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Introduction

Optimal Transport (OT) Problem

=  Optimal Transport refers to the most cost-minimizing way to transport source distribution p to

target v.
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Optimal Transport (OT) Problem

=  Optimal Transport refers to the most cost-minimizing way to transport source distribution p to

target v.
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Introduction

Optimal Transport (OT) Problem

=  Optimal Transport refers to the most cost-minimizing way to transport source distribution p to

target v.

* Monge’s Formulation.

Clpv) = inf [ /X c(a:,T(a:))du(:z:)]

Ty p=v

Transport Map T
x~u =Tkx) ~v

Monge’s Optimal Transport [2]
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Optimal Transport (OT) Problem

=  Optimal Transport refers to the most cost-minimizing way to transport source distribution p to

target v.

* Monge’s Formulation.

Clpv) = inf [ /X c(a:,T(:c))du(:z:)}

Ty p=v

Optimality by cost-minimizin
Transport Map T . vy &

x~u =Tkx) ~v

Monge’s Optimal Transport [2]

[1] Villani, Cédric. Optimal transport: old and new. Vol. 338. Berlin: springer, 2009. 7
[2] Rout, Litu, Alexander Korotin, and Evgeny Burnaev. "Generative modeling with optimal transport maps.” ICLR, 2022.



Introduction

Optimal Transport (OT) Problem

=  Optimal Transport refers to the most cost-minimizing way to transport source distribution p to

target v.

* Monge’s Formulation.

Clpv) = inf [ /X c(a:,T(:c))du(:c)]

Typ=v

 Kantorovich’s Relaxation.

Clu,v) == inf [ ]X xyc(:z:,y)dw(;c,y)].

mell(p,v)

Monge’s Optimal Transport [2]

where I1(u, v) = the set of joint probability distributions on X' X Y whose marginals are u and v.

[1] Villani, Cédric. Optimal transport: old and new. Vol. 338. Berlin: springer, 2009.
[2] Rout, Litu, Alexander Korotin, and Evgeny Burnaev. "Generative modeling with optimal transport maps.” ICLR, 2022.



Introduction

Neural Optimal Transport

= Today, we focus on approaches for learning (static) optimal transport maps with neural networks.

Neural Network T

x\y

[1] Villani, Cédric. Optimal transport: old and new. Vol. 338. Berlin: springer, 2009. 9
[2] Rout, Litu, Alexander Korotin, and Evgeny Burnaev. "Generative modeling with optimal transport maps.” ICLR, 2022.



Introduction

Neural Optimal Transport Applications

The Neural Optimal Transport can be applied to any distribution transport applications.

Generative Modeling

10



Introduction

Neural Optimal Transport Applications

=  For example, Computer Vision Applications, such as Image Restoration.

Deblurring

Image Restoration

JPEG restoration

Inpainting

Super-resolution

Liu, Guan-Horng, et al. "I2SB: Image-to-Image Schrddinger Bridge.“, ICML, 2023.



Introduction

Neural Optimal Transport Applications

= For example, Computer Vision Applications, such as Point Cloud Completion.

Point Cloud Completion

Lee, Taekyung, et al. "Unsupervised Point Cloud Completion through Unbalanced Optimal Transport.“, Arxiv, 2024.
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Introduction

Neural Optimal Transport Applications

= For example, Al for Science, such as Prediction of Single-cell perturbation responses.

=  What effect would Drug k have on these cell populations?

[ Observed \
Control perturbation,
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Cells distribution
after Drug k Treatment

Bunne, Charlotte, et al. "Learning single-cell perturbation responses using neural optimal transport." Nature Methods 20.11 (2023): 1759-1768.
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Introduction

Neural Optimal Transport Applications

= For example, Al for Science, such as Prediction of Single-cell perturbation responses.

=  What effect would Drug k have on these cell populations?
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Instability Challenges in Neural Static OT
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Previous Neural Optimal Transport

Optimal Transport Map (OTM)

= OTM[1, 2] learns the transport map T through a max-min formulation.

* v°denotes the c-transform of v, i.e., v¢(x) = irel{/(c(x, y) —v(y)).
y

A4

— Clwv) = & [ /m (. y)dn(a, y>] ,

U — 7T®™ v \ Semi-dual formulation for OT

>}: = sup [/ch(m)du(:ﬁ)—kf

veLl(v) %

(w)ivty)

c-transform of v

Static Optimal Transport

Rout, Litu, Alexander Korotin, and Evgeny Burnaev. "Generative modeling with optimal transport maps.” ICLR, 2022.
Fan, Jiaojiao, et al. "Scalable computation of monge maps with general costs." ICLR Workshop, 2022.



Previous Neural Optimal Transport

Optimal Transport Map (OTM)

= OTM[1, 2] learns the transport map T through a max-min formulation.

* v°denotes the c-transform of v, i.e., v¢(x) = irel{/(c(x, y) —v(y)).
y

s Clwv) = & [ /M (. y)dn(a, yﬂ ,

U — 7T®™ v \ Semi-dual formulation for OT

>§ = sup [/ch(m)du(m)—kf

veLl(v) RY

(w)ivty)

c-transform of v

- Lo,r, 18 [ [ it . o) = vy (T (@) ) + | v¢<y>dv(y>].

Ve TQ

Static Optimal Transport

To: X = Y, x — arginf,cy [c(z,y) — v (y)]

Min-max objective between Transport map T and Potential v

Rout, Litu, Alexander Korotin, and Evgeny Burnaev. "Generative modeling with optimal transport maps.” ICLR, 2022. 17
Fan, Jiaojiao, et al. "Scalable computation of monge maps with general costs." ICLR Workshop, 2022.



Instability Challenges in Neural Static OT

Instability Challenges in OTM

= Unstable training dynamics and high sensitivity to hyperparameters in previous approaches

Unstable Training
: &, , “ - " ﬁ r _ é ‘W‘ i} 1000
oM & »8 o P LU L
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Ve o%e &% &’# a*a 'k

UOTM # ® ﬁ' " t » “ L B
e A R R L e

\ 4

lteration (K)

Training progress

Choi, Jaemoo, Jaewoong Choi, and Myungjoo Kang. "Analyzing and Improving Optimal-Transport-based Adversarial Networks." ICLR, 2024.
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Instability Challenges in Neural Static OT

Instability Challenges in OTM

= Unstable training dynamics and high sensitivity to hyperparameters in previous approaches

25 .
20 — OTM
. UOTM(KL)
st — UOTM(x?)
10 \./e
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A
Figure 6: Ablation Study on
Regularizer Intensity \.

Choi, Jaemoo, Jaewoong Choi, and Myungjoo Kang. "Analyzing and Improving Optimal-Transport-based Adversarial Networks." ICLR, 2024.



Displacement Interpolation Optimal Transport Model
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Dynamic Optimal Transport and Displacement Interpolation

Dynamic Optimal Transport

= The dynamic optimal transport problem tracks the continuous evolution of u to v.

_ dx
Tou =v P v (x)

x \ v(t, x)
>~m)
vV
k

Static Transport Map T from pto v Optimal Dynamics from u to v



Dynamic Optimal Transport and Displacement Interpolation

Dynamic Optimal Transport

= The dynamic optimal transport problem tracks the continuous evolution of u to v.

1
dpy
. f 2d dt; — v ’ — O-. — bl — .
’03[0,1}295%% [/(; La‘vf(m)| pt 8t _|_ (Utﬁt) , po M pl 1

Benamou-Brenier formulation when c(x,y) = a|lx — y||?. Continuity Eqgn.
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Dynamic Optimal Transport and Displacement Interpolation

Dynamic Optimal Transport

X \
T(x)

I’l vV is constant.

\»

Optimal Dynamics from u to v



Dynamic Optimal Transport and Displacement Interpolation

Displacement Interpolation

= Displacement interpolation (DI) describes the optimal solution to the dynamic OT problem using

the optimal transport map T* in a simple form.

dpy
ic OT: f WP dpedt; —= : =0, po=p, pr=v|.
Dynamic OT o ﬁgx—w [/ / al|ve () || dpy 5 + V- (vtpe) L Po = [y P1 =V
Displacement Interp.: ~ p?* :=[(1 —1t)- Id+1- "], p and plis = pr for 0 <t < 1.

DI = Dynamic OT



Dynamic Optimal Transport and Displacement Interpolation

Displacement Interpolation and Barycenter

= Displacement interpolation (DI) describes the optimal solution to the dynamic OT problem using

the optimal transport map T* in a simple form.

dpy
i . f 2 _— . — p— ) — .
Dynamic OT i ﬁgx—w [/ / al|ve (@) ||“dpedt; 5 + V- (vpe) =0, po=p, pr =V
Displacement Interp.:  p?* :=[(1 —1t)-Id+1- 7], 1 and plis = pr for 0 <t < 1.
DI = Dynamic OT
Barycenter:  ; = arginf Lpy(f,p) where  Lpi(t.p) = (1= )W5 (. p) + W5 (p.v).

DI = Wasserstein Barycenter

25



DIOTM
Displacement Interpolation OTM (DIOTM)

We proposed a neural optimal transport model Ty, called DIOTM, that leverages the entire

trajectory of dynamic optimal transport.

Learn the static transport map T*

. M"
\
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DIOTM
Displacement Interpolation OTM (DIOTM)

We proposed a neural optimal transport model Ty, called DIOTM, that leverages the entire

trajectory of dynamic optimal transport.

using the dynamic optimal transport.

Learn the static transport map T*

. M"
\
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DIOTM
Dual form of Displacement Interpolation

= Begin with the displacement interpolation p; at specific time t.

Dual form for pj,

T(x)




DIOTM
Dual form of Displacement Interpolation

*= From the Wasserstein barycenter characterization, we derive the following dual form:

primal:  pj = arginf Lpr(t,p) where  Lpj(t,p) = (1= HWZ (. p) + W3 (p, v).



DIOTM
Dual form of Displacement Interpolation

*= From the Wasserstein barycenter characterization, we derive the following dual form:

primal:  pj = arginf Lpr(t,p) where  Lpj(t,p) = (1= HWZ (. p) + W3 (p, v).

Theorem 3.1. Given the assumptions in Appen.dix fora givent € (0, 1), the minimization problem
inf, Lpr(t, p) (Eq.|8) is equivalent to the following dual problem:

Dual : sup [(1 — 1) /X fii(x)dp(x) + t/);fg‘f(y)dr/(y)] . (9)

f1,¢,f2,¢ with (1—t) f1,¢+tf2,:=0

where the supremum is taken over two potential functions fi;:Y — Rand fy; : X — R, which
satisfy (1 —t) f1.+ +1f20 = 0.

* Note that v¢ denotes the c-transform of v, i.e., v¢(x) = irEITE(C(X, y) —v(y)).
y
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DIOTM
Dual form of Displacement Interpolation

= We can combine these two potentials into a single potential V;.

pual: sup [(1 1) /X £ (@) dp(r) + 1 /y fg.fw)du(.u)] . 9)

fi,6.f2,c with (1—t) f1 ¢+t f2,:=0

Corollary 3.2. Fora givent € (0,1), let f1:(y) = tVi(y) and f5(x) = —(1 —t)Vi () for some
value function Vy : X = Y — R. Then, the dual formulation of displacement interpolation (Egq.
can be rewritten as follows:

s | [ Vet @idnto)+ [ (Ve ani)|. (14
Vi X Yy
where cs.4(z, 1) = (.'}:“?;’_—:'“2 forevery0 < s <t <1. Investigate the relationships between V;

across time t.




DIOTM
Optimality Condition for Time-dependent Potential

= We establish the relationship between the potential functions for each DI and utilize it to learn the

optimal transport map.

Relationship for the optimal potential V,
< P

T(x)

32



DIOTM
Optimality Condition for Time-dependent Potential

= The optimal potential V" for each p; satisfies the following [1]:

~Va(z) = inf (cas(7,9) = Vi(v)

allx

—yl|?
for0<s<t<1.

where ¢z ((x,y) =

= From this, we can derive the following optimality condition:

Theorem 3.3. Given the assumptions in Appen.dix the optimal V., in Eq. |14|satisfies the following:

V) = argsup [/ V() dp(x) +/
X

v, y

V}(;r)dp:(;r)] : (15)

up to constant p*-a.s.. Moreover, there exists {V,* }o<i<1 that satisfies Hamilton-Jacobi-Bellman

(HJB) equation, i.e. Use this term as regularizer

1
OV + EHVV;*H? =0, pas. (16)

[1] Villani, Cédric. Optimal transport: old and new. Vol. 338. Berlin: springer, 2009.



DIOTM
DIOTM Model

= Introduce the c-transform parametrization [1].

ual sup | [ Vi @)tz + / (Vo ()|

. C C
* Parametrize V, % and v, L1 3s follows:

\_

* *

Tt) and ﬁ satisfy these conditions.

?;‘(u) € argmin, .y |c(x,y) — fQ*'f(:r)L & (=V)i(y) =

(- )
?;‘(r) € argmin, ey [c(z,y) — 1, (v)] | V0t (z) = ¢ (LB? ?t(it)) — Vq;(t??t(:r))

[1] Rout, Litu, Alexander Korotin, and Evgeny Burnaev. "Generative modeling with optimal transport maps.“ ICLR, 2022.
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DIOTM
DIOTM Model

= Using DI, Parametrize interpolant generators through the boundary generators:

Tox)= (1= tr+tTe(x), Tiy)=(1—ty+tTely) forte (0,1).

 Then, we have the following learning objective:

4 . )
| ‘ EDQ = sup/ inf E, {a:t”x _ 7 o(2)|* — Vy(t, ? du(m)
: i’ V¢ JX 0

T / inf B, [a(l = O To(y) - yl* + Vit To(w))] doy).
T -

1 T(x)
U v

35




DIOTM
DIOTM Model

Parametrize interpolant generators through the boundary generators using DI.

T a)=(1—Da+tTex), Tiy)=1—ty+tTe(y) forte (0,1).

Egg—sup/
v, Jx

HJB regularizer

1
R(Vy) = Et wrp, |20 O:Vy(t, ) + §HVV¢(1€, )2

The total learning objective is as follows:

Loo =LYy + AR(Vy(t, x)).

B, [atle = Tow)l — Valt. Tuta)] dute) + [ prE: a1 =01 Ta) =l + V200, Tt vy

36



37



Experiments

Optimal Transport Map Evaluation

Our model learns a more accurate optimal transport map compared to previous methods.

¢+ Generated Data

« Source Data « Target Data

(<] (=] 1+ ."//.

&‘“‘w.k e
GT: o

-

LI A 4

+ el
OTM -~

rﬂ.‘;./ao

- .

-] .."t % ,'l//..

DI-OTM : —

Figure I: Visualization of transport maps 7" on synthetic datasets. The transport map is visualized
as a black line connecting each source sample x to its corresponding generated data T'(x).
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Experiments

Optimal Transport Map Evaluation

Our model learns a more accurate optimal transport map compared to previous methods.

e W,=W, (T—9># u, v): Error between the generated and target distributions.
. 2
e L, = fx ||T9(x) - T*(x)”2 dlies:: Error between the transport maps.

Table 1: Evaluation of optimal transport map on the synthetic datasets between OTM (Rout et al.,
2022) and ours, based on the 2-Wasserstein distance W5 and the L2 distance between transport maps.

: G—8G G—25G Moon—Spiral G—Circles
Metric

OT™ DIOTM OTM DIOTM OTM DIOTM OTM DIOTM

Wy () 4.93 3.72 10.09 6.49 0.40 0.55 3.96 2.34
L2(]) 648 4.38 13.09  10.00 1.77 1.67 6.23 5.44




Experiments

Scalability Comparison on 121 Translation Tasks

= We assessed our model on several Image-to-Image (121) translation benchmarks.
 Optimal transport map serves as a generator for the target distribution, which maps each input x to its cost-

minimizing counterpart y.

\ource Images (Male) / Translated Images (Female)

Generates the target distribution while minimizing c(x, T(x)).
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Experiments

Scalability Comparison on 121 Translation Tasks

= We assessed our model on several Image-to-Image (121) translation benchmarks.
 Optimal transport map serves as a generator for the target distribution, which maps each input x to its cost-

minimizing counterpart y.

Data Model FID ({)
CycleGAN Zhu et al. (2017) 12.94
) NOT|Korotin et al. (2023) 11.96
Male—Female (64x64) i Ean ctal (2022)  6.42
DIOTMT (Ours) 5.27
DSBM Shi et al. (2024a) 20+
Wild—Cat (64x64) OTMT Fan et al. (2022) 12.42
DIOTM' (Ours) 10.72

DSBM Shi et al. (2024a) 37.8
ASBM Gushchin et al. [(2024) 16.08
OTMT Fan et al. (2022) 7.55
DIOTMT (Ours) 7.40

Male—Female (128x128)

Image-to-Image translation benchmarks
compared to existing Neural (Entropic) OT Models



Experiments

Stability Comparison to Previous Approaches
Our model is more robust to hyperparameters and exhibits stable training dynamics.

—8— QOTM (Wild —» Cat, 64) — @ = (QOTM (Male -» Female, 128)
DIOTM (Wild — Cat, 64) — @ = DIOTM (Male = Female, 128)

Tg Loss (OTM) Tg Loss (DIOTM)

=
w

Logl0 Scale

o

0 10 20 30 ) 40 60
Num lterations (K)

Stable training dynamics of DIOTM

Robustness to hyperparameters of DIOTM

42



| Conclusion

=  We introduced DIOTM, a static neural optimal transport model based on displacement interpolation.

= We derived the dual formulation of displacement interpolation and investigated the optimal relationships

between potential functions.
= We proposed the HJB regularizer, which is derived from the optimality condition of the potential function.

=  Our model improves the training stability and accuracy of existing OT Map models that leverage min-max

objectives.

43
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Appendix
Training Algorithm

Algorithm 1 Training algorithm of DIOTM

Require: The source distribution y¢ and the target distribution v. Transport networks ?9, ?9 and

the discriminator network V. Total iteration number /', and regularization hyperparameter A.
I: fork=0.,1,2,.... K do
2 Sample a batch x ~ p, y ~ v, t ~ U|0, 1].
3: x4 (1 —t)x + t?g(i‘), yr + (1 — t)?a(y) + ty.
4 Update V,, to increase the £

Lo = —V(t.a0) + Vi(t.ur) = \R(V(t. 1)) — NR(Vo(t. 1)),

5: Update ?9 to decrease the loss: co ¢ (x, z¢) — Vi (t., 24).

6: Update ?9 to decrease the loss: ¢; 1 (v, y) + Vi (t, ye ).
7: end for

45



Appendix
Stability Comparison to Previous Approaches

=  QOur HIB regularizer outperforms other regularizers.
* Our HIB regularizer is the only regularizer that incorporates the time derivative.

* Rom(t, 2t yt) = [[Vy (coe(@, @) — Vot we)) |+ [[Vy (cea(ys ye) + Vot ye)) |-
* Rea(t,xe, yi) = IV Vot 20) [P + IV, Vit ) |1
© R(t,ae, ye)uis = [200 OeVis (B ) + 51V Vi (t, @) 2| + |200 0: Vi (t, ) + 5V Vst ye) 7] -

Table 3: Comparison of our HJB regularizer with the OTM and R1 regularizers on the DIOTM
model. Our HJB regularizer exhibits superior performance and stability to \.

Model G—8G G—25G Moon—Spiral
A 0.1 0.2 1.0 10 0.1 0.2 1.0 10 0.1 0.2 1.0 10

OTM 22.08 2290 DIV 31.35 6801 8962 DIV 8102 1999 1419 15.66 33.80
Wa (1) R1 3.9 501 329 442 920 994 11.78 DIV 191 2.08 1.05 274
HJB 193 269 292 321 719 1464 799 1238 054 059 030 1.31

OTM 2741 2821 DIV 3447 96.89 9798 DIV 87.05 2096 15.01 3431 33.80
L2 () R1 449 539 387 514 86.05 17.64 1952 DIV 288 356 236 374
HJB 3.05 344 336 398 1651 1582 11.11 15.64 142 225 113 227
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