How does PDE order affect the convergence of PINNs?

Changhoon Song, Yesom Park, Myungjoo Kang

24.11.06

- I. Introduction of physics-informed neural network (PINNs)
- II. Convergence of PINNs
- III. Width condition for PINNs to converge
- IV. Reduction of PDE order enhance the condition

Partial Differential Equations

A partial differential equation(PDE) is an equation that computes a function between various partial derivatives of a multivariate function.

Examples:

A neural network u_{θ} is a solution of PDE if it satisfies

$$\left\{ egin{aligned} \mathcal{N}\left[u_{ heta}, Du_{ heta}, D^2u_{ heta}
ight] (oldsymbol{x}) &= f\left(oldsymbol{x}
ight), \quad oldsymbol{x} \in \Omega, \ &u_{ heta}\left(oldsymbol{x}
ight) &= g\left(oldsymbol{x}
ight), \quad oldsymbol{x} \in \partial\Omega, \end{aligned}
ight.$$

Physics-Informed Neural Networks (PINNs) [DPT94, RPK19] PINNs learn a solution by minimizing the residual of the PDE:

$$\mathcal{L}(u_{\theta}) \coloneqq \|\mathcal{N}[u_{\theta}] - f\|_{L^{2}(\Omega)} + \|u_{\theta} - g\|_{L^{2}(\partial\Omega)}.$$

Physics-Informed Neural Networks

Theoretical Setting $\mathcal{N}[u_{\theta}] = f, \quad x \in \Omega$ $\mathcal{B}[u_{\theta}] = g, \quad x \in \partial\Omega$

 $\mathcal{L}(u_{\theta}) = \|\mathcal{N}[u_{\theta}] - f\|_{L^{2}(\Omega)} + \|\mathcal{B}[u_{\theta}] - g\|_{L^{2}(\partial\Omega)}$

 $\theta = \arg\min_{\theta} \mathcal{L}(u_{\theta})$

Practical Setting

 $\mathcal{N}[u_{\theta}](x_{i}) = f(x_{i}), \quad x_{i} \in \Omega$ $\mathcal{B}[u_{\theta}](\tilde{x}_{j}) = g(\tilde{x}_{j}), \quad \tilde{x}_{j} \in \partial\Omega$

$$\mathcal{L}(u_{\theta}) = \sum_{i} \left(\mathcal{N}[u_{\theta}](x_{i}) - f(x_{i}) \right)^{2} + \sum_{j} \left(\mathcal{B}[u_{\theta}](\tilde{x}_{j}) - g(\tilde{x}_{j}) \right)^{2}$$
$$\theta(t+1) = \theta(t) - \eta \nabla \mathcal{L}(u_{\theta(t)})$$

$$\dot{\theta}(t) = -\nabla \mathcal{L}\big(u_{\theta(t)}\big)$$

Convergence of PINNs

Network \approx Exact sol.

Expected residual \approx Sampled residual $\mathcal{L}(u_{\theta}) = \|\mathcal{N}[u_{\theta}] - f\|_{L^{2}(\Omega)} + \|\mathcal{B}[u_{\theta}] - g\|_{L^{2}(\partial\Omega)}$ $\mathcal{L}(u_{\theta}) = \sum_{i} (\mathcal{N}[u_{\theta}](x_{i}) - f(x_{i}))^{2} + \sum_{i} (\mathcal{B}[u_{\theta}](\tilde{x}_{i}) - g(\tilde{x}_{i}))^{2}$

Minimize residual \approx Minimize error

$$\begin{aligned} \mathcal{L}(u_{\theta}) &= \|\mathcal{N}[u_{\theta}] - f\|_{L^{2}(\Omega)} + \|\mathcal{B}[u_{\theta}] - g\|_{L^{2}(\partial\Omega)} \\ \theta &= \arg\min_{\theta} \mathcal{L}(u_{\theta}) \\ \|u_{\theta} - u^{*}\| \leq C\mathcal{L}(u_{\theta}) \end{aligned}$$

Training result \approx Loss minimizer

$$\theta(t+1) = \theta(t) - \eta \nabla \mathcal{L}(u_{\theta(t)})$$
$$\dot{\theta}(t) = -\nabla \mathcal{L}(u_{\theta(t)})$$
$$\lim_{t \to \infty} \theta(t)$$
$$\theta = \arg \min_{\theta} \mathcal{L}(u_{\theta})$$

Training Convergence of PINNs

$$\mathcal{N}[u_{\theta}](x_i) = f(x_i), \quad x_i \in \Omega$$

 $u_{\theta}(\tilde{x}_j) = g(\tilde{x}_j), \quad \tilde{x}_j \in \partial \Omega$

$$\mathcal{N}[u] = \sum_{|\alpha| \le k} a_{\alpha}(\mathbf{x}) \frac{\partial^{\alpha}}{\partial \mathbf{x}^{\alpha}} u(\mathbf{x}), \qquad \mathcal{B}[u] = \sum_{|\alpha| \le 1} \tilde{a}_{\alpha}(\mathbf{x}) \frac{\partial^{\alpha}}{\partial \mathbf{x}^{\alpha}} u(\mathbf{x})$$
$$\mathcal{L}(u_{\theta}) = \sum_{i} \left(\mathcal{N}[u_{\theta}](x_{i}) - f(x_{i}) \right)^{2} + \sum_{i} \left(\mathcal{B}[u_{\theta}](\tilde{x}_{i}) - g(\tilde{x}_{i}) \right)^{2}$$

$$u_{\theta} = \frac{1}{\sqrt{m}} \sum_{r=1}^{m} a_r \, \sigma \big(W_{ij} x_j + b_i \big)$$

$$\sigma(x) = \max\{0, x\}^p$$

Theorem (Brief)
$$m = \Omega \left(\log \frac{m}{\delta} \right)^{4p} \Longrightarrow P \left(\lim_{t \to \infty} \mathcal{L} \left(u \left(t \right) \right) = 0 \right) \ge 1 - \delta.$$

Theorem (Special Case)

There exists a constant C, independent of d, k, and p, such that for any $\delta \ll 1$, if

$$m > C \binom{d+k}{d}^{14} p^{7k+4} 2^{6p} \left(\log \frac{md}{\delta} \right)^{4p}$$

then with probability of at least $1-\delta$ over the initialization, we have

 $\mathcal{L}_{PINN}\left(\boldsymbol{w}\left(t
ight), \boldsymbol{v}\left(t
ight)
ight) \leq \exp\left(-\lambda_{0}t
ight) \mathcal{L}_{PINN}\left(\boldsymbol{w}\left(0
ight), \boldsymbol{v}\left(0
ight)
ight), \ \forall t\geq0.$

Theorem (Special Case)

There exists a constant C, independent of d, k, and p, such that for any $\delta \ll 1$, if $\int c \left(d + k \right)^{14} \int dependent dependent of d, k, and p, such that for any dependent of d, k, and p, such that for any dependent of d, k, and p, such that for any dependent of d, k, and p, such that for any dependent of d, k, and p, such that for any dependent of d, k, and p, such that for any dependent of d, k, and p, such that for any dependent of d, k, and p, such that for any dependent of d, k, and p, such that for any dependent of d, k, and p, such that for any dependent of d, k, and p, such that for any dependent of d, k, and p, such that for any dependent of d, k, and p, such that for any dependent of d, k, and p, such that for any dependent of d, k, and p, such that for any d, su$

$$\frac{m}{Width} > C \binom{d+k}{d}^{1} p^{7k+4} 2^{6p} \left(\log \frac{md}{\delta}\right)^{4}$$

then with probability of at least $1-\delta$ over the initialization, we have

$$\mathcal{L}_{PINN}\left(oldsymbol{w}\left(t
ight),oldsymbol{v}\left(t
ight)
ight)\leq\exp\left(-\lambda_{0}t
ight)\mathcal{L}_{PINN}\left(oldsymbol{w}\left(0
ight),oldsymbol{v}\left(0
ight)
ight),\,\,orall t\geq0.$$

Loss at time t

Initial loss

- Higher k and p requires exponentially wide width.
- p = k + 1 is optimal order for RePU, since $p \ge k + 1$.

Theorem (Special Case)

There exists a constant C, independent of d, k, and p, such that for any $\delta \ll 1$, if

$$\frac{m}{k} > C \binom{d+k}{d}^{14} \frac{p^{7k+4}}{k} 2^{6p} \left(\log \frac{md}{\delta}\right)^{4p}$$

then with probability of at least $1-\delta$ over the initialization, we have

$$\mathcal{L}_{PINN}\left(oldsymbol{w}\left(t
ight),oldsymbol{v}\left(t
ight)
ight)\leq\exp\left(-\lambda_{0}t
ight)\mathcal{L}_{PINN}\left(oldsymbol{w}\left(0
ight),oldsymbol{v}\left(0
ight)
ight),\,\,orall t\geq0.$$

Loss at time t

Initial loss

- Higher k and p requires exponentially wide width.
- p = k + 1 is optimal order for RePU, since $p \ge k + 1$.

Biharmonic equation: $u_{xxxx} + 2u_{xxyy} + u_{yyyy} = f_2$

Higher-order PDEs

$$\Delta \boldsymbol{u} = \boldsymbol{f}$$

primary variable

System of lower-order PDEs

$$\begin{cases} \nabla \cdot \boldsymbol{V} = f \\ \boldsymbol{V} = \nabla u \\ \text{Auxiliary variable} \end{cases}$$

$$u_t - u_{xx} = f$$

$$\begin{cases} u_t - v_x = f \\ v = u_x \end{cases}$$

Auxiliary variable

Higher-order PDEs

$$\begin{cases} \mathcal{N}[u](\boldsymbol{x}) = f(\boldsymbol{x}), \\ \mathcal{B}[u](\boldsymbol{x}) = g(\boldsymbol{x}), \end{cases}$$

$$\mathcal{N}[u] = \sum_{|\alpha| \le k} a_{\alpha} \frac{\partial^{\alpha}}{\partial x^{\alpha}} u$$

System of lower-order PDEs

$$\begin{cases} \hat{\mathcal{N}} \left[\phi_0, \cdots, \phi_L \right] \left(\boldsymbol{x} \right) = f \left(\boldsymbol{x} \right), \\ \frac{\partial^{\beta}}{\partial \boldsymbol{x}^{\beta}} \left(\phi_{\ell-1} \right)_{\alpha} \left(\boldsymbol{x} \right) = \left(\phi_{\ell} \right)_{\alpha+\beta} \left(\boldsymbol{x} \right) \\ \mathcal{B} \left[\phi_0 \right] \left(\boldsymbol{x} \right) = g, \end{cases}$$

$$\mathcal{N}[u] = \sum_{\substack{\ell \mid |\alpha| \le \xi_{\ell} \mid \beta \mid \le \Delta \xi_{\ell+1}}} \widehat{a}_{\ell,\alpha,\beta} \frac{\partial^{\Delta \xi_{\ell+1}}}{\partial x^{\beta}} (\phi_{\ell})_{\alpha}$$
$$\mathbf{0} = \xi_{\mathbf{0}} \le \xi_{\mathbf{1}} \le \dots \le \xi_{L+1} = \mathbf{k}$$
$$\Delta \xi_{\ell} = \xi_{\ell+1} - \xi_{\ell}$$

Main result 2

Theorem (General Case)

There exists a constant *C*, independent of *d*, *k*, $|\xi|$, and *p*, such that for any $\delta \ll 1$, if $|\xi| = \max \Delta \xi_{\ell}$

$$m > C \binom{d+k}{d}^6 \binom{d+|\xi|}{d}^8 p^{7|\xi|+4} 2^{6p} \left(\log \frac{md}{\delta}\right)^{4p},$$

then with probability of at least $1-\delta$ over the initialization, we have

$$\mathcal{L}_{PINN}^{VS}\left(oldsymbol{w}\left(t
ight),oldsymbol{v}\left(t
ight)
ight) \leq\exp\left(-\lambda_{0}t
ight)\mathcal{L}_{PINN}^{VS}\left(oldsymbol{w}\left(0
ight),oldsymbol{v}\left(0
ight)
ight),\,\,orall t\geq0.$$

- Lower $|\xi|$ reduces width requirement.
- $p = |\xi| + 1$ is optimal order for RePU.

Heat equation $\begin{cases} u_t = u_{xx} \\ u(t, -1) = u(t, 1) = 0 \\ u(0, x) = \sin(\pi x) \end{cases}$

Convection-Diffusion equation

 $\begin{cases} u_t + u_x - \frac{1}{4}u_{xx} = 0\\ u(0, x) = \sin(x)\\ u(t, 0) = -e^{-\frac{1}{4}t}\sin(t)\\ u(t, \pi) = e^{-\frac{1}{4}t}\sin(\pi - t) \end{cases}$

Elastic beam equation

 $\begin{cases} u_t + u_{xxxx} = 0\\ u(t,0) = u(t,\pi) = u_{xx}(t,0) = u_{xx}(t,\pi) = 0\\ u(0,x) = 2\sin(x) \end{cases}$

Bi-harmonic equation

 $\begin{cases} u_{xxxx} + 2u_{xxyy} + u_{yyyy} = f_2 \\ u(x,0) = u(x,\pi) = u(0,y) = u(\pi,y) = 0 \\ \frac{\partial}{\partial \mathbf{n}}u(x,0) = \frac{\partial}{\partial \mathbf{n}}u(x,\pi) = \frac{\partial}{\partial \mathbf{n}}u(0,y) = \frac{\partial}{\partial \mathbf{n}}u(\pi,y) = 0 \end{cases}$

PDE	\mathbf{Method}	GPU memory	running time	parameters
Bi-harmonic	$\begin{array}{l} \text{PINN} \\ \text{VS-PINN} \ \xi = 2 \\ \text{VS-PINN} \ \xi = 1 \end{array}$	801.052 Mb 481.094 Mb 81,466 Mb	0.053 s/epoch 0.049 s/epoch 0.053 s/epoch	$4000 \\ 9000 \\ 20000$
Beam	$\begin{array}{l} \text{PINN} \\ \text{VS-PINN} \ \xi = 2 \\ \text{VS-PINN} \ \xi = 1 \end{array}$	323.772 Mb 240.689 Mb 80.836 Mb	0.037 s/epoch 0.038 s/epoch 0.040 s/epoch	$4000 \\ 9000 \\ 17000$

- Auxiliary variables need additional models.
- Reducing the number of differentiation in loss is more critical.

(1) $\lambda_0 > 0$ G^{∞} $\boldsymbol{\mathcal{X}}$ $\stackrel{\text{(3) Small }t}{\approx} G(t)$ G(0)(2) Large mw(0) W_*

Proposition

 $\boldsymbol{G}_{\boldsymbol{v}}^{\infty} = \mathbb{E}_{\boldsymbol{w},\boldsymbol{v}} \left[\boldsymbol{G}_{\boldsymbol{v}} \left(\boldsymbol{w}, \boldsymbol{v} \right) \right]$ is strictly positive definite and independent of m.

Proposition

For $\delta > 0$ and some constant N₁, C₁ and R, if m is large enough so that

$$m \geq \frac{32N_1C_1^2R^{4p}}{\lambda_0^2}\log\left(\frac{2N_1}{\delta}\right),$$

then with the probability of at least $1 - \delta$ over the initialization, we have

$$\|\boldsymbol{G}_{\boldsymbol{v}}\left(\boldsymbol{w}\left(0
ight),\boldsymbol{v}\left(0
ight)
ight)-\boldsymbol{G}_{\boldsymbol{v}}^{\infty}\|_{2}<rac{\lambda_{0}}{4}.$$

Sketch of Proofs

Sketch of Proofs

