ can be computed only with gradients of f and g, and thus the entire procedure can be
implemented using only first-order derivatives. This reformulation has been attempted by (Liu et al., 2021;
Sow et al., 2022; Ye et al., 2022)).
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Difficulties in penalty method

min  F(x) :=f(x,y"(x)) st y*(x) €arg min g(x,y), (P)
xERKX yeRY

ﬁ)(X,_y) = f(va) + )\(g(x,y) - g*(x))

@ The challenge is to find an appropriate value of the multiplier A. Unfortunately, the desired solution
x* = arg miny F(x) can only be obtained at A = co.

o With A = 0o, £(x,y) has unbounded smoothness, which prevents us from employing gradient-descent
style approaches.
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Penalty method for stochastic bilevel optimization
[e]e] le]ele]

Difficulties in penalty method

min  F(x) :=f(x,y"(x)) st y*(x) €arg min g(x,y),
xERKX yeRY

ﬁ)(X,_y) = f(va) + )\(g(x,y) - g*(x))

@ The challenge is to find an appropriate value of the multiplier A. Unfortunately, the desired solution
x* = arg miny F(x) can only be obtained at A = co.

o With A = 0o, £(x,y) has unbounded smoothness, which prevents us from employing gradient-descent
style approaches.

@ None of the previously proposed algorithms can obtain a complete finite time analysis for the original
problem miny F(x) without access to second derivatives of g.
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Our approach

Recall

min  F(x) :=f(x,y"(x)) st y*(x) €arg min g(x,y), (P)
x€Rx yeRY

L")\(X>y) = f(X7Y) + A(g(xv}/) - g(X>y*(X)))'
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Penalty method for stochastic bilevel optimization
[e]e]e] lele]

Our approach

Recall

min  F(x) :=f(x,y"(x)) st y*(x) €arg min g(x,y),
xERx yeRY

L")\(X>y) = f(X7Y) + A(g(xv}/) - g(X>y*(X)))'
Set L3 (x) := miny Lx(x,y).
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Penalty method for stochastic bilevel optimization
[e]e]e] lele]

Our approach

Recall

min  F(x) :=f(x,y"(x)) st y*(x) €arg min g(x,y),
xERx yeRY

La(x,y) = f(x,y) + Mel(x,y) — g(x, y*(x)))-
Set L3 (x) := miny Lx(x,y).

Lemma (J. Kwon-D. Kwon-Wright-Nowak, ICML 2023 Oral)

F can be approximated by L3 (x) in the sense that
[VF(x) = VLI(X)II < O(1/A)
where
VLI (x) = Vxf (x,yx (X)) + A(Vxg(x, yx (X)) = Vxg(x, ¥ (%)),

and y§(x) := arg min, ()\’lf(x,y) + g(x7y)).
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Penalty method for stochastic bilevel optimization
[e]e]e] lele]

Our approach

Recall

min  F(x) :=f(x,y"(x)) st y*(x) €arg min g(x,y),
xERx yeRY

La(x,y) = f(x,y) + Mel(x,y) — g(x, y*(x)))-
Set L3 (x) := miny Lx(x,y).

Lemma (J. Kwon-D. Kwon-Wright-Nowak, ICML 2023 Oral)

F can be approximated by L3 (x) in the sense that
[VF(x) = VLI(X)II < O(1/A)
where
VLI (x) = Vxf (x,yx (X)) + A(Vxg(x, yx (X)) = Vxg(x, ¥ (%)),

and y§(x) := arg min, ()\’lf(x,y) + g(x7y)).

® Therefore, we can find an e-stationary point of £3(x), by running a stochastic gradient descent (SGD)
style method on £} (x) with A = O(e™?).
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Penalty method for stochastic bilevel optimization
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Our proposed algorithm

Recall y*(x) := argminy g(x, y), y;(x) := argmin, (A" f(x,y) + g(x, y)), and

VLI(x) = Vxf (x,y1(x)) + A(Vxg(x, y1(x)) = Vxg(x, ¥ (x)))-
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Penalty method for stochastic bilevel optimization
0O000e0

Our proposed algorithm

Recall y*(x) := argminy g(x, y), y;(x) := argmin, (A" f(x,y) + g(x, y)), and

VLI(x) = Vxf (x,y1(x)) + A(Vxg(x, y1(x)) = Vxg(x, ¥ (x)))-

k+1 k

O Outer-loop updates x* using VL3 (x¥): xk+1 = xk — oGy where

G = Viuf (XK, ) + M(Veg (XK, y< ) — Vg (XK, 25)).
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Penalty method for stochastic bilevel optimization
0O000e0

Our proposed algorithm

Recall y*(x) := argminy g(x, y), y;(x) := argmin, (A" f(x,y) + g(x, y)), and

VLI(x) = Vxf (x,y1(x)) + A(Vxg(x, y1(x)) = Vxg(x, ¥ (x)))-

k+1 k

O Outer-loop updates x* using VL3 (x¥): xk+1 = xk — oGy where

G = Viuf (XK, ) + M(Veg (XK, y< ) — Vg (XK, 25)).

k+1

@ Inner-loop solves y;k(xk), and y*(x*) (approximately): y**1 and zK*! are the estimates of y;(x*) and

y*(x¥) at the k" iteration, respectively
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Our main results

Theorem (J. Kwon-D. Kwon-Wright-Nowak, ICML 2023 Oral)

Under suitable assumptions and step-sizes, the following convergence results hold.
@ If stochastic noises are present in both upper-level objective f and lower-level objective g (i.e., 0'%, Ué >0),
then our algorithm finds an e-stationary point within O(¢~") iterations.
@ If we have access to exact information about f and g (i.e., a% = O’é = 0), then our algorithm finds an
e-stationary point within O(c¢=3) iterations.
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Optimality of our algorithm
0O@0000

Next questions

© Are the convergence rates optimal?
@ Are the first-order methods necessarily slower than second-order methods?

@ Under the additional assumption, it is known that the second-order methods find the e-stationary point
within O(e™*).

Nov 8, 2024
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Deterministic case

Inner-loop

Solve y3, (x*), and y*(x¥) (approximately).

@ Indeed, these are convex optimization problems for large enough A > 0:

y*(x) € arg mir; g(x,y) and y3(x) := arg myin (AT (x,y) + g(x,¥)) -
yERY
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Optimality of our algorithm
[e]e] lelele}

Deterministic case

Inner-loop

Solve y3, (x*), and y*(x¥) (approximately).

@ Indeed, these are convex optimization problems for large enough A > 0:

y*(x) € arg mir; g(x,y) and y3(x) := arg myin (AT (x,y) + g(x,¥)) -
yERY

e Using this idea, (Chen et al., 2024) improves the complexity of our proposed algorithm from O(¢~3) to
O(e~2log(1/¢)).
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Stochastic case: optimal number of iterations

Outer-loop

Update x¥ using VL% (xK):

k1 — xk — aby.
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Optimality of our algorithm
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Stochastic case: optimal number of iterations

Outer-loop
Update x¥ using VL% (xK):

k+1 k

X = x" — aGg.

Comparing
VLK) = Vaf (K, y3 (59)) + A(Vg (XK, v (<)) = Vg (X, y* (x))).
and
Gi:= Vxf (x5, v 1)+ M(Vag (x5, v ) — Vg (xF, 24))
o ||[VL%(x*) — Gkl can be estimated by

A =y G+ 112 =y (9
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Optimality of our algorithm
[e]ele] le]e}

Stochastic case: optimal number of iterations

Outer-loop
Update x¥ using VL% (xK):

k+1 k

X = x" — aGg.

Comparing
VLK) = Vaf (K, y3 (59)) + A(Vg (XK, v (<)) = Vg (X, y* (x))).
and
Gi:= Vxf (x5, v 1)+ M(Vag (x5, v ) — Vg (xF, 24))
o ||[VL%(x*) — Gkl can be estimated by

A =y G+ 112 =y (9

o To obtain [|[VL%(x¥) — G|l = O(e), we need O(e/A) = O(e?) accuracy of y**1 and z<+1.
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Stochastic case: optimal number of iterations

Outer-loop
Update x¥ using VL% (xK):

k+1 k

X = x" — aGg.

Comparing
VLK) = Vaf (K, y3 (59)) + A(Vg (XK, v (<)) = Vg (X, y* (x))).
and

Gr = Vxf (5K, Y1) + A(Vxg (XK, v 7) — Vag(x*, 2411))
o ||[VL%(x*) — Gkl can be estimated by

A =y G+ 112 =y (9

o To obtain [|[VL%(x¥) — G|l = O(e), we need O(e/A) = O(e?) accuracy of y**1 and z<+1.

4 k+1 and Zk+1.

o T < e* inner-loop iterations are required to have O(€?) accuracy of y
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Stochastic gradient descent

T < e * inner-loop iterations are required to have O(¢?) accuracy of y¥*1 and zK*1. J

o Let f be a L-smooth and p-strongly convex function for some pu, L > 0.
o G(x,&) is an unbiased stochastic gradient estimator for f:

E[G(x,§)] = VF(x).
@ The variance of the gradient estimation error is bounded:

E[|G(x,€) = VF(x)II’] < 0.

For xt11 < xt — aG(x¢, &) and for all 0 < t < T,
2 0 2 ag?
E[flx" —x*[*] < (1 = pa)*|Ix” — x*||* + —.
o

8log T

T we have

In particular, taking o =

1 8log T
T * 12 0 * 112 2
Effx" —x*I7] £ = [Ix" = x*|I* + —==0".
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Our main results

O Outer-loop updates x* using VL% (x¥) with K iterations.

@ Inner-loop solves y3, (x¥), and y*(x*) with T iterations.

Theorem (J. Kwon-D. Kwon-Lyu, ICML 2024)

Under suitable assumptions, step-sizes, K < €2 and T < e 4,
© Our algorithm finds an e-stationary point within O(¢~°) iterations.

@ If we additionally assume the stochastic smoothness as in the second order method, then our algorithm
finds an e-stationary point within O(e~*) iterations.

o E[|Ve(x,y'i€) — Velx,y% &I < Cliy! = 1

Nov 8, 2024
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Further questions
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Lower bound

Are the convergence rates optimal?

e In (J. Kwon-D. Kwon-Lyu, ICML 2024), we provide the matching ¢~ lower bound on y*-aware oracles
with finite r < e.

e Under the same condition, ¢ =% upper bound can be shown.
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Further questions
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Lower bound

Definition (y*-Aware Oracle)

An oracle is y*-aware, if there exists r € (0, 00] such that for every query point (x,y), the following conditions
hold.

o In addition to stochastic gradients, the oracle also returns y(x) such that ||(x) — y*(x)|| < r/2

o Gradient estimators satisfy the assumptions only if ||y — y*(x)|| < r; otherwise, the returned gradient
estimators can be arbitrary.

o If we take r = oo, the additional estimator y(x) is uninformative. We recover the usual first-order
stochastic gradient oracle.
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Further questions
[e]e] le]e]ele)

Lower bound

Definition (y*-Aware Oracle)

An oracle is y*-aware, if there exists r € (0, 00] such that for every query point (x,y), the following conditions
hold.

o In addition to stochastic gradients, the oracle also returns y(x) such that ||(x) — y*(x)|| < r/2

o Gradient estimators satisfy the assumptions only if ||y — y*(x)|| < r; otherwise, the returned gradient
estimators can be arbitrary.

o If we take r = oo, the additional estimator y(x) is uninformative. We recover the usual first-order
stochastic gradient oracle.

@ The same upper bound holds for finite r.
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-convex lower level

o If g is not convex, then y*(x) and y}(x) may not be uniquely determined.
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Further questions
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Non-convex lower level

o If g is not convex, then y*(x) and y}(x) may not be uniquely determined.

o A solution set T(x, ) := argmin, (A7f(x,y) + g(x, y)) may not be stable.
o In (J. Kwon-D. Kwon-Wright-Nowak, ICLR 2024), similar convergence results are given under the Lipschitz
continuity of T.

Nov 8, 2024
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@ We provide a complete finite-time analysis of the first-order method for bilevel optimization.
o Under a fair comparison, our proposed method is not necessarily slower than second-order ones.

@ Lower bounds and non-convex cases are open.
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Further questions
0O000e00

@ We provide a complete finite-time analysis of the first-order method for bilevel optimization.

Under a fair comparison, our proposed method is not necessarily slower than second-order ones.

@ Lower bounds and non-convex cases are open.
Jr

o Further applications in large-scale machine learning problems?
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Thank you for your attention!
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