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Abstract— A new approach to Lz-consistent estimation of a
general density functional using k-nearest neighbor distances is
proposed, where the functional under consideration is in the form
of the expectation of some function f of the densities at each
point. The estimator is designed to be asymptotically unbiased,
using the convergence of the normalized volume of a k-nearest
neighbor ball to a Gamma distribution in the large-sample limit,
and naturally involves the inverse Laplace transform of a scaled
version of the function f. Some instantiations of the proposed
estimator recover existing k-nearest neighbor based estimators of
Shannon and Rényi entropies and Kullback-Leibler and Rényi
divergences, and discover new consistent estimators for many
other functionals such as logarithmic entropies and divergences.
The L2-consistency of the proposed estimator is established
for a broad class of densities for general functionals, and the
convergence rate in mean squared error is established as a
function of the sample size for smooth, bounded densities.

Index Terms— Density functional estimation, information mea-
sure, nearest neighbor, inverse Laplace transform.

[. INTRODUCTION
HIS paper studies the problem of estimating an entropy
functional of the form

Hanyang University

where f: Ry — R is a given function and p is a probability
density over R?. Table I lists examples of f and the corre-
sponding functional T’. The goal is to estimate 7' (p) based
on independent and identically distributed (i.i.d. ) samples
}n{l:m = (Xi1,...,X,,) from p by forming an estimator
T (X1:m) that converges to T't(p) in Lo as the sample size
m grows to infinity, that is,
: - 2
Jim E[(T7(Xim) ~T5(3)"] =0

More generally, let f: Ry x Ry, — R and consider a

divergence functional

Tt(p.q) := Exwp[f(p(X),Q(X)}F[ f(p(x), q(x))p(x) dx

of a pair of probability densities p and g over RZ. Table II lists
examples of f and the corresponding 7. In this case, the main
problem is to construct an estimator 'f;n'n(Xl;nl, Y1.,) based
on i.i.d. samples X,.,,, from p and Y., from ¢, independent
of each other, such that
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Density Function for Nearest Neighbor Distances

Uk

Gamma (Erlang) function of order £

N — o0,
(k) A (k) (k)\k—1
Volume of sphere p(u™|A) = T &P (—M ) (™)
(k) — D .,__T* (A = p(x))

u\" = Nvydy, 7 NCESY

Karl W. Pettis et al. (1979) TPAMI

Hertz, P. (1909) Mathematische Annalen
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Construction of the Estimator

Dy (x0.72(0) = [ iy | 2205 )
F
D) = 3 opi") (), u) (x0)
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Example

-~ How to Build an Estimator

Dxr(p1(x), p2(x)

B, 0 (@)

o0 oo k
b1 (k)y, (K)F~1
ex 11U Uuq
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['(k)?

Lo | L |00

Kullback-Leibler Estimator

p2(x)
p1(x)

) = —/pl(x)log(

) ax

p2
T(k

k—1
ooy o Cpeue s 9 ) duy duy?
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(k)k 1 (k)k 1
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Laplace transform: L.[f(t)] = / h f(t) exp(—st)dt
0
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Laplace Transtorm

(k1) (k2)

['(k)I'(K
Ly [ [otun, o)t gt 1] = —2 ) 1o (22)
P1 Do P1

« Perform the inverse Laplace transform of

S50 (22) with respect to py and py, then

p'f1p§2 p11 _
multiply mr ot (O obtain ¢(uy, us).
Uy 2

* Use the following two Laplace Transforms

Lt logt] =T (n+ 1)s D (p(n+1) —logs), n>—1
L [t"] =T (n+1)s (T n > —1
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d(u1,u2) =loguy —logus — Y (k1) + (k)

P
Eu1,u2 ¢(u17 u2) — log =2
P1

« Convergence?

— It Is practically working to check whether
the variance (expectation of the square)
diverges or not.

Var [¢(U1;U2)2] —
Eul,uz [¢(u17 UZ)Z] _ Eul,uz [¢(u17u2)]2 < o0
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Eul,uz [qﬁ(ulauﬂ)z} < o0

I

ki1—1 ko—1
£p1£p2 [¢(U17U2)2u11 Uy~ ] < 0

I

B . ] B dkl——l 1 1
Epl ulfl 1(10g’u,1)2 — <_1)k1 1 . ((logp1 + C)Z + —7T2> < 00
- - dp;' D1 6
1
Lo, |ub2 T logug)?| < oo
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Kozachenko-Leonenko estimator

Dr(p1(x),p2(x) = = D dlui™ (xi),us"™ (x,))

Xz ~P1 (X)

o(ul) ul)y = logulf) —log ul™ — (k1) + (k)

L. F. Kozachenko and N. N. Leonenko (1987) Problemy Peredachi Informatsii
N. Leonenko, L. Pronzato, &V. Savani, (2008 ) Annals of Statistics
B. Poczos and J. Schneider (2011) AISTATS

— For the analysis with finite N, see
D. Lombardi and S. Pant (2016) Phys. Rev. E
A. Kraskov, H. Stogbauer, and P. Grassberger (2004) Phys. Rev. E
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Dy (p1(x), p2(x)) Estimator ¢(u1, uz) f(t)

1 ~a) 1 I'(k1)D(k2) up \” P(E)C(k)  w)| 00 — 1
o — 1 (/pgl psdx - 1> a—1 (F(a+k1)F(k2 —a) <u_2> C T(ky + D (ky — 1)u_2> o — 1

(a #1)
- foog(2)ax | logu™ —logul™ (k) +ulky) | —logt
Y (.): digamma
1 —/\/ dx L v§2)
b2 b= L(15)0(2.5)\ o) 1 -Vt
B p1p2 Laplace transform 1
- o TN

Inverse Laplace transform

:'E\HU,,‘, . )
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Systematic Methods of Constructing Estimators

otutx). o) = oI et G

f(s,t) = —logs+logt

S

f(s,t)=1-—

S T

fls,t) = s+t

o(u,v) =logu — logw

1 v
o) = 1= i 5rEs) \/;
(k=2)

d(u,v) = M(u > v)
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Systematic Methods of Constructing Estimators
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Estimation of Bhattacharyya Coefficient
Dgatt(p1,p2) = /\/]311?2 dx

7 _ 1 u;  Condition for £, is
k==l ¢lun, ) = I'(1.5)(0.5)\ uy  notsatisfied
1 uq

k=k=2 D> olunu2) = T ST a 5\

 For two 2-D Gaussian data:
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— -’}:—‘P—E —— Target Bhatt
0.75' k=1
-p-k=2

0.7t

0.65'
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f-divergences
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Candidates of f~functions

Convex Functions

12 4 — flx)= —log(x) ry
fx) = —log(1 + 5x) + log(6) 4
10 - — flx)=e""-1je ;”
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1s small

Support of p1 (X)

Ds(10.2209) = [ 11(x)1 (”(X)) dx

p1(x)
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Support of p1 (X)

Ds(1(0.03) = [ 1101 (p?’(")) dx

p1(x)
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Convex Functions

7 _— fix) = —legx)

. J()
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Equi-Divergence contour

\\ Mo s --7 - 4 !
SO S~ —-—=—-- - :—\_ /
~ ~ o _— e e A =- - - V4
~~ o - ’
____________________ R

S~ f-function determines the

el 4nfinite dimensional metric
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Similar to Loss, but Not the Same

* |nvariant to the coordinate transformation once the
dimensionality is conserved.

z=T(), zxcRP
e (55) o= [ e (2545 5
()l

« When considering the separation property of
densities after eliminating all properties obtained
through coordinate transformation (< in contrast to
Loss), it captures the information-based differences
between underlying densities, independent of the
coordinate choice.
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Loss and f-divergences

 f-divergence: Set of minimum values obtained
when the optimal prediction function is
chosen

Lo6$

cC“"
Lonct o
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Loss functions - f-divergences

A

—

Cross entropy loss

Mean-square loss

Nearest neighbor
classification

Bayes classifier

Large-margin loss
(hinge loss)

Jensen-Shannon
divergence

Le Cam distance
(Triangular Discrimination
distance)

Total variation

| ™

X.Nguyen, M.J. Wainwright, M.1. Jordan (2009) On surrogate loss functions and f-

divergences, Annals of Statistics
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Blocking Information Flow

 We do not want to use gender or ethnicity information including
their proxy for classification because it is prohibited by law!

« In hospital H1, drug D1 is used for disease (Y. A classifier is
trained using data from H1. We want to use the classifier for the
patients in hospital H2, which uses drug D2 (instead of D1) for
the same disease. We want D1 as well as its effect on other
variables to be excluded in the classifier for generalization in

hospital H2.

« Data are not sufficient. We decided to use the simulated data.
There are some variables (seed variable) that we arbitrarily
determined because we do not know the true distribution for
those variables. We need to make sure that our classifier does
not learn the patterns of those variables that we arbitrarily set.

G Hanyang University 24
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Causality & Graph

Unknown useful
information for
classification

A bad variable!

A known variable with useful
information but a proxy of a
bad variable at the same time

New score we
want to construct!

6 UM
£ ”’"4_',
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Estimation of Information Contents and Decorrelation

Causality & Graph

(Intentionally block the information flow)

A bad variable!
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Causality & Graph

(Now after marginalizing X)

m 1L s|y
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Optimization for Training

Data: D = {m;, X;, yi o,

A

0 = arg mm — Zl 5(x450)),vyi) + Mo(s;m|y)

'
Minimize the expected loss 1K [l (Z//\, y)] /

Maximize the decorrelation f 0 (s; m ‘ Yy )

Use tradeoff constant )\

ykum.,l‘ ] .
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“ When 7Y i1s different in training
Y and testing

O O= 020

10 ————

0.8- / ,
= \\ Decorrelation:
< 0.6 P 1 N
0.41 — Ml (A=1) n%nﬁzl(y(s(xﬁf))))yi) + Mg (s;m|y)
cMI (A=10) =1
0.2 — M| (A=1)
—— MI (A=10)
0.0+ : . ' ‘ '
—4 -2 0 2 4
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Reconstruction of W-jet Decorrelation Experiment

[—J QCD
decorr
10 2 1 no-decorr
W-jet
10_3 \ “

=
9
u

FalseWPositives

normalized counts
|_I
o
A

107°1

50 100 150 200 250
m

Reconstruction of decorrelation experiment in
Kasieczka, G., Shih, D. (2020) Robust Jet Classifiers through
Distance Correlation, Phys. Rev. Lett. Vol. 125, Iss. 12 — 18
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Summary

« Estimating f-divergence using nearest
neighbor information

* Finding loss-aware representations based on
the intended loss function

* Blocking Information flow by purifying the
variables
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THANK YOU

Yung-Kyun Noh
nohyung@hanyang.ac.kr
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Estimation of Information Contents and Decorrelation

Causality & Graph

Unknown useful
information for
classification

A bad variable!

A known variable with useful
information but a proxy of a
bad variable at the same time

New score we
want to construct!
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Estimation of Information Contents and Decorrelation

Causality & Graph

(Intentionally block the information flow)

A bad variable!
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Estimation of Information Contents and Decorrelation

Causality & Graph
(Now after marginalizing X)
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