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Introduction

Optimal Transport (OT) Problem

[1] Villani, Cédric. Optimal transport: old and new. Vol. 338. Berlin: springer, 2009.
[2] Rout, Litu, Alexander Korotin, and Evgeny Burnaev. "Generative modeling with optimal transport maps.“ ICLR, 2022.

▪ Optimal Transport refers to the most cost-minimizing way to transport source distribution μ to 

target ν.
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Introduction

Optimal Transport (OT) Problem

[1] Villani, Cédric. Optimal transport: old and new. Vol. 338. Berlin: springer, 2009.
[2] Rout, Litu, Alexander Korotin, and Evgeny Burnaev. "Generative modeling with optimal transport maps.“ ICLR, 2022.

▪ Optimal Transport refers to the most cost-minimizing way to transport source distribution μ to 

target ν.

• Monge’s Formulation.

Monge’s Optimal Transport [2]

Transport Map 𝑻

𝒙 ∼ 𝝁 ⟹ 𝑻 𝒙 ∼ 𝝂
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Introduction

Optimal Transport (OT) Problem

[1] Villani, Cédric. Optimal transport: old and new. Vol. 338. Berlin: springer, 2009.
[2] Rout, Litu, Alexander Korotin, and Evgeny Burnaev. "Generative modeling with optimal transport maps.“ ICLR, 2022.

Monge’s Optimal Transport [2]

Transport Map 𝑻

𝒙 ∼ 𝝁 ⟹ 𝑻 𝒙 ∼ 𝝂

Optimality by cost-minimizing
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▪ Optimal Transport refers to the most cost-minimizing way to transport source distribution μ to 

target ν.

• Monge’s Formulation.



Introduction

Optimal Transport (OT) Problem

[1] Villani, Cédric. Optimal transport: old and new. Vol. 338. Berlin: springer, 2009.
[2] Rout, Litu, Alexander Korotin, and Evgeny Burnaev. "Generative modeling with optimal transport maps.“ ICLR, 2022.

▪ Optimal Transport refers to the most cost-minimizing way to transport source distribution μ to 

target ν.

• Monge’s Formulation.

• Kantorovich’s Relaxation.

where Π(𝜇, 𝜈) ≔ the set of joint probability distributions on 𝒳 ×𝒴 whose marginals are 𝜇 and 𝜈.

Monge’s Optimal Transport [2]
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Introduction

Neural Optimal Transport

[1] Villani, Cédric. Optimal transport: old and new. Vol. 338. Berlin: springer, 2009.
[2] Rout, Litu, Alexander Korotin, and Evgeny Burnaev. "Generative modeling with optimal transport maps.“ ICLR, 2022.

▪ Today, we focus on approaches for learning (static) optimal transport maps with neural networks.
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Introduction

Neural Optimal Transport Applications

▪ The Neural Optimal Transport can be applied to any distribution transport applications.
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Introduction

Neural Optimal Transport Applications

▪ For example, Computer Vision Applications, such as Image Restoration.
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Image Restoration

Liu, Guan-Horng, et al. "I2SB: Image-to-Image Schrödinger Bridge.“, ICML, 2023.



Introduction

Neural Optimal Transport Applications

▪ For example, Computer Vision Applications, such as Point Cloud Completion.

12

𝜇 𝜈

𝑥

𝑦

Point Cloud Completion

Lee, Taekyung, et al. "Unsupervised Point Cloud Completion through Unbalanced Optimal Transport.“, Arxiv, 2024.



Introduction

Neural Optimal Transport Applications

▪ For example, AI for Science, such as Prediction of Single-cell perturbation responses.

▪ What effect would Drug 𝒌 have on these cell populations?

13
Bunne, Charlotte, et al. "Learning single-cell perturbation responses using neural optimal transport." Nature Methods 20.11 (2023): 1759-1768.

Cells distribution
after Drug 𝒌 Treatment
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Neural Optimal Transport Applications

▪ For example, AI for Science, such as Prediction of Single-cell perturbation responses.

▪ What effect would Drug 𝒌 have on these cell populations?

14
Bunne, Charlotte, et al. "Learning single-cell perturbation responses using neural optimal transport." Nature Methods 20.11 (2023): 1759-1768.

Cells distribution
after Drug 𝒌 Treatment

Drug Response
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Instability Challenges in Neural Static OT



Previous Neural Optimal Transport

Optimal Transport Map (OTM)

16

Semi-dual formulation for OT

𝒄-transform of 𝒗

▪ OTM [1, 2] learns the transport map 𝑻 through a max-min formulation.

• 𝑣𝑐 denotes the 𝒄-transform of 𝑣, i.e., 𝑣𝑐 𝑥 = inf
𝑦∈𝒴

(𝑐 𝑥, 𝑦 − 𝑣(𝑦)) .

Rout, Litu, Alexander Korotin, and Evgeny Burnaev. "Generative modeling with optimal transport maps.“ ICLR, 2022.
Fan, Jiaojiao, et al. "Scalable computation of monge maps with general costs." ICLR Workshop, 2022.

Static Optimal Transport



Previous Neural Optimal Transport

Optimal Transport Map (OTM)

17

Semi-dual formulation for OT

𝒄-transform of 𝒗

▪ OTM [1, 2] learns the transport map 𝑻 through a max-min formulation.

• 𝑣𝑐 denotes the 𝒄-transform of 𝑣, i.e., 𝑣𝑐 𝑥 = inf
𝑦∈𝒴

(𝑐 𝑥, 𝑦 − 𝑣(𝑦)) .

Rout, Litu, Alexander Korotin, and Evgeny Burnaev. "Generative modeling with optimal transport maps.“ ICLR, 2022.
Fan, Jiaojiao, et al. "Scalable computation of monge maps with general costs." ICLR Workshop, 2022.

Static Optimal Transport

Min-max objective between Transport map 𝑻 and Potential 𝒗



Instability Challenges in Neural Static OT

Instability Challenges in OTM

▪ Unstable training dynamics and high sensitivity to hyperparameters in previous approaches

18

Training progress

Unstable Training

Choi, Jaemoo, Jaewoong Choi, and Myungjoo Kang. "Analyzing and Improving Optimal-Transport-based Adversarial Networks." ICLR, 2024.



Instability Challenges in Neural Static OT

Instability Challenges in OTM

▪ Unstable training dynamics and high sensitivity to hyperparameters in previous approaches

19

Training progress

Unstable Training
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Displacement Interpolation Optimal Transport Model



Dynamic Optimal Transport and Displacement Interpolation

Dynamic Optimal Transport

▪ The dynamic optimal transport problem tracks the continuous evolution of 𝝁 to 𝝂.

21

𝑇#𝜇 = 𝜈
𝑑𝑥

𝑑𝑡
= 𝑣𝑡(𝑥)

Static Transport Map 𝑻 from 𝝁 to 𝝂 Optimal Dynamics from 𝝁 to 𝝂



Dynamic Optimal Transport and Displacement Interpolation

Dynamic Optimal Transport

▪ The dynamic optimal transport problem tracks the continuous evolution of 𝝁 to 𝝂.

22
Static Transport Map 𝑻 from 𝝁 to 𝝂 Optimal Dynamics from 𝝁 to 𝝂

Benamou-Brenier formulation when 𝒄 𝒙, 𝒚 = 𝜶 𝒙 − 𝒚 𝟐. Continuity Eqn.



Dynamic Optimal Transport and Displacement Interpolation

Dynamic Optimal Transport

▪ The dynamic optimal transport problem tracks the continuous evolution of 𝝁 to 𝝂.

23
Static Transport Map 𝑻 from 𝝁 to 𝝂 Optimal Dynamics from 𝝁 to 𝝂

Benamou-Brenier formulation when 𝒄 𝒙, 𝒚 = 𝜶 𝒙 − 𝒚 𝟐.

𝒗 is constant.

𝒙

𝑻(𝒙)



Dynamic Optimal Transport and Displacement Interpolation

Displacement Interpolation

▪ Displacement interpolation (DI) describes the optimal solution to the dynamic OT problem using 

the optimal transport map 𝑻⋆ in a simple form.

24

Dynamic OT:

DI = Dynamic OT

Displacement Interp.:



Dynamic Optimal Transport and Displacement Interpolation

Displacement Interpolation and Barycenter

▪ Displacement interpolation (DI) describes the optimal solution to the dynamic OT problem using 

the optimal transport map 𝑻⋆ in a simple form.

25

Dynamic OT:

Displacement Interp.:

Barycenter:

DI = Dynamic OT

DI = Wasserstein Barycenter



DIOTM

Displacement Interpolation OTM (DIOTM)

▪ We proposed a neural optimal transport model 𝑻𝜽, called DIOTM, that leverages the entire 

trajectory of dynamic optimal transport.

26

Learn the static transport map 𝑻⋆



DIOTM

Displacement Interpolation OTM (DIOTM)

▪ We proposed a neural optimal transport model 𝑻𝜽, called DIOTM, that leverages the entire 

trajectory of dynamic optimal transport.

27

Learn the static transport map 𝑻⋆
using the dynamic optimal transport.



DIOTM

Dual form of Displacement Interpolation

▪ Begin with the displacement interpolation 𝝆𝒕
⋆ at specific time t.

28

𝒕

Dual form for 𝝆𝒕𝟎
⋆



DIOTM

Dual form of Displacement Interpolation

▪ From the Wasserstein barycenter characterization, we derive the following dual form:

29

Primal :



DIOTM

Dual form of Displacement Interpolation

▪ From the Wasserstein barycenter characterization, we derive the following dual form:

• Note that 𝑣𝑐 denotes the 𝒄-transform of 𝑣, i.e., 𝑣𝑐 𝑥 = inf
𝑦∈𝒴

(𝑐 𝑥, 𝑦 − 𝑣(𝑦)) .

30

Primal :

Dual :



DIOTM

Dual form of Displacement Interpolation

▪ We can combine these two potentials into a single potential 𝑉𝑡 .

31

Dual :

Investigate the relationships between 𝑽𝒕 
across time 𝒕.



DIOTM

Optimality Condition for Time-dependent Potential

▪ We establish the relationship between the potential functions for each DI and utilize it to learn the 

optimal transport map.

32

𝒕

Relationship for the optimal potential 𝑽𝒕



DIOTM

Optimality Condition for Time-dependent Potential

[1] Villani, Cédric. Optimal transport: old and new. Vol. 338. Berlin: springer, 2009.

▪ The optimal potential 𝑉𝑡
⋆ for each 𝜌𝑡

⋆ satisfies the following [1]:

where 𝑐𝑠,𝑡 𝑥, 𝑦 =
𝛼 𝑥−𝑦 2

𝑡−𝑠
for 0 ≤ 𝑠 < 𝑡 ≤ 1.

▪ From this, we can derive the following optimality condition:

33

Use this term as regularizer



DIOTM

DIOTM Model

▪ Introduce the 𝒄-transform parametrization [1].

• Parametrize 𝑉𝑡
𝑐0,𝑡 and 𝑉𝑡

𝑐𝑡,1 as follows:

34
[1] Rout, Litu, Alexander Korotin, and Evgeny Burnaev. "Generative modeling with optimal transport maps.“ ICLR, 2022.

Dual :

𝑻𝒕
⋆

and 𝑻𝒕
⋆

satisfy these conditions.



DIOTM

DIOTM Model

▪ Using DI, Parametrize interpolant generators through the boundary generators:

• Then, we have the following learning objective:

35

𝑻⋆

𝑻𝒕
⋆



DIOTM

DIOTM Model

▪ Parametrize interpolant generators through the boundary generators using DI.

▪ HJB regularizer

▪ The total learning objective is as follows:

36
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Experiments



Experiments

Optimal Transport Map Evaluation

38

▪ Our model learns a more accurate optimal transport map compared to previous methods. 



Experiments

Optimal Transport Map Evaluation

39

▪ Our model learns a more accurate optimal transport map compared to previous methods. 

• 𝑾𝟐 = 𝑾𝟐 𝑻𝜽# 𝝁, 𝝂 : Error between the generated and target distributions.

• 𝑳𝟐 = 𝓧׬ 𝑻𝜽 𝒙 − 𝑻⋆ 𝒙
𝟐

𝟐
𝒅𝝁𝒕𝒆𝒔𝒕: Error between the transport maps.



Experiments

Scalability Comparison on I2I Translation Tasks

40

▪ We assessed our model on several Image-to-Image (I2I) translation benchmarks.

• Optimal transport map serves as a generator for the target distribution, which maps each input 𝑥 to its cost-

minimizing counterpart 𝑦.

Source Images (Male) Translated Images (Female)

Generates the target distribution while minimizing 𝒄 𝒙, 𝑻 𝒙 .



Experiments

Scalability Comparison on I2I Translation Tasks

41

▪ We assessed our model on several Image-to-Image (I2I) translation benchmarks.

• Optimal transport map serves as a generator for the target distribution, which maps each input 𝑥 to its cost-

minimizing counterpart 𝑦.

Image-to-Image translation benchmarks 
compared to existing Neural (Entropic) OT Models



Experiments

Stability Comparison to Previous Approaches

42

▪ Our model is more robust to hyperparameters and exhibits stable training dynamics.

Stable training dynamics of DIOTM Robustness to hyperparameters of DIOTM



Conclusion

▪ We introduced DIOTM, a static neural optimal transport model based on displacement interpolation.

▪ We derived the dual formulation of displacement interpolation and investigated the optimal relationships 

between potential functions.

▪ We proposed the HJB regularizer, which is derived from the optimality condition of the potential function.

▪ Our model improves the training stability and accuracy of existing OT Map models that leverage min-max 

objectives.

43



Thank you!
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Appendix

Training Algorithm

45



Appendix

Stability Comparison to Previous Approaches

46

▪ Our HJB regularizer outperforms other regularizers.

• Our HJB regularizer is the only regularizer that incorporates the time derivative.
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