Improving Neural Optimal Transport via Displacement Interpolation

2024 KIAS CAINS Fall Workshop

JaeWoong Choi

Center for AI and Natural Sciences, KIAS

CONTENTS

- 1. Introduction
- 2. Instability Challenges in Neural Static Optimal Transport
- 3. Displacement Interpolation Optimal Transport Model (DIOTM)
- 4. Experiments

 Optimal Transport refers to the most cost-minimizing way to transport source distribution μ to target ν.

 Optimal Transport refers to the most cost-minimizing way to transport source distribution μ to target ν.

Optimal Transport refers to the most cost-minimizing way to transport source distribution μ to

- Optimal Transport refers to the most cost-minimizing way to transport source distribution μ to target ν.
- Monge's Formulation.

$$C(\mu,\nu) := \inf_{\substack{T_{\#}\mu = \nu}} \left[\int_{\mathcal{X}} c(x,T(x)) d\mu(x) \right].$$

Transport Map T $x \sim \mu \implies T(x) \sim \nu$

Monge's Optimal Transport [2]

 Optimal Transport refers to the most cost-minimizing way to transport source distribution μ to target ν.

Monge's Optimal Transport [2]

- Optimal Transport refers to the most cost-minimizing way to transport source distribution μ to target v.
- Monge's Formulation. $C(\mu,\nu) := \inf_{\substack{T_{\#}\mu = \nu \\ T_{\#}\mu = \nu}} \left[\int_{\mathcal{X}} c(x,T(x)) d\mu(x) \right].$
- Kantorovich's Relaxation.

Monge's Optimal Transport [2]

$$C(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \left[\int_{\mathcal{X} \times \mathcal{Y}} c(x,y) d\pi(x,y) \right]$$

where $\Pi(\mu, \nu) \coloneqq$ the set of joint probability distributions on $\mathcal{X} \times \mathcal{Y}$ whose marginals are μ and ν .

[2] Rout, Litu, Alexander Korotin, and Evgeny Burnaev. "Generative modeling with optimal transport maps." ICLR, 2022.

^[1] Villani, Cédric. *Optimal transport: old and new*. Vol. 338. Berlin: springer, 2009.

Introduction Neural Optimal Transport

Today, we focus on approaches for learning (static) optimal transport maps with neural networks.

• The Neural Optimal Transport can be applied to **any distribution transport applications**.

• For example, **Computer Vision Applications**, such as **Image Restoration**.

• For example, **Computer Vision Applications**, such as **Point Cloud Completion**.

- For example, AI for Science, such as Prediction of Single-cell perturbation responses.
 - What effect would Drug k have on these cell populations?

- For example, AI for Science, such as Prediction of Single-cell perturbation responses.
 - What effect would Drug k have on these cell populations?

Instability Challenges in Neural Static OT

Previous Neural Optimal Transport Optimal Transport Map (OTM)

- OTM [1, 2] learns the **transport map** *T* through a max-min formulation.
 - v^c denotes the *c*-transform of v, i.e., $v^c(x) = \inf_{y \in \mathcal{Y}} (c(x, y) v(y))$.

Previous Neural Optimal Transport Optimal Transport Map (OTM)

- OTM [1, 2] learns the **transport map** *T* through a max-min formulation.
 - v^c denotes the *c*-transform of v, i.e., $v^c(x) = \inf_{y \in \mathcal{Y}} (c(x, y) v(y))$.

Min-max objective between Transport map T and Potential v

Rout, Litu, Alexander Korotin, and Evgeny Burnaev. "Generative modeling with optimal transport maps." *ICLR*, 2022. Fan, Jiaojiao, et al. "Scalable computation of monge maps with general costs." *ICLR Workshop*, 2022.

Instability Challenges in Neural Static OT Instability Challenges in OTM

Unstable training dynamics and high sensitivity to hyperparameters in previous approaches

Instability Challenges in Neural Static OT Instability Challenges in OTM

Unstable training dynamics and high sensitivity to hyperparameters in previous approaches

Displacement Interpolation Optimal Transport Model

Dynamic Optimal Transport and Displacement Interpolation **Dynamic Optimal Transport**

• The dynamic optimal transport problem tracks the continuous evolution of μ to ν .

Dynamic Optimal Transport and Displacement Interpolation **Dynamic Optimal Transport**

• The dynamic optimal transport problem tracks the continuous evolution of μ to ν .

Static Transport Map *T* from μ to ν

Optimal Dynamics from μ to ν

Dynamic Optimal Transport and Displacement Interpolation **Dynamic Optimal Transport**

• The dynamic optimal transport problem tracks the continuous evolution of μ to ν .

$$\inf_{v:[0,1]\times\mathcal{X}\to\mathcal{X}} \left[\int_0^1 \int_{\mathcal{X}} \alpha ||v_t(x)||^2 d\rho_t dt; \quad \frac{\partial \rho_t}{\partial t} + \nabla \cdot (v_t \rho_t) = 0, \ \rho_0 = \mu, \ \rho_1 = \nu \right].$$

Benamou-Brenier formulation when $c(x, y) = \alpha ||x - y||^2.$
$$\mu$$

Dynamic Optimal Transport and Displacement Interpolation Displacement Interpolation

 Displacement interpolation (DI) describes the optimal solution to the dynamic OT problem using the optimal transport map T^{*} in a simple form.

Dynamic Optimal Transport and Displacement Interpolation **Displacement Interpolation and Barycenter**

 Displacement interpolation (DI) describes the optimal solution to the dynamic OT problem using the optimal transport map T^{*} in a simple form.

$$\begin{aligned} \mathbf{Dynamic OT:} & \inf_{v:[0,1]\times\mathcal{X}\to\mathcal{X}} \left[\int_{0}^{1} \int_{\mathcal{X}} \alpha \|v_{t}(x)\|^{2} d\rho_{t} dt; \quad \frac{\partial\rho_{t}}{\partial t} + \nabla \cdot (v_{t}\rho_{t}) = 0, \ \rho_{0} = \mu, \ \rho_{1} = \nu \right] \\ & \mathbf{Displacement Interp.:} & \rho_{t}^{dis} := \left[(1-t) \cdot Id + t \cdot T^{\star} \right]_{\#} \mu \quad \text{and} \quad \rho_{t}^{dis} = \rho_{t}^{\star} \quad \text{for} \quad 0 \leq t \leq 1. \\ & \mathbf{DIsplacement Interp.:} & \rho_{t}^{\star} = \arg \inf_{\rho} \mathcal{L}_{DI}(t,\rho) \quad \text{where} \quad \mathcal{L}_{DI}(t,\rho) = (1-t)W_{2}^{2}(\mu,\rho) + tW_{2}^{2}(\rho,\nu). \\ & \mathbf{DIsplacement Interp.:} & \rho_{t}^{\star} = \arg \inf_{\rho} \mathcal{L}_{DI}(t,\rho) \quad \text{where} \quad \mathcal{L}_{DI}(t,\rho) = (1-t)W_{2}^{2}(\mu,\rho) + tW_{2}^{2}(\rho,\nu). \\ & \mathbf{DISPLUE} = \mathbf{Dynamic OT} \quad \mathbf{DISPLUE} = \mathbf{Dynamic OT} \\ & \mathbf{DISPLUE} = \mathbf{Dynamic OT} \quad \mathbf{DISPLUE} = \mathbf{Dynamic OT} \quad \mathbf{DISPLUE} = \mathbf{Dynamic OT} \quad \mathbf{DISPLUE} = \mathbf{Dynamic OT} \\ & \mathbf{DISPLUE} = \mathbf{Dynamic OT} \quad \mathbf{DISPLUE} = \mathbf{Dynamic OT} \\ & \mathbf{DISPLUE} = \mathbf{Dynamic OT} \quad \mathbf{DISPLUE} = \mathbf{Dynamic OT} \\ & \mathbf{DISPLUE} = \mathbf{Dynamic OT} \quad \mathbf{DISPLUE} = \mathbf{Dynamic OT} \\ & \mathbf{DISPLUE} = \mathbf{Dynamic OT} \quad \mathbf{DISPLUE} = \mathbf{Dynamic OT} \\ & \mathbf{DISPLUE} = \mathbf{Dynamic OT} \quad \mathbf{DISPLUE} = \mathbf{Dynamic OT} \\ & \mathbf{DISPLUE} = \mathbf{Dynamic OT} \quad \mathbf{DISPLUE} = \mathbf{Dynamic OT} \\ & \mathbf{DISPLUE} = \mathbf{Dynamic OT} \quad \mathbf{DISPLUE} = \mathbf{Dynamic OT} \\ & \mathbf{DISPLUE} = \mathbf{Dynamic OT} \quad \mathbf{DISPLUE} = \mathbf{Dynamic OT} \\ & \mathbf{DISPLUE} = \mathbf{Dynamic OT} \quad \mathbf{DISPLUE} = \mathbf{Dynamic OT} \\ & \mathbf{DISPLUE} = \mathbf{Dynamic OT} \quad \mathbf{DISPLUE} = \mathbf{Dynamic OT} \\ & \mathbf{DISPLUE} = \mathbf{Dynamic OT} \quad \mathbf{DISPLUE} = \mathbf{Dynamic OT} \\ & \mathbf{DISPLUE} = \mathbf{Dynamic OT} \quad \mathbf{DISPLUE} = \mathbf{Dynamic OT} \\ & \mathbf{DISPLUE} = \mathbf{Dynamic OT} \quad \mathbf{DISPLUE} = \mathbf{Dynamic OT} \\ & \mathbf{DISPLUE} = \mathbf{Dynamic OT} \quad \mathbf{DISPLUE} = \mathbf{Dynamic OT} \\ & \mathbf{DISPLUE} = \mathbf{Dynamic OT} \quad \mathbf{DISPLUE} = \mathbf{Dynamic OT} \\ & \mathbf{DISPLUE} = \mathbf{Dynamic OT} \quad \mathbf{DISPLUE} = \mathbf{Dynamic OT} \\ & \mathbf{DISPLUE} = \mathbf{Dynamic OT} \quad \mathbf{DISPLUE} = \mathbf{$$

DIOTM DISPLACEMENT INTERPOLATION OTM (DIOTM)

We proposed a neural optimal transport model T_θ, called *DIOTM*, that leverages the entire trajectory of dynamic optimal transport.

DIOTM DISPLACEMENT INTERPOLATION OTM (DIOTM)

We proposed a neural optimal transport model T_θ, called *DIOTM*, that leverages the entire trajectory of dynamic optimal transport.

using the dynamic optimal transport.

DIDTM Dual form of Displacement Interpolation

• Begin with the displacement interpolation ρ_t^{\star} at specific time t.

DIOTM Dual form of Displacement Interpolation

From the Wasserstein barycenter characterization, we derive the following dual form:

Primal: $\rho_t^{\star} = \arg \inf_{\rho} \mathcal{L}_{DI}(t,\rho)$ where $\mathcal{L}_{DI}(t,\rho) = (1-t)W_2^2(\mu,\rho) + tW_2^2(\rho,\nu).$

DIOTM DUAL form of Displacement Interpolation

From the Wasserstein barycenter characterization, we derive the following dual form:

Primal:
$$\rho_t^{\star} = \arg \inf_{\rho} \mathcal{L}_{DI}(t,\rho)$$
 where $\mathcal{L}_{DI}(t,\rho) = (1-t)W_2^2(\mu,\rho) + tW_2^2(\rho,\nu).$

Theorem 3.1. Given the assumptions in Appendix A, for a given $t \in (0, 1)$, the minimization problem $\inf_{\rho} \mathcal{L}_{DI}(t, \rho)$ (Eq. 8) is equivalent to the following dual problem:

Dual:
$$\sup_{f_{1,t}, f_{2,t} \text{ with } (1-t)f_{1,t}+tf_{2,t}=0} \left[(1-t) \int_{\mathcal{X}} f_{1,t}^c(x) d\mu(x) + t \int_{\mathcal{Y}} f_{2,t}^c(y) d\nu(y) \right].$$
(9)

where the supremum is taken over two potential functions $f_{1,t} : \mathcal{Y} \to \mathbb{R}$ and $f_{2,t} : \mathcal{X} \to \mathbb{R}$, which satisfy $(1-t)f_{1,t} + tf_{2,t} = 0$.

• Note that v^c denotes the *c*-transform of v, i.e., $v^c(x) = \inf_{y \in \mathcal{Y}} (c(x, y) - v(y))$.

DIOTM DIOTM DUal form of Displacement Interpolation

We can combine these two potentials into a single potential V_t.

1

Dual:
$$\sup_{f_{1,t}, f_{2,t} \text{ with } (1-t)f_{1,t}+tf_{2,t}=0} \left[(1-t) \int_{\mathcal{X}} f_{1,t}^c(x) d\mu(x) + t \int_{\mathcal{Y}} f_{2,t}^c(y) d\nu(y) \right].$$
(9)

Corollary 3.2. For a given $t \in (0,1)$, let $f_{1,t}(y) = tV_t(y)$ and $f_{2,t}(x) = -(1-t)V_t(x)$ for some value function $V_t : \mathcal{X} = \mathcal{Y} \to \mathbb{R}$. Then, the dual formulation of displacement interpolation (Eq. 9) can be rewritten as follows:

$$\sup_{V_t} \left[\int_{\mathcal{X}} V_t^{c_{0,t}}(x) d\mu(x) + \int_{\mathcal{Y}} (-V_t)^{c_{t,1}}(y) d\nu(y) \right],$$
(14)

where
$$c_{s,t}(x,y) = \frac{\alpha \|x-y\|^2}{t-s}$$
 for every $0 \le s < t \le 1$. Investigate the relationships between V_t across time t .

DIDTM Optimality Condition for Time-dependent Potential

 We establish the relationship between the potential functions for each DI and utilize it to learn the optimal transport map.

DIOTM Optimality Condition for Time-dependent Potential

• The optimal potential V_t^* for each ρ_t^* satisfies the following [1]:

where
$$c_{s,t}(x,y) = \frac{\alpha \|x-y\|^2}{t-s}$$
 for $0 \le s < t \le 1$.

• From this, we can derive the following **optimality condition**:

Theorem 3.3. Given the assumptions in Appendix A, the optimal V_t^* in Eq. 14 satisfies the following: $V_t^* = \arg \sup_{V_t} \left[\int_{\mathcal{X}} V_t^{c_{0,t}}(x) d\mu(x) + \int_{\mathcal{Y}} V_t(x) d\rho_t^*(x) \right], \qquad (15)$ up to constant ρ^* -a.s.. Moreover, there exists $\{V_t^*\}_{0 \le t \le 1}$ that satisfies Hamilton-Jacobi-Bellman (HJB) equation, i.e. $\partial_t V_t^* + \frac{1}{4\alpha} \|\nabla V_t^*\|^2 = 0, \qquad \rho^*$ -a.s. (16)

(y)

DIOTM DIOTM Model

Introduce the c-transform parametrization [1].

Dual:
$$\sup_{V_t} \left[\int_{\mathcal{X}} V_t^{c_{0,t}}(x) d\mu(x) + \int_{\mathcal{Y}} (-V_t)^{c_{t,1}}(y) d\nu(y) \right]$$

• Parametrize $V_t^{c_{0,t}}$ and $V_t^{c_{t,1}}$ as follows:

 $\overrightarrow{T}_{t}^{\star}(x) \in \operatorname{argmin}_{y \in \mathcal{Y}} \left[c(x, y) - f_{1,t}^{\star}(y) \right] \Leftrightarrow$ $\overleftarrow{T}_{t}^{\star}(y) \in \operatorname{argmin}_{x \in \mathcal{X}} \left[c(x, y) - f_{2,t}^{\star}(x) \right] \Leftrightarrow \quad (-V_{t})^{c_{t}},$

$$\begin{aligned} V_t^{c_{0,t}}(x) &= \frac{1}{t}c\left(x, \overrightarrow{T}_t(x)\right) - V_{\phi}(t, \overrightarrow{T}_t(x)) \\ (-V_t)^{c_{t,1}}(y) &= \frac{1}{1-t}c\left(\overleftarrow{T}_t(y), y\right) + V_{\phi}(t, \overleftarrow{T}_t(y)) \end{aligned}$$

 $\vec{T_t}^*$ and $\vec{T_t}^*$ satisfy these conditions.

DIOTM DIOTM Model

Using DI, Parametrize interpolant generators through the boundary generators:

$$\overrightarrow{T}_t(x) = (1-t)x + t\overrightarrow{T}_{\theta}(x), \quad \overleftarrow{T}_t(y) = (1-t)y + t\overleftarrow{T}_{\theta}(y) \quad \text{for } t \in (0,1).$$

• Then, we have the following learning objective:

$$\begin{aligned} \mathcal{L}_{\phi,\theta}^{DI} &= \sup_{V_{\phi}} \int_{\mathcal{X}} \inf_{\overrightarrow{T}_{\theta}} \mathbb{E}_{t} \left[\alpha t \| x - \overrightarrow{T}_{\theta}(x) \|^{2} - V_{\phi}(t, \overrightarrow{T}_{t}(x)) \right] d\mu(x) \\ &+ \int_{\mathcal{Y}} \inf_{\overleftarrow{T}_{\theta}} \mathbb{E}_{t} \left[\alpha (1-t) \| \overleftarrow{T}_{\theta}(y) - y \|^{2} + V_{\phi}(t, \overleftarrow{T}_{t}(y)) \right] d\nu(y). \end{aligned}$$

DIOTM DIOTM Model

Parametrize interpolant generators through the boundary generators using DI.

$$\overrightarrow{T}_t(x) = (1-t)x + t\overrightarrow{T}_{\theta}(x), \quad \overleftarrow{T}_t(y) = (1-t)y + t\overleftarrow{T}_{\theta}(y) \quad \text{for } t \in (0,1).$$

$$\mathcal{L}_{\phi,\theta}^{DI} = \sup_{V_{\phi}} \int_{\mathcal{X}} \inf_{\overrightarrow{T}_{\theta}} \mathbb{E}_t \left[\alpha t \| x - \overrightarrow{T}_{\theta}(x) \|^2 - V_{\phi}(t, \overrightarrow{T}_t(x)) \right] d\mu(x) + \int_{\mathcal{Y}} \inf_{\overleftarrow{T}_{\theta}} \mathbb{E}_t \left[\alpha (1-t) \| \overleftarrow{T}_{\theta}(y) - y \|^2 + V_{\phi}(t, \overleftarrow{T}_t(y)) \right] d\nu(y).$$

HJB regularizer

$$\mathcal{R}(V_{\phi}) = \mathbb{E}_{t,x \sim \rho_t} \left| 2\alpha \ \partial_t V_{\phi}(t,x) + \frac{1}{2} \|\nabla V_{\phi}(t,x)\|^2 \right|.$$

The total learning objective is as follows:

$$\mathcal{L}_{\phi,\theta} = \mathcal{L}_{\phi,\theta}^{DI} + \lambda \mathcal{R}(V_{\phi}(t,x))$$

Experiments

Experiments Optimal Transport Map Evaluation

Our model learns a more accurate optimal transport map compared to previous methods.

Figure 1: Visualization of transport maps T on synthetic datasets. The transport map is visualized as a black line connecting each source sample x to its corresponding generated data T(x).

Experiments **Optimal Transport Map Evaluation**

- Our model learns a more accurate optimal transport map compared to previous methods.
 - $W_2 = W_2(\overrightarrow{T_{\theta_{\#}}} \mu, \nu)$:

Error between the generated and target distributions.

• $L_2 = \int_{\chi} \left\| \overrightarrow{T_{\theta}}(x) - T^{\star}(x) \right\|_2^2 d\mu_{test}$: Error between the transport maps.

Table 1: Evaluation of optimal transport map on the synthetic datasets between OTM (Rout et al., 2022) and ours, based on the 2-Wasserstein distance W_2 and the L2 distance between transport maps.

Metric	$G \rightarrow 8G$		$G \rightarrow 25G$		Moon	→Spiral	G→Circles		
	OTM	DIOTM	OTM	DIOTM	OTM	DIOTM	OTM	DIOTM	
$W_2(\downarrow)$	4.93	3.72	10.09	6.49	0.40	0.55	3.96	2.34	
L2 (↓)	6.48	4.38	13.09	10.00	1.77	1.67	6.23	5.44	

Experiments Scalability Comparison on I2I Translation Tasks

- We assessed our model on several Image-to-Image (I2I) translation benchmarks.
 - Optimal transport map serves as a generator for the target distribution, which maps each input x to its costminimizing counterpart y.

Experiments Scalability Comparison on I2I Translation Tasks

- We assessed our model on several Image-to-Image (I2I) translation benchmarks.
 - Optimal transport map serves as a generator for the target distribution, which maps each input x to its costminimizing counterpart y.

Data	Model	$\text{FID}\left(\downarrow\right)$
Male→Female (64x64)	CycleGAN Zhu et al. (2017) NOT Korotin et al. (2023) OTM [†] Fan et al. (2022) DIOTM [†] (Ours)	12.94 11.96 6.42 5.27
Wild→Cat (64x64)	DSBM Shi et al. (2024a) OTM [†] Fan et al. (2022) DIOTM [†] (Ours)	20+ 12.42 10.72
Male→Female (128x128)	DSBM Shi et al. (2024a) ASBM Gushchin et al. (2024) OTM [†] Fan et al. (2022) DIOTM [†] (Ours)	37.8 16.08 7.55 7.40

Image-to-Image translation benchmarks compared to existing Neural (Entropic) OT Models

Experiments Stability Comparison to Previous Approaches

Our model is more robust to hyperparameters and exhibits stable training dynamics.

OTM (Wild \rightarrow Cat, 64)

OTM (Male \rightarrow Female, 128)

Conclusion

- We introduced **DIOTM**, a static neural optimal transport model based on displacement interpolation.
- We derived the dual formulation of displacement interpolation and investigated the optimal relationships between potential functions.
- We proposed the HJB regularizer, which is derived from the optimality condition of the potential function.
- Our model improves the training stability and accuracy of existing OT Map models that leverage min-max objectives.

Thank you!

Appendix Training Algorithm

Algorithm 1 Training algorithm of DIOTM

Require: The source distribution μ and the target distribution ν . Transport networks $\overrightarrow{T}_{\theta}$, $\overleftarrow{T}_{\theta}$ and the discriminator network V_{ϕ} . Total iteration number K, and regularization hyperparameter λ . 1: for k = 0, 1, 2, ..., K do

2: Sample a batch
$$x \sim \mu, y \sim \nu, t \sim U[0, 1]$$
.

3:
$$x_t \leftarrow (1-t)x + t \overrightarrow{T}_{\theta}(x), y_t \leftarrow (1-t) \overleftarrow{T}_{\theta}(y) + ty.$$

4: Update V_{ϕ} to increase the \mathcal{L}_{ϕ}

$$\mathcal{L}_{\phi} = -V_{\phi}(t, x_t) + V_{\phi}(t, y_t) - \lambda \mathcal{R}(V_{\phi}(t, x_t)) - \lambda \mathcal{R}(V_{\phi}(t, y_t)).$$

5: Update $\overrightarrow{T}_{\theta}$ to decrease the loss: $c_{0,t}(x, x_t) - V_{\phi}(t, x_t)$. 6: Update $\overleftarrow{T}_{\theta}$ to decrease the loss: $c_{t,1}(y_t, y) + V_{\phi}(t, y_t)$. 7: end for

Appendix

Stability Comparison to Previous Approaches

- Our HJB regularizer outperforms other regularizers.
 - Our HJB regularizer is the only regularizer that incorporates the time derivative.
 - $\mathcal{R}_{\text{OTM}}(t, x_t, y_t) = \|\nabla_y \left(c_{0,t}(x, x_t) V_{\phi}(t, x_t) \right)\| + \|\nabla_y \left(c_{t,1}(y, y_t) + V_{\phi}(t, y_t) \right)\|.$
 - $\mathcal{R}_{\mathbf{R}1}(t, x_t, y_t) = \|\nabla_y V_\phi(t, x_t)\|^2 + \|\nabla_y V_\phi(t, y_t)\|^2.$
 - $\mathcal{R}(t, x_t, y_t)_{\text{HJB}} = \left| 2\alpha \,\partial_t V_\phi(t, x_t) + \frac{1}{2} \|\nabla V_\phi(t, x_t)\|^2 \right| + \left| 2\alpha \,\partial_t V_\phi(t, y_t) + \frac{1}{2} \|\nabla V_\phi(t, y_t)\|^2 \right|.$

Table 3: Comparison of our HJB regularizer with the OTM and R1 regularizers on the DIOTM model. Our HJB regularizer exhibits superior performance and stability to λ .

	Model	G→8G				$G \rightarrow 25G$			Moon→Spiral				
	λ	0.1	0.2	1.0	10	0.1	0.2	1.0	10	0.1	0.2	1.0	10
$W_2(\downarrow)$	OTM	22.08	22.90	DIV	31.35	68.01	89.62	DIV	81.02	19.99	14.19	15.66	33.80
	R1	3.59	5.01	3.29	4.42	9.20	9.94	11.78	DIV	1.91	2.08	1.05	2.74
	HJB	1.93	2.69	2.92	3.21	7.19	14.64	7.99	12.38	0.54	0.59	0.30	1.31
L2 (↓)	OTM	27.41	28.21	DIV	34.47	96.89	97.98	DIV	87.05	20.96	15.01	34.31	33.80
	R1	4.49	5.39	3.87	5.14	86.05	17.64	19.52	DIV	2.88	3.56	2.36	3.74
	HJB	3.05	3.44	3.36	3.98	16.51	15.82	11.11	15.64	1.42	2.25	1.13	2.27