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Bilevel optimization

Bilevel optimization (Colson et al., 2007) is a fundamental optimization problem that abstracts various
applications characterized by two-level hierarchical structures.

Consider the minimization problem:

min
x∈Rdx

F (x) := f (x , y∗(x))

s.t. y∗(x) ∈ arg min
y∈Rdy

g(x , y), (P)

where f , g : Rdx × Rdy → R are continuously-differentiable functions.

There are various applications, including adversarial networks (Goodfellow et al., 2020; Gidel et al., 2018),
game theory (Stackelberg et al., 1952), hyper-parameter optimization (Franceschi et al., 2018; Bao et al.,
2021), model selection (Kunapuli et al., 2008; Giovannelli et al., 2021) and reinforcement learning (Konda
& Tsitsiklis, 1999; Sutton & Barto, 2018).
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Bilevel optimization

min
x∈Rdx

F (x) := f (x , y∗(x))

s.t. y∗(x) ∈ arg min
y∈Rdy

g(x , y). (P)

The hyperobjective F (x) depends on x both directly and indirectly via y∗(x).

y∗(x) is a solution for the lower-level problem of minimizing another function g .

Typically, we assume that the lower-level problem is strongly convex: g(x̄ , y) is strongly convex in y for all
x̄ ∈ Rdx .
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Problem

min
x∈Rdx

F (x) := f (x , y∗(x))

s.t. y∗(x) ∈ arg min
y∈Rdy

g(x , y). (P)

Problem

Find an ϵ-stationary point: a point x satisfying ∥∇F (x)∥ ≤ ϵ.

The explicit expression of ∇F (x) can be derived from the implicit function theorem:

∇F (x) := ∇x f (x , y
∗(x))−∇2

xyg(x , y
∗(x))

(
∇2

yyg(x , y
∗(x))

)−1∇y f (x , y
∗(x)).

Prior approaches require an explicit extraction of second-order information from g with a major focus on
estimating the Jacobian and inverse Hessian efficiently with stochastic noises.

Algorithms are not applicable to nonconvex objectives g and are hard to extend to the constrained case.
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Our goal

min
x∈Rdx

F (x) := f (x , y∗(x))

s.t. y∗(x) ∈ arg min
y∈Rdy

g(x , y). (P)

Goal

Develop a fully first-order approach for stochastic bilevel optimization. Find an ϵ-stationary solution of F using
only first-order gradients of f and g .

Some works only use first-order information, but these works either lack a complete finite-time analysis or
are applicable only to deterministic functions.
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Stochastic bilevel optimization

min
x∈Rdx

F (x) := f (x , y∗(x))

s.t. y∗(x) ∈ arg min
y∈Rdy

g(x , y), (P)

We consider the first-order algorithm class that accesses functions through first-order oracles that return
estimators of first-order derivatives ∇̂f (x , y ; ζ), ∇̂g(x , y ; ξ) for a given query point (x , y).

We assume that

The estimators are unbiased:

E[∇̂f (x , y ; ζ)] = ∇f (x , y),

E[∇̂g(x , y ; ξ)] = ∇g(x , y),

The variance of the estimators are bounded:

E[∥∇̂f (x , y ; ζ)− E[∇f (x , y ; ζ)]∥2] ≤ σ2
f ,

E[∥∇̂g(x , y ; ξ)− E[∇g(x , y ; ξ)]∥2] ≤ σ2
g .

for constants σ2
f > 0 and σ2

g > 0.
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Penalty method

min
x∈Rdx

F (x) := f (x , y∗(x)) s.t. y∗(x) ∈ arg min
y∈Rdy

g(x , y), (P)

The starting point of our approach is to convert (P) to an equivalent constrained single-level version:

min
x∈X , y∈Rdy

f (x , y) s.t. g(x , y)− g∗(x) ≤ 0,

where g∗(x) := g(x , y∗(x)).

The Lagrangian Lλ with multiplier λ > 0 is

Lλ(x , y) := f (x , y) + λ(g(x , y)− g∗(x)).

The gradient of Lλ can be computed only with gradients of f and g , and thus the entire procedure can be
implemented using only first-order derivatives. This reformulation has been attempted by (Liu et al., 2021;
Sow et al., 2022; Ye et al., 2022)).
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Difficulties in penalty method

min
x∈Rdx

F (x) := f (x , y∗(x)) s.t. y∗(x) ∈ arg min
y∈Rdy

g(x , y), (P)

Lλ(x , y) := f (x , y) + λ(g(x , y)− g∗(x)).

The challenge is to find an appropriate value of the multiplier λ. Unfortunately, the desired solution
x∗ = argminx F (x) can only be obtained at λ =∞.

With λ =∞, Lλ(x , y) has unbounded smoothness, which prevents us from employing gradient-descent
style approaches.

None of the previously proposed algorithms can obtain a complete finite time analysis for the original
problem minx F (x) without access to second derivatives of g .
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Our approach

Recall

min
x∈Rdx

F (x) := f (x , y∗(x)) s.t. y∗(x) ∈ arg min
y∈Rdy

g(x , y), (P)

Lλ(x , y) := f (x , y) + λ(g(x , y)− g(x , y∗(x))).

Set L∗λ(x) := miny Lλ(x , y).

Lemma (J. Kwon-D. Kwon-Wright-Nowak, ICML 2023 Oral)

F can be approximated by L∗λ(x) in the sense that

∥∇F (x)−∇L∗λ(x)∥ ≤ O(1/λ)

where

∇L∗λ(x) = ∇x f (x , y
∗
λ(x)) + λ(∇xg(x , y

∗
λ(x))−∇xg(x , y

∗(x))),

and y∗
λ(x) := argminy

(
λ−1f (x , y) + g(x , y)

)
.

Therefore, we can find an ϵ-stationary point of L∗λ(x), by running a stochastic gradient descent (SGD)

style method on L∗λ(x) with λ = O(ϵ−1).
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Our proposed algorithm

Recall y∗(x) := argminy g(x , y), y∗
λ(x) := argminy

(
λ−1f (x , y) + g(x , y)

)
, and

∇L∗λ(x) = ∇x f (x , y
∗
λ(x)) + λ(∇xg(x , y

∗
λ(x))−∇xg(x , y

∗(x))).

1 Outer-loop updates xk using ∇L∗λ(x
k ): xk+1 = xk − αĜk where

Gk := ∇x f (x
k , yk+1) + λ(∇xg(x

k , yk+1)−∇xg(x
k , zk+1)).

2 Inner-loop solves y∗
λk

(xk ), and y∗(xk ) (approximately): yk+1 and zk+1 are the estimates of y∗
λ(x

k ) and

y∗(xk ) at the kth iteration, respectively
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Our main results

Theorem (J. Kwon-D. Kwon-Wright-Nowak, ICML 2023 Oral)

Under suitable assumptions and step-sizes, the following convergence results hold.

1 If stochastic noises are present in both upper-level objective f and lower-level objective g (i.e., σ2
f , σ

2
g > 0),

then our algorithm finds an ϵ-stationary point within O(ϵ−7) iterations.

2 If we have access to exact information about f and g (i.e., σ2
f = σ2

g = 0), then our algorithm finds an

ϵ-stationary point within O(ϵ−3) iterations.
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Next questions

Question

1 Are the convergence rates optimal?

2 Are the first-order methods necessarily slower than second-order methods?

Under the additional assumption, it is known that the second-order methods find the ϵ-stationary point
within O(ϵ−4).
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Deterministic case

Inner-loop

Solve y∗
λk

(xk ), and y∗(xk ) (approximately).

Indeed, these are convex optimization problems for large enough λ > 0:

y∗(x) ∈ arg min
y∈Rdy

g(x , y) and y∗
λ(x) := argmin

y

(
λ−1f (x , y) + g(x , y)

)
.

Using this idea, (Chen et al., 2024) improves the complexity of our proposed algorithm from O(ϵ−3) to
O(ϵ−2 log(1/ϵ)).
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Stochastic case: optimal number of iterations

Outer-loop

Update xk using ∇L∗λ(x
k ):

xk+1 = xk − αĜk .

Comparing

∇L∗λ(x
k ) = ∇x f (x

k , y∗
λ(x

k )) + λ(∇xg(x
k , y∗

λ(x
k ))−∇xg(x

k , y∗(xk ))).

and

Gk := ∇x f (x
k , yk+1) + λ(∇xg(x

k , yk+1)−∇xg(x
k , zk+1))

∥∇L∗λ(x
k )− Gk∥ can be estimated by

λ(∥yk+1 − y∗
λ(x

k )∥+ ∥zk+1 − y∗(xk )∥)

To obtain ∥∇L∗λ(x
k )− Gk∥ = O(ϵ), we need O(ϵ/λ) = O(ϵ2) accuracy of yk+1 and zk+1.

T ≍ ϵ−4 inner-loop iterations are required to have O(ϵ2) accuracy of yk+1 and zk+1.
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Comparing

∇L∗λ(x
k ) = ∇x f (x

k , y∗
λ(x

k )) + λ(∇xg(x
k , y∗

λ(x
k ))−∇xg(x

k , y∗(xk ))).

and

Gk := ∇x f (x
k , yk+1) + λ(∇xg(x

k , yk+1)−∇xg(x
k , zk+1))

∥∇L∗λ(x
k )− Gk∥ can be estimated by

λ(∥yk+1 − y∗
λ(x

k )∥+ ∥zk+1 − y∗(xk )∥)

To obtain ∥∇L∗λ(x
k )− Gk∥ = O(ϵ), we need O(ϵ/λ) = O(ϵ2) accuracy of yk+1 and zk+1.

T ≍ ϵ−4 inner-loop iterations are required to have O(ϵ2) accuracy of yk+1 and zk+1.

Dohyun Kwon (University of Seoul / KIAS) fully first-order method for BO Nov 8, 2024 18 / 26



Bilevel optimization Penalty method for stochastic bilevel optimization Optimality of our algorithm Further questions

Stochastic case: optimal number of iterations

Outer-loop

Update xk using ∇L∗λ(x
k ):

xk+1 = xk − αĜk .

Comparing

∇L∗λ(x
k ) = ∇x f (x

k , y∗
λ(x

k )) + λ(∇xg(x
k , y∗

λ(x
k ))−∇xg(x

k , y∗(xk ))).

and

Gk := ∇x f (x
k , yk+1) + λ(∇xg(x

k , yk+1)−∇xg(x
k , zk+1))

∥∇L∗λ(x
k )− Gk∥ can be estimated by

λ(∥yk+1 − y∗
λ(x

k )∥+ ∥zk+1 − y∗(xk )∥)

To obtain ∥∇L∗λ(x
k )− Gk∥ = O(ϵ), we need O(ϵ/λ) = O(ϵ2) accuracy of yk+1 and zk+1.

T ≍ ϵ−4 inner-loop iterations are required to have O(ϵ2) accuracy of yk+1 and zk+1.

Dohyun Kwon (University of Seoul / KIAS) fully first-order method for BO Nov 8, 2024 18 / 26



Bilevel optimization Penalty method for stochastic bilevel optimization Optimality of our algorithm Further questions

Stochastic gradient descent

T ≍ ϵ−4 inner-loop iterations are required to have O(ϵ2) accuracy of yk+1 and zk+1.

Let f be a L-smooth and µ-strongly convex function for some µ, L > 0.
G(x , ξ) is an unbiased stochastic gradient estimator for f :

E[G(x , ξ)] = ∇f (x).
The variance of the gradient estimation error is bounded:

E[∥G(x , ξ)−∇f (x)∥2] ≤ σ2.

Lemma

For xt+1 ← xt − αG(xt , ξt) and for all 0 ≤ t ≤ T ,

E[∥x t − x∗∥2] ≤ (1− µα)t∥x0 − x∗∥2 +
ασ2

µ
.

In particular, taking α = 8 log T
µT

, we have

E[∥xT − x∗∥2] ≤
1

T 4
∥x0 − x∗∥2 +

8 logT

µ2T
σ2.
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Our main results

1 Outer-loop updates xk using ∇L∗λ(x
k ) with K iterations.

2 Inner-loop solves y∗
λk

(xk ), and y∗(xk ) with T iterations.

Theorem (J. Kwon-D. Kwon-Lyu, ICML 2024)

Under suitable assumptions, step-sizes, K ≍ ϵ−2, and T ≍ ϵ−4,

1 Our algorithm finds an ϵ-stationary point within O(ϵ−6) iterations.

2 If we additionally assume the stochastic smoothness as in the second order method, then our algorithm
finds an ϵ-stationary point within O(ϵ−4) iterations.

E[∥∇̂g(x , y1; ξ)− ∇̂g(x , y2; ξ)∥2] ≤ C∥y1 − y2∥2
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Lower bound

Question

Are the convergence rates optimal?

In (J. Kwon-D. Kwon-Lyu, ICML 2024), we provide the matching ϵ−6 lower bound on y∗-aware oracles
with finite r ≍ ϵ.

Under the same condition, ϵ−6 upper bound can be shown.
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Lower bound

Definition (y∗-Aware Oracle)

An oracle is y∗-aware, if there exists r ∈ (0,∞] such that for every query point (x , y), the following conditions
hold.

In addition to stochastic gradients, the oracle also returns ŷ(x) such that ∥ŷ(x)− y∗(x)∥ ≤ r/2

Gradient estimators satisfy the assumptions only if ∥y − y∗(x)∥ ≤ r ; otherwise, the returned gradient
estimators can be arbitrary.

If we take r =∞, the additional estimator ŷ(x) is uninformative. We recover the usual first-order
stochastic gradient oracle.

The same upper bound holds for finite r .
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Non-convex lower level

If g is not convex, then y∗(x) and y∗
λ(x) may not be uniquely determined.

A solution set T (x , λ) := argminy
(
λ−1f (x , y) + g(x , y)

)
may not be stable.

In (J. Kwon-D. Kwon-Wright-Nowak, ICLR 2024), similar convergence results are given under the Lipschitz
continuity of T .
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Summary

We provide a complete finite-time analysis of the first-order method for bilevel optimization.

Under a fair comparison, our proposed method is not necessarily slower than second-order ones.

Lower bounds and non-convex cases are open.
+

Further applications in large-scale machine learning problems?
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Thank you for your attention!
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