[Bilevel optimization](#page-2-0) [Penalty method for stochastic bilevel optimization](#page-15-0) [Optimality of our algorithm](#page-28-0) [Further questions](#page-38-0)
De San De San

A fully first-order method for stochastic bilevel optimization

Dohyun Kwon

Department of Mathematics, University of Seoul / Center for AI and Natural Sciences, KIAS

Nov 8, 2024

This talk is based on joint work with Jeongyeol Kwon, Hanbaek Lyu, Stephen Wright, and Robert Nowak (UW-Madison, USA).

 298

(□) () + ()

 \rightarrow \equiv

[Bilevel optimization](#page-2-0) [Penalty method for stochastic bilevel optimization](#page-15-0) [Optimality of our algorithm](#page-28-0) [Further questions](#page-38-0)
De San De San

Table of Contents

1 [Bilevel optimization](#page-2-0)

² [Penalty method for stochastic bilevel optimization](#page-15-0)

³ [Optimality of our algorithm](#page-28-0)

⁴ [Further questions](#page-38-0)

Dohyun Kwon (University of Seoul / KIAS) [fully first-order method for BO](#page-0-0) Nov 8, 2024 2 / 26

 299

メロメメ 倒す メミメメ 毛

Table of Contents

1 [Bilevel optimization](#page-2-0)

² [Penalty method for stochastic bilevel optimization](#page-15-0)

3 [Optimality of our algorithm](#page-28-0)

[Further questions](#page-38-0)

 299

メロメメ 倒 メメ ミメメ 毛

- Bilevel optimization (Colson et al., 2007) is a fundamental optimization problem that abstracts various applications characterized by two-level hierarchical structures.
- Consider the minimization problem:

$$
\min_{x \in \mathbb{R}^{d_x}} F(x) := f(x, y^*(x))
$$
\n
$$
\text{s.t.} \quad y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_y}} g(x, y), \tag{P}
$$

where $f, g : \mathbb{R}^{d_x} \times \mathbb{R}^{d_y} \to \mathbb{R}$ are continuously-differentiable functions.

There are various applications, including adversarial networks (Goodfellow et al., 2020; Gidel et al., 2018), game theory (Stackelberg et al., 1952), hyper-parameter optimization (Franceschi et al., 2018; Bao et al., 2021), model selection (Kunapuli et al., 2008; Giovannelli et al., 2021) and reinforcement learning (Konda & Tsitsiklis, 1999; Sutton & Barto, 2018).

 298

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

- Bilevel optimization (Colson et al., 2007) is a fundamental optimization problem that abstracts various applications characterized by two-level hierarchical structures.
- Consider the minimization problem:

```
min_{x \in \mathbb{R}^{d_x}} F(x) := f(x, y^*(x))s.t. y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_y}} g(x, y),
```
where f , $g : \mathbb{R}^{d_x} \times \mathbb{R}^{d_y} \to \mathbb{R}$ are continuously-differentiable functions.

There are various applications, including adversarial networks (Goodfellow et al., 2020; Gidel et al., 2018), game theory (Stackelberg et al., 1952), hyper-parameter optimization (Franceschi et al., 2018; Bao et al., 2021), model selection (Kunapuli et al., 2008; Giovannelli et al., 2021) and reinforcement learning (Konda & Tsitsiklis, 1999; Sutton & Barto, 2018).

 298

- Bilevel optimization (Colson et al., 2007) is a fundamental optimization problem that abstracts various applications characterized by two-level hierarchical structures.
- Consider the minimization problem:

```
min_{x \in \mathbb{R}^{d_x}} F(x) := f(x, y^*(x))s.t. y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_y}} g(x, y),
```
where f , $g : \mathbb{R}^{d_x} \times \mathbb{R}^{d_y} \to \mathbb{R}$ are continuously-differentiable functions.

There are various applications, including adversarial networks (Goodfellow et al., 2020; Gidel et al., 2018), game theory (Stackelberg et al., 1952), hyper-parameter optimization (Franceschi et al., 2018; Bao et al., 2021), model selection (Kunapuli et al., 2008; Giovannelli et al., 2021) and reinforcement learning (Konda & Tsitsiklis, 1999; Sutton & Barto, 2018).

 298

イロト イ押ト イヨト イヨトー

Bilevel optimization

$$
\min_{x \in \mathbb{R}^{d_x}} F(x) := f(x, y^*(x))
$$
\n
$$
\text{s.t.} \quad y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_y}} g(x, y). \tag{P}
$$

- The hyperobjective $F(x)$ depends on x both directly and indirectly via $y^*(x)$.
- $y^*(x)$ is a solution for the lower-level problem of minimizing another function g.
- Typically, we assume that the lower-level problem is strongly convex: $g(\bar{x}, y)$ is strongly convex in y for all $\bar{x} \in \mathbb{R}^{d_{\mathrm{x}}}.$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

 $min_{x \in \mathbb{R}^{d_x}}$ $F(x) := f(x, y^*(x))$ s.t. $y^*(x) \in \arg \min_{y \in \mathbb{R}^{d_y}} g(x, y)$.

- The hyperobjective $F(x)$ depends on x both directly and indirectly via $y^*(x)$.
- $y^*(x)$ is a solution for the lower-level problem of minimizing another function g.
- Typically, we assume that the lower-level problem is strongly convex: $g(\bar{x}, y)$ is strongly convex in y for all $\bar{x} \in \mathbb{R}^{d_{\mathrm{x}}}.$

 298

Problem

$$
\min_{x \in \mathbb{R}^{d_x}} F(x) := f(x, y^*(x))
$$
\n
$$
\text{s.t.} \quad y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_y}} g(x, y). \tag{P}
$$

Problem

Find an ϵ -stationary point: a point x satisfying $\|\nabla F(x)\| \leq \epsilon$.

The explicit expression of $\nabla F(x)$ can be derived from the implicit function theorem: \odot

$$
\nabla F(x) := \nabla_{x} f(x, y^{*}(x)) - \nabla_{xy}^{2} g(x, y^{*}(x)) (\nabla_{yy}^{2} g(x, y^{*}(x)))^{-1} \nabla_{y} f(x, y^{*}(x)).
$$

- \bullet Prior approaches require an explicit extraction of second-order information from g with a major focus on estimating the Jacobian and inverse Hessian efficiently with stochastic noises.
- Algorithms are not applicable to nonconvex objectives g and are hard to extend to the constrained case.

 299

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Problem

$$
\min_{x \in \mathbb{R}^{d_x}} F(x) := f(x, y^*(x))
$$
\n
$$
\text{s.t. } y^*(x) \in \arg \min_{y \in \mathbb{R}^{d_y}} g(x, y).
$$

Problem

Find an ϵ -stationary point: a point x satisfying $\|\nabla F(x)\| \leq \epsilon$.

• The explicit expression of $\nabla F(x)$ can be derived from the implicit function theorem:

$$
\nabla F(x) := \nabla_x f(x, y^*(x)) - \nabla^2_{xy} g(x, y^*(x)) (\nabla^2_{yy} g(x, y^*(x)))^{-1} \nabla_y f(x, y^*(x)).
$$

- \bullet Prior approaches require an explicit extraction of second-order information from g with a major focus on estimating the Jacobian and inverse Hessian efficiently with stochastic noises.
- Algorithms are not applicable to nonconvex objectives g and are hard to extend to the constrained case.

 298

 $\mathbf{A} \sqsubseteq \mathbf{A} \rightarrow \mathbf{A} \boxplus \mathbf{B} \rightarrow \mathbf{A} \boxplus \mathbf{B} \rightarrow \mathbf{A} \boxplus \mathbf{B}$

Problem

$$
\min_{x \in \mathbb{R}^{d_x}} F(x) := f(x, y^*(x))
$$
\n
$$
\text{s.t. } y^*(x) \in \arg \min_{y \in \mathbb{R}^{d_y}} g(x, y).
$$

Problem

Find an ϵ -stationary point: a point x satisfying $\|\nabla F(x)\| \leq \epsilon$.

• The explicit expression of $\nabla F(x)$ can be derived from the implicit function theorem:

$$
\nabla F(x) := \nabla_x f(x, y^*(x)) - \nabla^2_{xy} g(x, y^*(x)) (\nabla^2_{yy} g(x, y^*(x)))^{-1} \nabla_y f(x, y^*(x)).
$$

- \bullet Prior approaches require an explicit extraction of second-order information from g with a major focus on estimating the Jacobian and inverse Hessian efficiently with stochastic noises.
- Algorithms are not applicable to nonconvex objectives g and are hard to extend to the constrained case.

 298

 $\mathbf{A} \sqsubseteq \mathbf{A} \rightarrow \mathbf{A} \boxplus \mathbf{B} \rightarrow \mathbf{A} \boxplus \mathbf{B} \rightarrow \mathbf{A} \boxplus \mathbf{B}$

Our goal

$$
\min_{x \in \mathbb{R}^{d_x}} F(x) := f(x, y^*(x))
$$
\n
$$
\text{s.t.} \quad y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_y}} g(x, y). \tag{P}
$$

← ロ ▶ → イ 何 →

Goal

Develop a fully first-order approach for stochastic bilevel optimization. Find an ϵ -stationary solution of F using only first-order gradients of f and g .

• Some works only use first-order information, but these works either lack a complete finite-time analysis or are applicable only to deterministic functions.

Stochastic bilevel optimization

$$
\min_{x \in \mathbb{R}^{d_x}} F(x) := f(x, y^*(x))
$$
\n
$$
\text{s.t.} \quad y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_y}} g(x, y), \tag{P}
$$

. We consider the first-order algorithm class that accesses functions through first-order oracles that return estimators of first-order derivatives $\hat{\nabla}f(x, y; \zeta), \hat{\nabla}g(x, y; \xi)$ for a given query point (x, y) .

We assume that

The estimators are unbiased: α

> $\mathbb{E}[\hat{\nabla}f(x, y; \zeta)] = \nabla f(x, y),$ $\mathbb{E}[\hat{\nabla}g(x, y; \xi)] = \nabla g(x, y).$

The variance of the estimators are bounded:

 $\mathbb{E}[\|\hat{\nabla}f(x,y;\zeta)-\mathbb{E}[\nabla f(x,y;\zeta)]\|^2]\leq \sigma_f^2,$ $\mathbb{E}[\Vert \hat{\nabla}g(x,y;\xi)-\mathbb{E}[\nabla g(x,y;\xi)]\Vert^2]\leq \sigma_g^2.$

for constants $\sigma_f^2 > 0$ and $\sigma_g^2 > 0$.

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Stochastic bilevel optimization

min $x\in\mathbb{R}^{d_x}$ $F(x) := f(x, y^*(x))$ s.t. $y^*(x) \in \arg \min_{y \in \mathbb{R}^{d_y}} g(x, y),$

. We consider the first-order algorithm class that accesses functions through first-order oracles that return estimators of first-order derivatives $\hat{\nabla}f(x, y; \zeta), \hat{\nabla}g(x, y; \zeta)$ for a given query point (x, y) .

We assume that

• The estimators are unbiased:

 $\mathbb{E}[\hat{\nabla}f(x, y; \zeta)] = \nabla f(x, y),$ $\mathbb{E}[\hat{\nabla}g(x, y; \xi)] = \nabla g(x, y).$

The variance of the estimators are bounded:

 $\mathbb{E}[\|\hat{\nabla}f(x,y;\zeta)-\mathbb{E}[\nabla f(x,y;\zeta)]\|^2]\leq \sigma_f^2,$ $\mathbb{E}[\Vert \hat{\nabla}g(x,y;\xi)-\mathbb{E}[\nabla g(x,y;\xi)]\Vert^2]\leq \sigma_g^2.$

for constants $\sigma_f^2 > 0$ and $\sigma_g^2 > 0$.

 QQ

Stochastic bilevel optimization

$$
\min_{x \in \mathbb{R}^{d_x}} F(x) := f(x, y^*(x))
$$
\n
$$
\text{s.t.} \quad y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_y}} g(x, y),
$$

. We consider the first-order algorithm class that accesses functions through first-order oracles that return estimators of first-order derivatives $\hat{\nabla}f(x, y; \zeta), \hat{\nabla}g(x, y; \xi)$ for a given query point (x, y) .

We assume that

• The estimators are unbiased:

$$
\mathbb{E}[\hat{\nabla}f(x,y;\zeta)]=\nabla f(x,y),
$$

$$
\mathbb{E}[\hat{\nabla}g(x,y;\xi)]=\nabla g(x,y),
$$

• The variance of the estimators are bounded:

$$
\mathbb{E}[\|\hat{\nabla}f(x,y;\zeta)-\mathbb{E}[\nabla f(x,y;\zeta)]\|^2] \leq \sigma_f^2,
$$

$$
\mathbb{E}[\|\hat{\nabla}g(x,y;\xi)-\mathbb{E}[\nabla g(x,y;\xi)]\|^2] \leq \sigma_g^2.
$$

for constants $\sigma_f^2 > 0$ and $\sigma_g^2 > 0$.

 298

イロト イ押 トイヨト イヨ

Table of Contents

¹ [Bilevel optimization](#page-2-0)

² [Penalty method for stochastic bilevel optimization](#page-15-0)

3 [Optimality of our algorithm](#page-28-0)

[Further questions](#page-38-0)

 299

メロメメ 倒 メメ ミメメ 毛

$$
\min_{x \in \mathbb{R}^{d_x}} F(x) := f(x, y^*(x)) \quad \text{s.t.} \quad y^*(x) \in \arg \min_{y \in \mathbb{R}^{d_y}} g(x, y), \tag{P}
$$

 \bullet The starting point of our approach is to convert (P) (P) (P) to an equivalent constrained single-level version:

$$
\min_{x \in X, y \in \mathbb{R}^{d_y}} f(x, y) \quad \text{s.t.} \quad g(x, y) - g^*(x) \leq 0,
$$

where $g^*(x) := g(x, y^*(x)).$

• The Lagrangian \mathcal{L}_{λ} with multiplier $\lambda > 0$ is

$$
\mathcal{L}_{\lambda}(x,y):=f(x,y)+\lambda(g(x,y)-g^*(x)).
$$

• The gradient of \mathcal{L}_{λ} can be computed only with gradients of f and g, and thus the entire procedure can be implemented using only first-order derivatives. This reformulation has been attempted by (Liu et al., 2021; Sow et al., 2022; Ye et al., 2022)).

 298

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

[Penalty method for stochastic bilevel optimization](#page-15-0) Community of our algorithm Penalty method for stochastic bilevel optimization [Optimality of our algorithm](#page-28-0) **COMPOOP**

Penalty method

$$
\min_{x \in \mathbb{R}^{d_x}} F(x) := f(x, y^*(x)) \quad \text{s.t.} \quad y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_y}} g(x, y),
$$

 \bullet The starting point of our approach is to convert (P) (P) (P) to an equivalent constrained single-level version:

$$
\min_{x \in X, y \in \mathbb{R}^{d_y}} f(x, y) \quad \text{s.t.} \quad g(x, y) - g^*(x) \leq 0,
$$

where $g^*(x) := g(x, y^*(x)).$

• The Lagrangian \mathcal{L}_{λ} with multiplier $\lambda > 0$ is

$$
\mathcal{L}_{\lambda}(x,y):=f(x,y)+\lambda(g(x,y)-g^*(x)).
$$

• The gradient of \mathcal{L}_{λ} can be computed only with gradients of f and g, and thus the entire procedure can be implemented using only first-order derivatives. This reformulation has been attempted by (Liu et al., 2021; Sow et al., 2022; Ye et al., 2022)).

 298

Difficulties in penalty method

$$
\min_{x \in \mathbb{R}^{d_x}} F(x) := f(x, y^*(x)) \quad \text{s.t.} \quad y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_y}} g(x, y), \tag{P}
$$

$$
\mathcal{L}_{\lambda}(x,y):=f(x,y)+\lambda(g(x,y)-g^*(x)).
$$

- \bullet The challenge is to find an appropriate value of the multiplier λ . Unfortunately, the desired solution $x^* = \arg \min_x F(x)$ can only be obtained at $\lambda = \infty$.
- With $\lambda = \infty$, $\mathcal{L}_{\lambda}(x, y)$ has unbounded smoothness, which prevents us from employing gradient-descent style approaches.
- None of the previously proposed algorithms can obtain a complete finite time analysis for the original problem min_x $F(x)$ without access to second derivatives of g.

 298

Difficulties in penalty method

$$
\min_{x \in \mathbb{R}^{d_x}} \quad F(x) := f(x, y^*(x)) \quad \text{s.t.} \quad y^*(x) \in \arg \min_{y \in \mathbb{R}^{d_y}} g(x, y),
$$

$$
\mathcal{L}_{\lambda}(x,y):=f(x,y)+\lambda(g(x,y)-g^*(x)).
$$

- \bullet The challenge is to find an appropriate value of the multiplier λ . Unfortunately, the desired solution $x^* = \arg \min_x F(x)$ can only be obtained at $\lambda = \infty$.
- With $\lambda = \infty$, $\mathcal{L}_{\lambda}(x, y)$ has unbounded smoothness, which prevents us from employing gradient-descent style approaches.
- None of the previously proposed algorithms can obtain a complete finite time analysis for the original problem min_x $F(x)$ without access to second derivatives of g.

 298

$$
\min_{x \in \mathbb{R}^{d_x}} F(x) := f(x, y^*(x)) \quad \text{s.t.} \quad y^*(x) \in \arg \min_{y \in \mathbb{R}^{d_y}} g(x, y), \tag{P}
$$

$$
\mathcal{L}_{\lambda}(x,y):=f(x,y)+\lambda(g(x,y)-g(x,y^*(x))).
$$

Set $\mathcal{L}_{\lambda}^{*}(x) := \min_{y} \mathcal{L}_{\lambda}(x, y).$

F can be approximated by $\mathcal{L}^*_{\lambda}(x)$ in the sense that

$$
\|\nabla F(x) - \nabla \mathcal{L}_{\lambda}^{*}(x)\| \le O(1/\lambda)
$$

$$
\nabla \mathcal{L}_{\lambda}^{*}(x) = \nabla_{x} f(x, y_{\lambda}^{*}(x)) + \lambda (\nabla_{x} g(x, y_{\lambda}^{*}(x)) - \nabla_{x} g(x, y^{*}(x)))
$$

and $y^*_{\lambda}(x) := \arg\min_{y} (\lambda^{-1}f(x,y) + g(x,y)).$

Therefore, we can find an ϵ -stationary point of $\mathcal{L}^*_{\lambda}(x)$, by running a stochastic gradient descent (SGD) style method on $\mathcal{L}^*_{\lambda}(x)$ with $\lambda = O(\epsilon^{-1}).$ メロメメ 倒 メメ ミメメ 毛

Dohyun Kwon (University of Seoul / KIAS) [fully first-order method for BO](#page-0-0) Nov 8, 2024 12 / 26

Our approach

Recall

$$
\min_{x \in \mathbb{R}^{d_x}} F(x) := f(x, y^*(x)) \quad \text{s.t.} \quad y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_y}} g(x, y),
$$

$$
\mathcal{L}_{\lambda}(x,y):=f(x,y)+\lambda(g(x,y)-g(x,y^*(x))).
$$

Set $\mathcal{L}_{\lambda}^{*}(x) := \min_{y} \mathcal{L}_{\lambda}(x, y).$

F can be approximated by $\mathcal{L}^*_{\lambda}(x)$ in the sense that

$$
\|\nabla F(x) - \nabla \mathcal{L}_{\lambda}^{*}(x)\| \le O(1/\lambda)
$$

$$
\nabla \mathcal{L}_{\lambda}^{*}(x) = \nabla_{x} f(x, y_{\lambda}^{*}(x)) + \lambda (\nabla_{x} g(x, y_{\lambda}^{*}(x)) - \nabla_{x} g(x, y^{*}(x)))
$$

and $y^*_{\lambda}(x) := \arg\min_{y} (\lambda^{-1}f(x,y) + g(x,y)).$

Therefore, we can find an ϵ -stationary point of $\mathcal{L}^*_{\lambda}(x)$, by running a stochastic gradient descent (SGD) \oplus style method on $\mathcal{L}^*_{\lambda}(x)$ with $\lambda = O(\epsilon^{-1}).$ メロメ メ御 メメ ヨメ メヨメ

Dohyun Kwon (University of Seoul / KIAS) [fully first-order method for BO](#page-0-0) Nov 8, 2024 12 / 26

Our approach

Recall

$$
\min_{x \in \mathbb{R}^{d_x}} F(x) := f(x, y^*(x)) \quad \text{s.t.} \quad y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_y}} g(x, y),
$$

$$
\mathcal{L}_{\lambda}(x,y):=f(x,y)+\lambda(g(x,y)-g(x,y^*(x))).
$$

Set $\mathcal{L}_{\lambda}^{*}(x) := \min_{y} \mathcal{L}_{\lambda}(x, y).$

Lemma (J. Kwon-D. Kwon-Wright-Nowak, ICML 2023 Oral)

F can be approximated by $\mathcal{L}^*_{\lambda}(x)$ in the sense that

$$
\|\nabla F(x)-\nabla \mathcal{L}_{\lambda}^*(x)\|\leq O(1/\lambda)
$$

where

$$
\nabla \mathcal{L}_{\lambda}^{*}(x) = \nabla_{x} f(x, y_{\lambda}^{*}(x)) + \lambda (\nabla_{x} g(x, y_{\lambda}^{*}(x)) - \nabla_{x} g(x, y^{*}(x))),
$$

and $y^*_{\lambda}(x) := \arg min_y \left(\lambda^{-1} f(x, y) + g(x, y) \right)$.

Therefore, we can find an ϵ -stationary point of $\mathcal{L}^*_{\lambda}(x)$, by running a stochastic gradient descent (SGD) \oplus style method on $\mathcal{L}^*_{\lambda}(x)$ with $\lambda = O(\epsilon^{-1}).$ メロトメ 御 トメ ミトメ ミト

Dohyun Kwon (University of Seoul / KIAS) [fully first-order method for BO](#page-0-0) Nov 8, 2024 12 / 26

Our approach

Recall

$$
\min_{x \in \mathbb{R}^{d_x}} F(x) := f(x, y^*(x)) \quad \text{s.t.} \quad y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_y}} g(x, y),
$$

$$
\mathcal{L}_{\lambda}(x,y):=f(x,y)+\lambda(g(x,y)-g(x,y^*(x))).
$$

Set $\mathcal{L}_{\lambda}^{*}(x) := \min_{y} \mathcal{L}_{\lambda}(x, y).$

Lemma (J. Kwon-D. Kwon-Wright-Nowak, ICML 2023 Oral)

F can be approximated by $\mathcal{L}^*_{\lambda}(x)$ in the sense that

$$
\|\nabla F(x)-\nabla \mathcal{L}_{\lambda}^*(x)\|\leq O(1/\lambda)
$$

where

$$
\nabla \mathcal{L}_{\lambda}^{*}(x) = \nabla_{x} f(x, y_{\lambda}^{*}(x)) + \lambda (\nabla_{x} g(x, y_{\lambda}^{*}(x)) - \nabla_{x} g(x, y^{*}(x))),
$$

and $y^*_{\lambda}(x) := \arg min_y \left(\lambda^{-1} f(x, y) + g(x, y) \right)$.

Therefore, we can find an ϵ -stationary point of $\mathcal{L}^*_{\lambda}(x)$, by running a stochastic gradient descent (SGD) style method on $\mathcal{L}^*_{\lambda}(x)$ with $\lambda = O(\epsilon^{-1}).$ メロメメ 倒 メメ きょくきょう

[Bilevel optimization](#page-2-0) **[Penalty method for stochastic bilevel optimization](#page-15-0)** [Optimality of our algorithm](#page-28-0) [Further questions](#page-38-0)
Decode of the concerned of the con

Our proposed algorithm

Recall
$$
y^*(x) := \arg \min_y g(x, y), y^*_\lambda(x) := \arg \min_y (\lambda^{-1} f(x, y) + g(x, y)),
$$
 and

$$
\nabla \mathcal{L}^*_\lambda(x) = \nabla_x f(x, y^*_\lambda(x)) + \lambda (\nabla_x g(x, y^*_\lambda(x)) - \nabla_x g(x, y^*(x))).
$$

• Outer-loop updates
$$
x^k
$$
 using $\nabla \mathcal{L}^*_{\lambda}(x^k)$: $x^{k+1} = x^k - \alpha \hat{G}_k$ where

$$
G_k := \nabla_x f(x^k, y^{k+1}) + \lambda (\nabla_x g(x^k, y^{k+1}) - \nabla_x g(x^k, z^{k+1})).
$$

● Inner-loop solves $y^*_{\lambda_k}(x^k)$, and $y^*(x^k)$ (approximately): y^{k+1} and z^{k+1} are the estimates of $y^*_\lambda(x^k)$ and $y^*(x^k)$ at the k^{th} iteration, respectively

イロト イ何 ト イヨ ト イヨ

[Bilevel optimization](#page-2-0) **[Penalty method for stochastic bilevel optimization](#page-15-0)** [Optimality of our algorithm](#page-28-0) [Further questions](#page-38-0)
Decode of the concerned of the con

Our proposed algorithm

Recall
$$
y^*(x) := \arg \min_y g(x, y), y^*_\lambda(x) := \arg \min_y (\lambda^{-1} f(x, y) + g(x, y)),
$$
 and

$$
\nabla \mathcal{L}^*_\lambda(x) = \nabla_x f(x, y^*_\lambda(x)) + \lambda (\nabla_x g(x, y^*_\lambda(x)) - \nabla_x g(x, y^*(x))).
$$

\n- Outer-loop updates
$$
x^k
$$
 using $\nabla \mathcal{L}^*_\lambda(x^k)$: $x^{k+1} = x^k - \alpha \hat{G}_k$ where
\n- $G_k := \nabla_x f(x^k, y^{k+1}) + \lambda (\nabla_x g(x^k, y^{k+1}) - \nabla_x g(x^k, z^{k+1}))$.
\n

● Inner-loop solves $y_{\lambda_k}^*(x^k)$, and $y^*(x^k)$ (approximately): y^{k+1} and z^{k+1} are the estimates of $y^*_\lambda(x^k)$ and $y^*(x^k)$ at the k^{th} iteration, respectively

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

[Bilevel optimization](#page-2-0) **[Penalty method for stochastic bilevel optimization](#page-15-0)** [Optimality of our algorithm](#page-28-0) [Further questions](#page-38-0)
Decode of the concerned of the con

Our proposed algorithm

Recall
$$
y^*(x) := \arg \min_y g(x, y), y^*_\lambda(x) := \arg \min_y (\lambda^{-1} f(x, y) + g(x, y)),
$$
 and
\n
$$
\nabla \mathcal{L}^*_\lambda(x) = \nabla_x f(x, y^*_\lambda(x)) + \lambda (\nabla_x g(x, y^*_\lambda(x)) - \nabla_x g(x, y^*(x))).
$$

O Outer-loop updates
$$
x^k
$$
 using $\nabla \mathcal{L}^*_{\lambda}(x^k)$: $x^{k+1} = x^k - \alpha \hat{G}_k$ where

$$
G_k := \nabla_x f(x^k, y^{k+1}) + \lambda (\nabla_x g(x^k, y^{k+1}) - \nabla_x g(x^k, z^{k+1})).
$$

) Inner-loop solves $y_{\lambda_k}^*(x^k)$, and $y^*(x^k)$ (approximately): y^{k+1} and z^{k+1} are the estimates of $y_\lambda^*(x^k)$ and $y^*(x^k)$ at the k^{th} iteration, respectively

イロト イ押 トイヨ トイヨト

Our main results

Theorem (J. Kwon-D. Kwon-Wright-Nowak, ICML 2023 Oral)

Under suitable assumptions and step-sizes, the following convergence results hold.

- \bf{D} If stochastic noises are present in both upper-level objective f and lower-level objective g (i.e., $\sigma_f^2,\sigma_g^2>0$), then our algorithm finds an ϵ -stationary point within $O(\epsilon^{-7})$ iterations.
- \bullet If we have access to exact information about f and g (i.e., $\sigma^2_f=\sigma^2_g=0$), then our algorithm finds an ϵ -stationary point within $O(\epsilon^{-3})$ iterations.

イロト イ押ト イヨト イヨ

 Ω

Table of Contents

¹ [Bilevel optimization](#page-2-0)

² [Penalty method for stochastic bilevel optimization](#page-15-0)

3 [Optimality of our algorithm](#page-28-0)

[Further questions](#page-38-0)

 299

メロメメ 倒 メメ ミメメ 毛

[Bilevel optimization](#page-2-0) [Penalty method for stochastic bilevel optimization](#page-15-0) **[Optimality of our algorithm](#page-28-0) Fur**ther questions
De San College College

K ロ ▶ K 何 ▶

 \mathbf{A} . The first set

Next questions

Question

- **4** Are the convergence rates optimal?
- 2 Are the first-order methods necessarily slower than second-order methods?
- Under the additional assumption, it is known that the second-order methods find the ϵ -stationary point within $O(\epsilon^{-4})$.

[Bilevel optimization](#page-2-0) [Penalty method for stochastic bilevel optimization](#page-15-0) **[Optimality of our algorithm](#page-28-0)** [Further questions](#page-38-0)
De Society of De Society of Optimality of the Society of Optimality of Optimality of Optimality of Opt

Deterministic case

Inner-loop

Solve $y_{\lambda_k}^*(x^k)$, and $y^*(x^k)$ (approximately).

• Indeed, these are convex optimization problems for large enough $\lambda > 0$:

$$
y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_y}} g(x, y) \text{ and } y^*_\lambda(x) := \arg\min_{y} \left(\lambda^{-1} f(x, y) + g(x, y) \right).
$$

Using this idea, (Chen et al., 2024) improves the complexity of our proposed algorithm from $O(\epsilon^{-3})$ to

イロト イ押 トイヨ トイヨト

[Bilevel optimization](#page-2-0) [Penalty method for stochastic bilevel optimization](#page-15-0) **[Optimality of our algorithm](#page-28-0)** [Further questions](#page-38-0)
De Society of De Society of Optimality of the Society of Optimality of Optimality of Optimality of Opt

Deterministic case

Inner-loop

Solve $y_{\lambda_k}^*(x^k)$, and $y^*(x^k)$ (approximately).

• Indeed, these are convex optimization problems for large enough $\lambda > 0$:

$$
y^*(x) \in \arg\min_{y \in \mathbb{R}^{d_y}} g(x, y) \text{ and } y^*_\lambda(x) := \arg\min_{y} \left(\lambda^{-1} f(x, y) + g(x, y) \right).
$$

Using this idea, (Chen et al., 2024) improves the complexity of our proposed algorithm from $O(\epsilon^{-3})$ to $O(\epsilon^{-2}\log(1/\epsilon))$.

イロト イ押 トイヨ トイヨト

[Bilevel optimization](#page-2-0) [Penalty method for stochastic bilevel optimization](#page-15-0) **[Optimality of our algorithm](#page-28-0)** [Further questions](#page-38-0) on Optimality of our algorithm Further questions on Optimality of our algorithm COOOOOOOOOOOOOOOOOOOOO

Stochastic case: optimal number of iterations

Outer-loop

Update x^k using $\nabla \mathcal{L}^*_{\lambda}(x^k)$:

$$
x^{k+1} = x^k - \alpha \hat{G}_k.
$$

$$
\nabla \mathcal{L}_{\lambda}^{*}(x^{k}) = \nabla_{x} f(x^{k}, y_{\lambda}^{*}(x^{k})) + \lambda (\nabla_{x} g(x^{k}, y_{\lambda}^{*}(x^{k})) - \nabla_{x} g(x^{k}, y^{*}(x^{k}))).
$$

$$
G_k := \nabla_x f(x^k, y^{k+1}) + \lambda (\nabla_x g(x^k, y^{k+1}) - \nabla_x g(x^k, z^{k+1}))
$$

 $\|\nabla \mathcal{L}_{\lambda}^*(x^k) - G_k\|$ can be estimated by

$$
\lambda(||y^{k+1} - y_{\lambda}^*(x^k)|| + ||z^{k+1} - y^*(x^k)||)
$$

To obtain $\|\nabla \mathcal{L}_{\lambda}^*(x^k) - G_k\| = O(\epsilon)$, we need $O(\epsilon/\lambda) = O(\epsilon^2)$ accuracy of y^{k+1} and z^{k+1} .

 $T \asymp \epsilon^{-4}$ inner-loop iterations are required to have $O(\epsilon^2)$ accuracy of y^{k+1} and z^{k+1} z^{k+1} [.](#page-31-0)

Stochastic case: optimal number of iterations

Outer-loop

Update x^k using $\nabla \mathcal{L}^*_{\lambda}(x^k)$:

$$
x^{k+1} = x^k - \alpha \hat{G}_k.
$$

Comparing

$$
\nabla \mathcal{L}_{\lambda}^{*}(x^{k}) = \nabla_{x} f(x^{k}, y_{\lambda}^{*}(x^{k})) + \lambda (\nabla_{x} g(x^{k}, y_{\lambda}^{*}(x^{k})) - \nabla_{x} g(x^{k}, y^{*}(x^{k}))).
$$

and

$$
G_k := \nabla_x f(x^k, y^{k+1}) + \lambda (\nabla_x g(x^k, y^{k+1}) - \nabla_x g(x^k, z^{k+1}))
$$

 $\|\nabla \mathcal{L}_{\lambda}^*(x^k) - G_k\|$ can be estimated by

$$
\lambda(\|y^{k+1}-y^*_\lambda(x^k)\|+\|z^{k+1}-y^*(x^k)\|)
$$

To obtain $\|\nabla \mathcal{L}_{\lambda}^*(x^k) - G_k\| = O(\epsilon)$, we need $O(\epsilon/\lambda) = O(\epsilon^2)$ accuracy of y^{k+1} and z^{k+1} .

 $T \asymp \epsilon^{-4}$ inner-loop iterations are required to have $O(\epsilon^2)$ accuracy of y^{k+1} and z^{k+1} z^{k+1} [.](#page-31-0)

Stochastic case: optimal number of iterations

Outer-loop

Update x^k using $\nabla \mathcal{L}^*_{\lambda}(x^k)$:

$$
x^{k+1} = x^k - \alpha \hat{G}_k.
$$

Comparing

$$
\nabla \mathcal{L}_{\lambda}^{*}(x^{k}) = \nabla_{x} f(x^{k}, y_{\lambda}^{*}(x^{k})) + \lambda (\nabla_{x} g(x^{k}, y_{\lambda}^{*}(x^{k})) - \nabla_{x} g(x^{k}, y^{*}(x^{k}))).
$$

and

$$
G_k := \nabla_x f(x^k, y^{k+1}) + \lambda (\nabla_x g(x^k, y^{k+1}) - \nabla_x g(x^k, z^{k+1}))
$$

 $\|\nabla \mathcal{L}_{\lambda}^*(x^k) - G_k\|$ can be estimated by

$$
\lambda(||y^{k+1} - y_{\lambda}^*(x^k)|| + ||z^{k+1} - y^*(x^k)||)
$$

To obtain $\|\nabla \mathcal{L}_{\lambda}^*(x^k) - G_k\| = O(\epsilon)$, we need $O(\epsilon/\lambda) = O(\epsilon^2)$ accuracy of y^{k+1} and z^{k+1} .

 $T \asymp \epsilon^{-4}$ inner-loop iterations are required to have $O(\epsilon^2)$ accuracy of y^{k+1} and z^{k+1} z^{k+1} [.](#page-31-0)

Stochastic case: optimal number of iterations

Outer-loop

Update x^k using $\nabla \mathcal{L}^*_{\lambda}(x^k)$:

$$
x^{k+1} = x^k - \alpha \hat{G}_k.
$$

Comparing

$$
\nabla \mathcal{L}_{\lambda}^{*}(x^{k}) = \nabla_{x} f(x^{k}, y_{\lambda}^{*}(x^{k})) + \lambda (\nabla_{x} g(x^{k}, y_{\lambda}^{*}(x^{k})) - \nabla_{x} g(x^{k}, y^{*}(x^{k}))).
$$

and

$$
G_k := \nabla_x f(x^k, y^{k+1}) + \lambda (\nabla_x g(x^k, y^{k+1}) - \nabla_x g(x^k, z^{k+1}))
$$

 $\|\nabla \mathcal{L}_{\lambda}^*(x^k) - G_k\|$ can be estimated by

$$
\lambda(\|y^{k+1}-y^*_\lambda(x^k)\|+\|z^{k+1}-y^*(x^k)\|)
$$

- To obtain $\|\nabla \mathcal{L}_{\lambda}^*(x^k) G_k\| = O(\epsilon)$, we need $O(\epsilon/\lambda) = O(\epsilon^2)$ accuracy of y^{k+1} and z^{k+1} .
- $T \asymp \epsilon^{-4}$ inner-loop iterations are required to have $O(\epsilon^2)$ accuracy of y^{k+1} and z^{k+1} z^{k+1} [.](#page-31-0)

Stochastic gradient descent

$$
T \approx \epsilon^{-4}
$$
 inner-loop iterations are required to have $O(\epsilon^2)$ accuracy of y^{k+1} and z^{k+1} .

• Let f be a L-smooth and μ -strongly convex function for some μ , $L > 0$. \bullet $G(x, \xi)$ is an unbiased stochastic gradient estimator for f:

$$
\mathbb{E}[G(x,\xi)]=\nabla f(x).
$$

• The variance of the gradient estimation error is bounded:

$$
\mathbb{E}[\|G(x,\xi)-\nabla f(x)\|^2]\leq \sigma^2.
$$

Lemma

For $x_{t+1} \leftarrow x_t - \alpha G(x_t, \xi_t)$ and for all $0 \le t \le T$,

$$
\mathbb{E}[\|x^{t}-x^{*}\|^{2}]\leq (1-\mu\alpha)^{t}\|x^{0}-x^{*}\|^{2}+\frac{\alpha\sigma^{2}}{\mu}.
$$

In particular, taking $\alpha = \frac{8 \log T}{\mu T}$, we have

$$
\mathbb{E}[\|x^T - x^*\|^2] \le \frac{1}{T^4} \|x^0 - x^*\|^2 + \frac{8 \log T}{\mu^2 T} \sigma^2.
$$

Dohyun Kwon (University of Seoul / KIAS) [fully first-order method for BO](#page-0-0) Nov 8, 2024 19 / 26

Our main results

- Outer-loop updates x^k using $\nabla \mathcal{L}^*_{\lambda}(x^k)$ with K iterations.
- **2** Inner-loop solves $y_{\lambda_k}^*(x^k)$, and $y^*(x^k)$ with $\mathcal T$ iterations.

Theorem (J. Kwon-D. Kwon-Lyu, ICML 2024)

Under suitable assumptions, step-sizes, $K \asymp \epsilon^{-2}$, and $T \asymp \epsilon^{-4}$,

- \textbf{D} Our algorithm finds an $\epsilon\text{-}$ stationary point within $O(\epsilon^{-6})$ iterations.
- ² If we additionally assume the stochastic smoothness as in the second order method, then our algorithm finds an ϵ -stationary point within $O(\epsilon^{-4})$ iterations.

•
$$
\mathbb{E}[\|\hat{\nabla}g(x, y^1; \xi) - \hat{\nabla}g(x, y^2; \xi)\|^2] \le C\|y^1 - y^2\|^2
$$

イロト イ押ト イヨト イヨ

 Ω

[Bilevel optimization](#page-2-0) [Penalty method for stochastic bilevel optimization](#page-15-0) [Optimality of our algorithm](#page-28-0) **[Further questions](#page-38-0)**
Decode **Cologie Cologie**

Table of Contents

¹ [Bilevel optimization](#page-2-0)

² [Penalty method for stochastic bilevel optimization](#page-15-0)

3 [Optimality of our algorithm](#page-28-0)

⁴ [Further questions](#page-38-0)

 299

メロメメ 倒 メメ ミメメ 毛

[Bilevel optimization](#page-2-0) [Penalty method for stochastic bilevel optimization](#page-15-0) [Optimality of our algorithm](#page-28-0) **[Further questions](#page-38-0)**
Decode **Optimality of the Contract of Optimality of the Contract of Optimality of Optimality of Optima**

Lower bound

Question

Are the convergence rates optimal?

- In (J. Kwon-D. Kwon-Lyu, ICML 2024), we provide the matching ϵ^{-6} lower bound on y*-aware oracles with finite $r \asymp \epsilon$.
- \bullet Under the same condition, ϵ^{-6} upper bound can be shown.

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \bigcap \mathbb{R} \right. \right\} & \left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \end{array} \right. \right. \right. \end{array}$

Lower bound

Definition (y [∗]-Aware Oracle)

An oracle is y*-aware, if there exists $r\in (0,\infty]$ such that for every query point (x,y) , the following conditions hold.

- In addition to stochastic gradients, the oracle also returns $\hat{y}(x)$ such that $\|\hat{y}(x) y^*(x)\| \le r/2$
- Gradient estimators satisfy the assumptions only if $||y y^*(x)|| \le r$; otherwise, the returned gradient estimators can be arbitrary.
- If we take $r = \infty$, the additional estimator $\hat{y}(x)$ is uninformative. We recover the usual first-order stochastic gradient oracle.
- \bullet The same upper bound holds for finite r .

 298

Lower bound

Definition (y [∗]-Aware Oracle)

An oracle is y*-aware, if there exists $r\in (0,\infty]$ such that for every query point (x,y) , the following conditions hold.

- In addition to stochastic gradients, the oracle also returns $\hat{y}(x)$ such that $\|\hat{y}(x) y^*(x)\| \le r/2$
- Gradient estimators satisfy the assumptions only if $||y y^*(x)|| \le r$; otherwise, the returned gradient estimators can be arbitrary.
- If we take $r = \infty$, the additional estimator $\hat{y}(x)$ is uninformative. We recover the usual first-order stochastic gradient oracle.
- \bullet The same upper bound holds for finite r.

 298

Non-convex lower level

If g is not convex, then $y^*(x)$ and $y^*_{\lambda}(x)$ may not be uniquely determined.

- A solution set $\mathcal{T}(x,\lambda) := \mathsf{arg\,min}_\mathcal{Y} \left(\lambda^{-1} f(x,\mathcal{y}) + g(x,\mathcal{y})\right)$ may not be stable.
- In (J. Kwon-D. Kwon-Wright-Nowak, ICLR 2024), similar convergence results are given under the Lipschitz continuity of T.

イロト イ何 ト イヨ ト イヨ

Non-convex lower level

- If g is not convex, then $y^*(x)$ and $y^*_{\lambda}(x)$ may not be uniquely determined.
- A solution set $\mathcal{T}(x,\lambda) := \mathsf{arg\,min}_\mathcal{Y} \left(\lambda^{-1} f(x,\mathcal{y}) + g(x,\mathcal{y})\right)$ may not be stable.
- In (J. Kwon-D. Kwon-Wright-Nowak, ICLR 2024), similar convergence results are given under the Lipschitz continuity of T.

 298

イロト イ押 トイヨト イヨ

[Bilevel optimization](#page-2-0) [Penalty method for stochastic bilevel optimization](#page-15-0) [Optimality of our algorithm](#page-28-0) **[Further questions](#page-38-0)**
Decode **Optimality of the Contract of Optimality of the Contract of Optimality of Optimality of Optima**

Summary

- We provide a complete finite-time analysis of the first-order method for bilevel optimization.
- Under a fair comparison, our proposed method is not necessarily slower than second-order ones.

 $^{+}$

Lower bounds and non-convex cases are open.

Further applications in large-scale machine learning problems?

イロト イ押ト イヨト イ

[Bilevel optimization](#page-2-0) [Penalty method for stochastic bilevel optimization](#page-15-0) [Optimality of our algorithm](#page-28-0) **[Further questions](#page-38-0)**
Decode **Optimality of the Contract of Optimality of the Contract of Optimality of Optimality of Optima**

(□) () + ()

 \mathbf{A} . The first set

Summary

- We provide a complete finite-time analysis of the first-order method for bilevel optimization.
- Under a fair comparison, our proposed method is not necessarily slower than second-order ones.
- Lower bounds and non-convex cases are open.

 $+$

• Further applications in large-scale machine learning problems?

(□) () + ()

 $x = x - x$

References

- Jeongyeol Kwon, Dohyun Kwon, and Hanbaek Lyu. On the Complexity of First-Order Methods in Stochastic Bilevel Optimization. The 41st International Conference on Machine Learning, PMLR 235:25784-25811. (ICML 2024)
- Jeongyeol Kwon, Dohyun Kwon, Steve Wright, and Robert Nowak. On Penalty Methods for Nonconvex Bilevel Optimization and First-Order Stochastic Approximation. The Twelfth International Conference on Learning Representations. (ICLR 2024, Spotlight)
- Jeongyeol Kwon, Dohyun Kwon, Steve Wright, and Robert Nowak. A Fully First-Order Method for Stochastic Bilevel Optimization. The 40th International Conference on Machine Learning, PMLR 202:18083-18113. (ICML 2023, Oral)

 QQ

Thank you for your attention!

 299

メロトメ 倒 トメ ミトメ ミト