Optimality of our algorithm 000000

A fully first-order method for stochastic bilevel optimization

Dohyun Kwon

Department of Mathematics, University of Seoul / Center for AI and Natural Sciences, KIAS

Nov 8, 2024

This talk is based on joint work with Jeongyeol Kwon, Hanbaek Lyu, Stephen Wright, and Robert Nowak (UW-Madison, USA).

< ロ > < 同 > < 三 > < 三 >

Optimality of our algorithm

Further questions

Table of Contents

Bilevel optimization

Penalty method for stochastic bilevel optimization

Optimality of our algorithm

4 Further questions

イロン イヨン イヨン イヨ

Optimality of our algorithm

Further questions

Table of Contents

Bilevel optimization

Penalty method for stochastic bilevel optimization

Optimality of our algorithm

In Further questions

Dohyun Kwon (University of Seoul / KIAS)

イロト イヨト イヨト イヨ

Optimality of our algorithm 000000

Bilevel optimization

- Bilevel optimization (Colson et al., 2007) is a fundamental optimization problem that abstracts various applications characterized by two-level hierarchical structures.
- Consider the minimization problem:

$$\min_{x \in \mathbb{R}^{d_x}} F(x) := f(x, y^*(x))$$
s.t. $y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_y}} g(x, y),$ (P)

where $f, g : \mathbb{R}^{d_x} \times \mathbb{R}^{d_y} \to \mathbb{R}$ are continuously-differentiable functions.

• There are various applications, including adversarial networks (Goodfellow et al., 2020; Gidel et al., 2018), game theory (Stackelberg et al., 1952), hyper-parameter optimization (Franceschi et al., 2018; Bao et al., 2021), model selection (Kunapuli et al., 2008; Giovannelli et al., 2021) and reinforcement learning (Konda & Tsitsiklis, 1999; Sutton & Barto, 2018).

イロト イヨト イヨト

Optimality of our algorithm 000000

Bilevel optimization

- Bilevel optimization (Colson et al., 2007) is a fundamental optimization problem that abstracts various applications characterized by two-level hierarchical structures.
- Consider the minimization problem:

```
 \begin{split} & \min_{x \in \mathbb{R}^{d_x}} \quad F(x) := f(x, y^*(x)) \\ & \text{s.t.} \quad y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_y}} g(x, y), \end{split}
```

where $f, g: \mathbb{R}^{d_x} \times \mathbb{R}^{d_y} \to \mathbb{R}$ are continuously-differentiable functions.

• There are various applications, including adversarial networks (Goodfellow et al., 2020; Gidel et al., 2018), game theory (Stackelberg et al., 1952), hyper-parameter optimization (Franceschi et al., 2018; Bao et al., 2021), model selection (Kunapuli et al., 2008; Giovannelli et al., 2021) and reinforcement learning (Konda & Tsitsiklis, 1999; Sutton & Barto, 2018).

イロト 不同 とくほ とくほとう

Optimality of our algorithm 000000

Bilevel optimization

- Bilevel optimization (Colson et al., 2007) is a fundamental optimization problem that abstracts various applications characterized by two-level hierarchical structures.
- Consider the minimization problem:

 $\min_{\substack{x \in \mathbb{R}^{d_x}}} F(x) := f(x, y^*(x))$ s.t. $y^*(x) \in \arg\min_{\substack{y \in \mathbb{R}^{d_y}}} g(x, y),$

where $f, g: \mathbb{R}^{d_x} \times \mathbb{R}^{d_y} \to \mathbb{R}$ are continuously-differentiable functions.

There are various applications, including adversarial networks (Goodfellow et al., 2020; Gidel et al., 2018), game theory (Stackelberg et al., 1952), hyper-parameter optimization (Franceschi et al., 2018; Bao et al., 2021), model selection (Kunapuli et al., 2008; Giovannelli et al., 2021) and reinforcement learning (Konda & Tsitsiklis, 1999; Sutton & Barto, 2018).

イロト 不同 トイヨト イヨト

Optimality of our algorithm 000000

Bilevel optimization

$$\min_{x \in \mathbb{R}^{d_x}} F(x) := f(x, y^*(x))$$
s.t. $y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_y}} g(x, y).$ (P)

- The hyperobjective F(x) depends on x both directly and indirectly via $y^*(x)$.
- $y^*(x)$ is a solution for the lower-level problem of minimizing another function g.
- Typically, we assume that the lower-level problem is strongly convex: $g(\bar{x}, y)$ is strongly convex in y for all $\bar{x} \in \mathbb{R}^{d_x}$.

イロト イヨト イヨト イヨト

Optimality of our algorithm 000000

Bilevel optimization

 $\min_{x \in \mathbb{R}^{d_x}} F(x) := f(x, y^*(x))$ s.t. $y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_y}} g(x, y).$

- The hyperobjective F(x) depends on x both directly and indirectly via $y^*(x)$.
- $y^*(x)$ is a solution for the lower-level problem of minimizing another function g.
- Typically, we assume that the lower-level problem is strongly convex: $g(\bar{x}, y)$ is strongly convex in y for all $\bar{x} \in \mathbb{R}^{d_x}$.

イロト 不得 トイヨト イヨト

Bilevel	optimization
0000	00

Optimality of our algorithm 000000

Problem

$$\min_{x \in \mathbb{R}^{d_x}} F(x) := f(x, y^*(x))$$
s.t. $y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_y}} g(x, y).$ (P)

Problem

Find an ϵ -stationary point: a point x satisfying $\|\nabla F(x)\| \leq \epsilon$.

• The explicit expression of $\nabla F(x)$ can be derived from the implicit function theorem:

$$\nabla F(x) := \nabla_x f(x, y^*(x)) - \nabla_{xy}^2 g(x, y^*(x)) (\nabla_{yy}^2 g(x, y^*(x)))^{-1} \nabla_y f(x, y^*(x)).$$

- Prior approaches require an explicit extraction of second-order information from g with a major focus on estimating the Jacobian and inverse Hessian efficiently with stochastic noises.
- Algorithms are not applicable to nonconvex objectives g and are hard to extend to the constrained case.

イロト イヨト イヨト

Optimality of our algorithm 000000

Problem

$$\min_{x \in \mathbb{R}^{d_x}} F(x) := f(x, y^*(x))$$
s.t. $y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_y}} g(x, y).$

Problem

Find an ϵ -stationary point: a point x satisfying $\|\nabla F(x)\| \leq \epsilon$.

• The explicit expression of $\nabla F(x)$ can be derived from the implicit function theorem:

$$\nabla F(x) := \nabla_x f(x, y^*(x)) - \nabla_{xy}^2 g(x, y^*(x)) \left(\nabla_{yy}^2 g(x, y^*(x)) \right)^{-1} \nabla_y f(x, y^*(x)).$$

- Prior approaches require an explicit extraction of second-order information from g with a major focus on estimating the Jacobian and inverse Hessian efficiently with stochastic noises.
- Algorithms are not applicable to nonconvex objectives g and are hard to extend to the constrained case.

イロト 不同 トイヨト イヨト

Optimality of our algorithm 000000

Problem

$$\min_{x \in \mathbb{R}^{d_x}} F(x) := f(x, y^*(x))$$
s.t. $y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_y}} g(x, y).$

Problem

Find an ϵ -stationary point: a point x satisfying $\|\nabla F(x)\| \leq \epsilon$.

• The explicit expression of $\nabla F(x)$ can be derived from the implicit function theorem:

$$\nabla F(x) := \nabla_x f(x, y^*(x)) - \nabla_{xy}^2 g(x, y^*(x)) \big(\nabla_{yy}^2 g(x, y^*(x)) \big)^{-1} \nabla_y f(x, y^*(x)).$$

- Prior approaches require an explicit extraction of second-order information from g with a major focus on estimating the Jacobian and inverse Hessian efficiently with stochastic noises.
- Algorithms are not applicable to nonconvex objectives g and are hard to extend to the constrained case.

イロト 不同 トイヨト イヨト

Optimality of our algorithm 000000

Our goal

$$\min_{x \in \mathbb{R}^{d_x}} F(x) := f(x, y^*(x))$$
s.t. $y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_y}} g(x, y).$ (P)

Goal

Develop a fully first-order approach for stochastic bilevel optimization. Find an ϵ -stationary solution of F using only first-order gradients of f and g.

• Some works only use first-order information, but these works either lack a complete finite-time analysis or are applicable only to deterministic functions.

Bilevel optimization

Penalty method for stochastic bilevel optimization

Optimality of our algorithm 000000

Stochastic bilevel optimization

$$\min_{x \in \mathbb{R}^{d_x}} F(x) := f(x, y^*(x))$$
s.t. $y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_y}} g(x, y),$

$$(P)$$

• We consider the first-order algorithm class that accesses functions through *first-order oracles* that return estimators of first-order derivatives $\hat{\nabla} f(x, y; \zeta)$, $\hat{\nabla} g(x, y; \zeta)$ for a given query point (x, y).

We assume that

• The estimators are unbiased:

 $\mathbb{E}[\nabla f(x, y; \zeta)] = \nabla f(x, y),$ $\mathbb{E}[\nabla g(x, y; \zeta)] = \nabla g(x, y),$

• The variance of the estimators are bounded:

$$\begin{split} & \mathbb{E}[\|\hat{\nabla}f(x,y;\zeta) - \mathbb{E}[\nabla f(x,y;\zeta)]\|^2] \leq \sigma_f^2, \\ & \mathbb{E}[\|\hat{\nabla}g(x,y;\xi) - \mathbb{E}[\nabla g(x,y;\xi)]\|^2] \leq \sigma_g^2. \end{split}$$

for constants $\sigma_f^2 > 0$ and $\sigma_g^2 > 0$

Optimality of our algorithm 000000

Stochastic bilevel optimization

$$\min_{x \in \mathbb{R}^{d_x}} F(x) := f(x, y^*(x))$$

s.t. $y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_y}} g(x, y)$

- We consider the first-order algorithm class that accesses functions through *first-order oracles* that return estimators of first-order derivatives $\hat{\nabla} f(x, y; \zeta)$, $\hat{\nabla} g(x, y; \zeta)$ for a given query point (x, y).
- We assume that
 - The estimators are unbiased:

 $\mathbb{E}[\hat{\nabla}f(x, y; \zeta)] = \nabla f(x, y),$ $\mathbb{E}[\hat{\nabla}g(x, y; \xi)] = \nabla g(x, y),$

• The variance of the estimators are bounded:

$$\begin{split} & \mathbb{E}[\|\hat{\nabla}f(x,y;\zeta) - \mathbb{E}[\nabla f(x,y;\zeta)]\|^2] \leq \sigma_f^2, \\ & \mathbb{E}[\|\hat{\nabla}g(x,y;\xi) - \mathbb{E}[\nabla g(x,y;\xi)]\|^2] \leq \sigma_g^2. \end{split}$$

for constants $\sigma_f^2 > 0$ and $\sigma_g^2 > 0$

イロト イヨト イヨト

Optimality of our algorithm 000000

Stochastic bilevel optimization

$$\min_{x \in \mathbb{R}^{d_x}} F(x) := f(x, y^*(x))$$

s.t. $y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_y}} g(x, y)$

- We consider the first-order algorithm class that accesses functions through *first-order oracles* that return estimators of first-order derivatives $\hat{\nabla} f(x, y; \zeta)$, $\hat{\nabla} g(x, y; \zeta)$ for a given query point (x, y).
- We assume that
 - The estimators are unbiased:

$$\mathbb{E}[\hat{\nabla}f(x, y; \zeta)] = \nabla f(x, y),$$
$$\mathbb{E}[\hat{\nabla}g(x, y; \zeta)] = \nabla g(x, y),$$

• The variance of the estimators are bounded:

$$\begin{split} & \mathbb{E}[\|\hat{\nabla}f(x,y;\zeta) - \mathbb{E}[\nabla f(x,y;\zeta)]\|^2] \leq \sigma_f^2, \\ & \mathbb{E}[\|\hat{\nabla}g(x,y;\xi) - \mathbb{E}[\nabla g(x,y;\xi)]\|^2] \leq \sigma_g^2. \end{split}$$

for constants $\sigma_f^2 > 0$ and $\sigma_g^2 > 0$.

Optimality of our algorithm

Further questions

Table of Contents

Bilevel optimization

Penalty method for stochastic bilevel optimization

Optimality of our algorithm

4 Further questions

イロト イヨト イヨト イヨ

Bilevel optimization	Penalty method for stochastic bilevel optimization	Optimality of our algorithm	Further questions
000000	OOOOO	000000	0000000

$$\min_{x \in \mathbb{R}^{d_x}} F(x) := f(x, y^*(x)) \quad \text{s.t.} \quad y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_y}} g(x, y), \tag{P}$$

• The starting point of our approach is to convert (P) to an equivalent constrained single-level version:

$$\min_{x\in X, y\in \mathbb{R}^{d_y}} f(x,y) \quad \text{s.t.} \quad g(x,y) - g^*(x) \leq 0,$$

where $g^{*}(x) := g(x, y^{*}(x))$.

• The Lagrangian \mathcal{L}_{λ} with multiplier $\lambda > 0$ is

$$\mathcal{L}_{\lambda}(x,y) := f(x,y) + \lambda(g(x,y) - g^{*}(x)).$$

 The gradient of L_λ can be computed only with gradients of f and g, and thus the entire procedure can be implemented using only first-order derivatives. This reformulation has been attempted by (Liu et al., 2021; Sow et al., 2022; Ye et al., 2022)).

Penalty method

イロト イヨト イヨト

Bilevel	optimization
0000	

Optimality of our algorithm 000000

Penalty method

$$\min_{x \in \mathbb{R}^{d_x}} \quad F(x) := f(x, y^*(x)) \quad \text{ s.t. } \quad y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_y}} g(x, y),$$

• The starting point of our approach is to convert (P) to an equivalent constrained single-level version:

$$\min_{x\in X, y\in \mathbb{R}^{d_y}} \quad f(x,y) \quad \text{s.t.} \quad g(x,y) - g^*(x) \leq 0,$$

where $g^{*}(x) := g(x, y^{*}(x))$.

• The Lagrangian \mathcal{L}_{λ} with multiplier $\lambda > 0$ is

$$\mathcal{L}_{\lambda}(x,y) := f(x,y) + \lambda(g(x,y) - g^{*}(x)).$$

The gradient of L_λ can be computed only with gradients of f and g, and thus the entire procedure can be implemented using only first-order derivatives. This reformulation has been attempted by (Liu et al., 2021; Sow et al., 2022; Ye et al., 2022)).

Bilevel	optimization	
0000		

Optimality of our algorithm 000000

Difficulties in penalty method

$$\min_{x \in \mathbb{R}^{d_x}} F(x) := f(x, y^*(x)) \quad \text{s.t.} \quad y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_y}} g(x, y), \tag{P}$$

$$\mathcal{L}_{\lambda}(x,y) := f(x,y) + \lambda(g(x,y) - g^*(x)).$$

- The challenge is to find an appropriate value of the multiplier λ . Unfortunately, the desired solution $x^* = \arg \min_x F(x)$ can only be obtained at $\lambda = \infty$.
- With $\lambda = \infty$, $\mathcal{L}_{\lambda}(x, y)$ has unbounded smoothness, which prevents us from employing gradient-descent style approaches.
- None of the previously proposed algorithms can obtain a complete finite time analysis for the original problem $\min_x F(x)$ without access to second derivatives of g.

Bilevel optimization 000000 Penalty method for stochastic bilevel optimization

Optimality of our algorithm 000000

Difficulties in penalty method

$$\min_{x\in\mathbb{R}^{d_x}}\quad F(x):=f(x,y^*(x))\quad \text{ s.t. }\quad y^*(x)\in\arg\min_{y\in\mathbb{R}^{d_y}}g(x,y),$$

$$\mathcal{L}_{\lambda}(x,y) := f(x,y) + \frac{\lambda}{g(x,y) - g^*(x)}.$$

- The challenge is to find an appropriate value of the multiplier λ . Unfortunately, the desired solution $x^* = \arg \min_x F(x)$ can only be obtained at $\lambda = \infty$.
- With $\lambda = \infty$, $\mathcal{L}_{\lambda}(x, y)$ has unbounded smoothness, which prevents us from employing gradient-descent style approaches.
- None of the previously proposed algorithms can obtain a complete finite time analysis for the original problem $\min_x F(x)$ without access to second derivatives of g.

Bilevel	optimization
0000	

Optimality of our algorithm 000000

Our approach

Recall

$$\min_{x \in \mathbb{R}^{d_x}} F(x) := f(x, y^*(x)) \quad \text{s.t.} \quad y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_y}} g(x, y), \tag{P}$$

$$\mathcal{L}_{\lambda}(x,y) := f(x,y) + \lambda(g(x,y) - g(x,y^{*}(x))).$$

Set $\mathcal{L}^*_{\lambda}(x) := \min_y \mathcal{L}_{\lambda}(x, y).$

Lemma (J. Kwon-D. Kwon-Wright-Nowak, ICML 2023 Oral)

F can be approximated by $\mathcal{L}^*_{\lambda}(x)$ in the sense that

$$\|\nabla F(x) - \nabla \mathcal{L}^*_{\lambda}(x)\| \le O(1/\lambda)$$

where

$$abla \mathcal{L}^*_\lambda(x) =
abla_x f(x, y^*_\lambda(x)) + \lambda(
abla_x g(x, y^*_\lambda(x)) -
abla_x g(x, y^*(x))),$$

and $y^*_\lambda(x) := rgmin_y \left(\lambda^{-1}f(x,y) + g(x,y)
ight).$

• Therefore, we can find an ϵ -stationary point of $\mathcal{L}^*_{\lambda}(x)$, by running a stochastic gradient descent (SGD) style method on $\mathcal{L}^*_{\lambda}(x)$ with $\lambda = O(\epsilon^{-1})$.

Bilevel	optimization	
0000	000	

Optimality of our algorithm 000000 Further questions

Our approach

Recall

$$\min_{x\in\mathbb{R}^{d_x}}\quad F(x):=f(x,y^*(x))\quad \text{ s.t. }\quad y^*(x)\in\arg\min_{y\in\mathbb{R}^{d_y}}g(x,y),$$

$$\mathcal{L}_{\lambda}(x,y) := f(x,y) + \lambda(g(x,y) - g(x,y^{*}(x))).$$

Set $\mathcal{L}^*_{\lambda}(x) := \min_y \mathcal{L}_{\lambda}(x, y).$

Lemma (J. Kwon-D. Kwon-Wright-Nowak, ICML 2023 Oral)

F can be approximated by $\mathcal{L}^*_{\lambda}(x)$ in the sense that

$$\|\nabla F(x) - \nabla \mathcal{L}^*_{\lambda}(x)\| \le O(1/\lambda)$$

where

$$abla \mathcal{L}^*_\lambda(x) =
abla_x f(x, y^*_\lambda(x)) + \lambda(
abla_x g(x, y^*_\lambda(x)) -
abla_x g(x, y^*(x))),$$

and $y^*_\lambda(x) := rgmin_y \left(\lambda^{-1}f(x,y) + g(x,y)
ight).$

• Therefore, we can find an ϵ -stationary point of $\mathcal{L}^*_{\lambda}(x)$, by running a stochastic gradient descent (SGD) style method on $\mathcal{L}^*_{\lambda}(x)$ with $\lambda = O(\epsilon^{-1})$.

Bilevel	optimization	
0000	000	

Optimality of our algorithm 000000 Further questions

Our approach

Recall

$$\min_{x \in \mathbb{R}^{d_x}} \quad F(x) := f(x, y^*(x)) \quad \text{ s.t. } \quad y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_y}} g(x, y),$$

$$\mathcal{L}_{\lambda}(x,y) := f(x,y) + \lambda(g(x,y) - g(x,y^{*}(x))).$$

Set $\mathcal{L}^*_{\lambda}(x) := \min_y \mathcal{L}_{\lambda}(x, y).$

Lemma (J. Kwon-D. Kwon-Wright-Nowak, ICML 2023 Oral)

F can be approximated by $\mathcal{L}^*_{\lambda}(x)$ in the sense that

$$\|
abla F(x) -
abla \mathcal{L}^*_\lambda(x)\| \leq O(1/\lambda)$$

where

$$abla \mathcal{L}^*_\lambda(x) =
abla_x f(x, y^*_\lambda(x)) + \lambda(
abla_x g(x, y^*_\lambda(x)) -
abla_x g(x, y^*(x))),$$

and $y_{\lambda}^{*}(x) := \arg \min_{y} \left(\lambda^{-1}f(x, y) + g(x, y)\right).$

• Therefore, we can find an ϵ -stationary point of $\mathcal{L}^*_{\lambda}(x)$, by running a stochastic gradient descent (SGD) style method on $\mathcal{L}^*_{\lambda}(x)$ with $\lambda = O(\epsilon^{-1})$.

Dohyun Kwon (University of Seoul / KIAS)

Bilevel	optimization	
0000	000	

Optimality of our algorithm 000000

Our approach

Recall

$$\min_{x \in \mathbb{R}^{d_x}} \quad F(x) := f(x, y^*(x)) \quad \text{ s.t. } \quad y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_y}} g(x, y),$$

$$\mathcal{L}_{\lambda}(x,y) := f(x,y) + \lambda(g(x,y) - g(x,y^*(x))).$$

Set $\mathcal{L}^*_{\lambda}(x) := \min_y \mathcal{L}_{\lambda}(x, y).$

Lemma (J. Kwon-D. Kwon-Wright-Nowak, ICML 2023 Oral)

F can be approximated by $\mathcal{L}^*_{\lambda}(x)$ in the sense that

$$\|
abla F(x) -
abla \mathcal{L}^*_\lambda(x)\| \leq O(1/\lambda)$$

where

$$abla \mathcal{L}^*_\lambda(x) =
abla_x f(x, y^*_\lambda(x)) + \lambda(
abla_x g(x, y^*_\lambda(x)) -
abla_x g(x, y^*(x))),$$

and $y_{\lambda}^{*}(x) := \arg \min_{y} \left(\lambda^{-1}f(x, y) + g(x, y)\right).$

• Therefore, we can find an ϵ -stationary point of $\mathcal{L}^*_{\lambda}(x)$, by running a stochastic gradient descent (SGD) style method on $\mathcal{L}^*_{\lambda}(x)$ with $\lambda = O(\epsilon^{-1})$.

Bilevel	optimizatio	
0000		

Optimality of our algorithm 000000

Our proposed algorithm

Recall
$$y^*(x) := \arg \min_y g(x, y), y^*_\lambda(x) := \arg \min_y (\lambda^{-1}f(x, y) + g(x, y)), \text{ and}$$

$$\nabla \mathcal{L}^*_\lambda(x) = \nabla_x f(x, y^*_\lambda(x)) + \lambda(\nabla_x g(x, y^*_\lambda(x)) - \nabla_x g(x, y^*(x))).$$

() Outer-loop updates x^k using $\nabla \mathcal{L}^*_{\lambda}(x^k)$: $x^{k+1} = x^k - \alpha \hat{\mathcal{G}}_k$ where

$$G_k := \nabla_x f(x^k, y^{k+1}) + \lambda(\nabla_x g(x^k, y^{k+1}) - \nabla_x g(x^k, z^{k+1})).$$

Inner-loop solves $y_{\lambda_k}^*(x^k)$, and $y^*(x^k)$ (approximately): y^{k+1} and z^{k+1} are the estimates of $y_{\lambda}^*(x^k)$ and $y^*(x^k)$ at the k^{th} iteration, respectively

Bilevel	optimizatio	
0000		

Optimality of our algorithm 000000

Our proposed algorithm

Recall
$$y^*(x) := \arg \min_y g(x, y), y^*_\lambda(x) := \arg \min_y (\lambda^{-1}f(x, y) + g(x, y)), \text{ and}$$

$$\nabla \mathcal{L}^*_\lambda(x) = \nabla_x f(x, y^*_\lambda(x)) + \lambda(\nabla_x g(x, y^*_\lambda(x)) - \nabla_x g(x, y^*(x))).$$

• Outer-loop updates
$$x^k$$
 using $\nabla \mathcal{L}^*_{\lambda}(x^k)$: $x^{k+1} = x^k - \alpha \hat{\mathcal{G}}_k$ where

$$G_k := \nabla_x f(x^k, y^{k+1}) + \lambda(\nabla_x g(x^k, y^{k+1}) - \nabla_x g(x^k, z^{k+1})).$$

Inner-loop solves $y_{\lambda_k}^*(x^k)$, and $y^*(x^k)$ (approximately): y^{k+1} and z^{k+1} are the estimates of $y_{\lambda}^*(x^k)$ and $y^*(x^k)$ at the k^{th} iteration, respectively

イロト イヨト イヨト イヨト

Bilevel	optimizatio	
0000		

Optimality of our algorithm 000000

Our proposed algorithm

Recall
$$y^*(x) := \arg \min_y g(x, y), y^*_\lambda(x) := \arg \min_y (\lambda^{-1}f(x, y) + g(x, y)), \text{ and}$$

$$\nabla \mathcal{L}^*_\lambda(x) = \nabla_x f(x, y^*_\lambda(x)) + \lambda(\nabla_x g(x, y^*_\lambda(x)) - \nabla_x g(x, y^*(x))).$$

• Outer-loop updates
$$x^k$$
 using $\nabla \mathcal{L}^*_{\lambda}(x^k)$: $x^{k+1} = x^k - \alpha \hat{\mathcal{G}}_k$ where

$$G_k := \nabla_x f(x^k, y^{k+1}) + \lambda(\nabla_x g(x^k, y^{k+1}) - \nabla_x g(x^k, z^{k+1})).$$

2 Inner-loop solves $y_{\lambda_k}^*(x^k)$, and $y^*(x^k)$ (approximately): y^{k+1} and z^{k+1} are the estimates of $y_{\lambda}^*(x^k)$ and $y^*(x^k)$ at the k^{th} iteration, respectively

イロト 不得 トイヨト イヨト

Optimality of our algorithm 000000

Our main results

Theorem (J. Kwon-D. Kwon-Wright-Nowak, ICML 2023 Oral)

Under suitable assumptions and step-sizes, the following convergence results hold.

- If stochastic noises are present in both upper-level objective f and lower-level objective g (i.e., $\sigma_f^2, \sigma_g^2 > 0$), then our algorithm finds an ϵ -stationary point within $O(\epsilon^{-7})$ iterations.
- **2** If we have access to exact information about f and g (i.e., $\sigma_f^2 = \sigma_g^2 = 0$), then our algorithm finds an ϵ -stationary point within $O(\epsilon^{-3})$ iterations.

イロト 不得 トイヨト イヨト

Optimality of our algorithm •••••• Further questions

Table of Contents

Bilevel optimization

Penalty method for stochastic bilevel optimization

Optimality of our algorithm

In Further questions

イロン イヨン イヨン イヨ

Optimality of our algorithm

Next questions

Question

- Are the convergence rates optimal?
- **2** Are the first-order methods necessarily slower than second-order methods?
- Under the additional assumption, it is known that the second-order methods find the ϵ -stationary point within $O(\epsilon^{-4})$.

イロト イヨト イヨト イヨ

Optimality of our algorithm

Deterministic case

Inner-loop

Solve $y_{\lambda_k}^*(x^k)$, and $y^*(x^k)$ (approximately).

• Indeed, these are convex optimization problems for large enough $\lambda > 0$:

$$y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_y}} g(x,y) \text{ and } y^*_\lambda(x) := \arg\min_y \left(\lambda^{-1} f(x,y) + g(x,y)\right).$$

• Using this idea, (Chen et al., 2024) improves the complexity of our proposed algorithm from $O(\epsilon^{-3})$ to $O(\epsilon^{-2} \log(1/\epsilon))$.

イロト イヨト イヨト

Optimality of our algorithm

Deterministic case

Inner-loop

Solve $y_{\lambda_k}^*(x^k)$, and $y^*(x^k)$ (approximately).

• Indeed, these are convex optimization problems for large enough $\lambda > 0$:

$$y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_y}} g(x, y) \text{ and } y^*_\lambda(x) := \arg\min_{y} \left(\lambda^{-1} f(x, y) + g(x, y)\right).$$

• Using this idea, (Chen et al., 2024) improves the complexity of our proposed algorithm from $O(\epsilon^{-3})$ to $O(\epsilon^{-2}\log(1/\epsilon))$.

イロト 不同 トイヨト イヨト

Optimality of our algorithm 000000

Stochastic case: optimal number of iterations

Outer-loop

Update x^k using $\nabla \mathcal{L}^*_{\lambda}(x^k)$:

$$x^{k+1} = x^k - \alpha \hat{G}_k.$$

Comparing

$$\nabla \mathcal{L}_{\lambda}^{*}(x^{k}) = \nabla_{x} f(x^{k}, y_{\lambda}^{*}(x^{k})) + \lambda (\nabla_{x} g(x^{k}, y_{\lambda}^{*}(x^{k})) - \nabla_{x} g(x^{k}, y^{*}(x^{k}))).$$

and

$$G_k := \nabla_x f(x^k, y^{k+1}) + \lambda(\nabla_x g(x^k, y^{k+1}) - \nabla_x g(x^k, z^{k+1}))$$

• $\|
abla \mathcal{L}^*_\lambda(x^k) - \mathcal{G}_k \|$ can be estimated by

$$\lambda(\|y^{k+1} - y^*_{\lambda}(x^k)\| + \|z^{k+1} - y^*(x^k)\|)$$

• To obtain $\|\nabla \mathcal{L}^*_{\lambda}(x^k) - G_k\| = O(\epsilon)$, we need $O(\epsilon/\lambda) = O(\epsilon^2)$ accuracy of y^{k+1} and z^{k+1} .

• $T \simeq \epsilon^{-4}$ inner-loop iterations are required to have $O(\epsilon^2)$ accuracy of y^{k+1} and z^{k+1} .

Optimality of our algorithm 000000

Stochastic case: optimal number of iterations

Outer-loop

Update x^k using $\nabla \mathcal{L}^*_{\lambda}(x^k)$:

$$x^{k+1} = x^k - \alpha \hat{G}_k.$$

Comparing

$$\nabla \mathcal{L}^*_{\lambda}(x^k) = \nabla_x f(x^k, y^*_{\lambda}(x^k)) + \lambda (\nabla_x g(x^k, y^*_{\lambda}(x^k)) - \nabla_x g(x^k, y^*(x^k))).$$

and

$$G_k := \nabla_x f(x^k, y^{k+1}) + \lambda(\nabla_x g(x^k, y^{k+1}) - \nabla_x g(x^k, z^{k+1}))$$

• $\|
abla \mathcal{L}^*_\lambda(x^k) - \mathcal{G}_k \|$ can be estimated by

$$\lambda(\|y^{k+1} - y^*_{\lambda}(x^k)\| + \|z^{k+1} - y^*(x^k)\|)$$

• To obtain $\|\nabla \mathcal{L}^*_{\lambda}(x^k) - G_k\| = O(\epsilon)$, we need $O(\epsilon/\lambda) = O(\epsilon^2)$ accuracy of y^{k+1} and z^{k+1} .

• $T \simeq \epsilon^{-4}$ inner-loop iterations are required to have $O(\epsilon^2)$ accuracy of y^{k+1} and z^{k+1} .

Optimality of our algorithm 000000

Stochastic case: optimal number of iterations

Outer-loop

Update x^k using $\nabla \mathcal{L}^*_{\lambda}(x^k)$:

$$x^{k+1} = x^k - \alpha \hat{G}_k.$$

Comparing

$$\nabla \mathcal{L}^*_{\lambda}(x^k) = \nabla_x f(x^k, y^*_{\lambda}(x^k)) + \lambda (\nabla_x g(x^k, y^*_{\lambda}(x^k)) - \nabla_x g(x^k, y^*(x^k))).$$

and

$$G_k := \nabla_x f(x^k, y^{k+1}) + \lambda(\nabla_x g(x^k, y^{k+1}) - \nabla_x g(x^k, z^{k+1}))$$

• $\|
abla \mathcal{L}^*_\lambda(x^k) - \mathcal{G}_k \|$ can be estimated by

$$\lambda(\|y^{k+1} - y^*_{\lambda}(x^k)\| + \|z^{k+1} - y^*(x^k)\|)$$

• To obtain $\|\nabla \mathcal{L}^*_{\lambda}(x^k) - G_k\| = O(\epsilon)$, we need $O(\epsilon/\lambda) = O(\epsilon^2)$ accuracy of y^{k+1} and z^{k+1} .

• $T \simeq \epsilon^{-4}$ inner-loop iterations are required to have $O(\epsilon^2)$ accuracy of y^{k+1} and z^{k+1} .

イロト イヨト イヨト

Optimality of our algorithm 000000

Stochastic case: optimal number of iterations

Outer-loop

Update x^k using $\nabla \mathcal{L}^*_{\lambda}(x^k)$:

$$x^{k+1} = x^k - \alpha \hat{G}_k.$$

Comparing

$$\nabla \mathcal{L}^*_\lambda(x^k) = \nabla_x f(x^k, y^*_\lambda(x^k)) + \lambda(\nabla_x g(x^k, y^*_\lambda(x^k)) - \nabla_x g(x^k, y^*(x^k))).$$

and

$$G_k := \nabla_x f(x^k, y^{k+1}) + \lambda(\nabla_x g(x^k, y^{k+1}) - \nabla_x g(x^k, z^{k+1}))$$

• $\|
abla \mathcal{L}^*_\lambda(x^k) - \mathcal{G}_k \|$ can be estimated by

$$\lambda(\|y^{k+1} - y^*_{\lambda}(x^k)\| + \|z^{k+1} - y^*(x^k)\|)$$

- To obtain $\|\nabla \mathcal{L}^*_{\lambda}(x^k) G_k\| = O(\epsilon)$, we need $O(\epsilon/\lambda) = O(\epsilon^2)$ accuracy of y^{k+1} and z^{k+1} .
- $T \simeq \epsilon^{-4}$ inner-loop iterations are required to have $O(\epsilon^2)$ accuracy of y^{k+1} and z^{k+1} .

Optimality of our algorithm 000000

Stochastic gradient descent

$$\mathcal{T} symp \epsilon^{-4}$$
 inner-loop iterations are required to have $\mathit{O}(\epsilon^2)$ accuracy of y^{k+1} and $z^{k+1}.$

- Let f be a L-smooth and μ -strongly convex function for some $\mu, L > 0$.
- $G(x,\xi)$ is an unbiased stochastic gradient estimator for f:

$$\mathbb{E}[G(x,\xi)] = \nabla f(x).$$

• The variance of the gradient estimation error is bounded:

$$\mathbb{E}[\|G(x,\xi)-\nabla f(x)\|^2] \leq \sigma^2.$$

Lemma

For $x_{t+1} \leftarrow x_t - \alpha G(x_t, \xi_t)$ and for all $0 \le t \le T$,

$$\mathbb{E}[\|x^{t} - x^{*}\|^{2}] \leq (1 - \mu\alpha)^{t} \|x^{0} - x^{*}\|^{2} + \frac{\alpha\sigma^{2}}{\mu}.$$

In particular, taking $\alpha = \frac{8 \log T}{\mu T}$, we have

$$\mathbb{E}[\|x^{T} - x^{*}\|^{2}] \leq \frac{1}{T^{4}} \|x^{0} - x^{*}\|^{2} + \frac{8\log T}{\mu^{2} T} \sigma^{2}.$$

Dohyun Kwon (University of Seoul / KIAS)

Optimality of our algorithm

Our main results

- **(**) Outer-loop updates x^k using $\nabla \mathcal{L}^*_{\lambda}(x^k)$ with K iterations.
- Inner-loop solves $y_{\lambda_k}^*(x^k)$, and $y^*(x^k)$ with T iterations.

Theorem (J. Kwon-D. Kwon-Lyu, ICML 2024)

Under suitable assumptions, step-sizes, $K \simeq \epsilon^{-2}$, and $T \simeq \epsilon^{-4}$,

- Our algorithm finds an ϵ -stationary point within $O(\epsilon^{-6})$ iterations.
- **9** If we additionally assume the stochastic smoothness as in the second order method, then our algorithm finds an ϵ -stationary point within $O(\epsilon^{-4})$ iterations.

•
$$\mathbb{E}[\|\hat{\nabla}g(x,y^1;\xi) - \hat{\nabla}g(x,y^2;\xi)\|^2] \le C \|y^1 - y^2\|^2$$

イロト イヨト イヨト

Optimality of our algorithm

Table of Contents

Bilevel optimization

Penalty method for stochastic bilevel optimization

Optimality of our algorithm

4 Further questions

イロン イヨン イヨン イヨ

Optimality of our algorithm 000000

Lower bound

Question

Are the convergence rates optimal?

- In (J. Kwon-D. Kwon-Lyu, ICML 2024), we provide the matching ϵ^{-6} lower bound on y*-aware oracles with finite $r \simeq \epsilon$.
- Under the same condition, ϵ^{-6} upper bound can be shown.

(a) < (a) < (b) < (b)

Optimality of our algorithm 000000

Lower bound

Definition $(y^*$ -Aware Oracle)

An oracle is y^* -aware, if there exists $r \in (0, \infty]$ such that for every query point (x, y), the following conditions hold.

- In addition to stochastic gradients, the oracle also returns $\hat{y}(x)$ such that $\|\hat{y}(x) y^*(x)\| \le r/2$
- Gradient estimators satisfy the assumptions only if $||y y^*(x)|| \le r$; otherwise, the returned gradient estimators can be arbitrary.
- If we take r = ∞, the additional estimator ŷ(x) is uninformative. We recover the usual first-order stochastic gradient oracle.
- The same upper bound holds for finite *r*.

イロト 不得 トイヨト イヨト

Optimality of our algorithm 000000

Lower bound

Definition $(y^*$ -Aware Oracle)

An oracle is y^* -aware, if there exists $r \in (0, \infty]$ such that for every query point (x, y), the following conditions hold.

- In addition to stochastic gradients, the oracle also returns $\hat{y}(x)$ such that $\|\hat{y}(x) y^*(x)\| \le r/2$
- Gradient estimators satisfy the assumptions only if $||y y^*(x)|| \le r$; otherwise, the returned gradient estimators can be arbitrary.
- If we take r = ∞, the additional estimator ŷ(x) is uninformative. We recover the usual first-order stochastic gradient oracle.
- The same upper bound holds for finite r.

イロト 不得 トイヨト イヨト

Non-convex lower level

• If g is not convex, then $y^*(x)$ and $y^*_{\lambda}(x)$ may not be uniquely determined.

- A solution set $T(x, \lambda) := \arg \min_y (\lambda^{-1}f(x, y) + g(x, y))$ may not be stable.
- In (J. Kwon-D. Kwon-Wright-Nowak, ICLR 2024), similar convergence results are given under the Lipschitz continuity of *T*.

イロト イヨト イヨト イヨト

Non-convex lower level

- If g is not convex, then $y^*(x)$ and $y^*_{\lambda}(x)$ may not be uniquely determined.
- A solution set $T(x, \lambda) := \arg \min_y (\lambda^{-1}f(x, y) + g(x, y))$ may not be stable.
- In (J. Kwon-D. Kwon-Wright-Nowak, ICLR 2024), similar convergence results are given under the Lipschitz continuity of *T*.

(I)

Optimality of our algorithm 000000

Summary

- We provide a complete finite-time analysis of the first-order method for bilevel optimization.
- Under a fair comparison, our proposed method is not necessarily slower than second-order ones.
- Lower bounds and non-convex cases are open.

• Further applications in large-scale machine learning problems?

• • • • • • • • • • •

Optimality of our algorithm 000000

Summary

- We provide a complete finite-time analysis of the first-order method for bilevel optimization.
- Under a fair comparison, our proposed method is not necessarily slower than second-order ones.
- Lower bounds and non-convex cases are open.

+

• Further applications in large-scale machine learning problems?

References

- Jeongyeol Kwon, Dohyun Kwon, and Hanbaek Lyu. On the Complexity of First-Order Methods in Stochastic Bilevel Optimization. The 41st International Conference on Machine Learning, PMLR 235:25784-25811. (ICML 2024)
- Jeongyeol Kwon, Dohyun Kwon, Steve Wright, and Robert Nowak. On Penalty Methods for Nonconvex Bilevel Optimization and First-Order Stochastic Approximation. The Twelfth International Conference on Learning Representations. (ICLR 2024, Spotlight)
- Jeongyeol Kwon, Dohyun Kwon, Steve Wright, and Robert Nowak. A Fully First-Order Method for Stochastic Bilevel Optimization. The 40th International Conference on Machine Learning, PMLR 202:18083-18113. (ICML 2023, Oral)

Thank you for your attention!

Dohyun Kwon (University of Seoul / KIAS)

イロト 不得 トイヨト イヨト