
How does PDE order affect the 
convergence of PINNs?

Changhoon Song, Yesom Park, Myungjoo Kang

24.11.06



Contents

I. Introduction of physics-informed neural network (PINNs)

II. Convergence of PINNs

III. Width condition for PINNs to converge

IV. Reduction of PDE order enhance the condition



Partial Differential Equations



Physics-Informed Neural Networks



Physics-Informed Neural Networks

𝜃 = argmin
𝜃

ℒ 𝑢𝜃

ℒ 𝑢𝜃 = 𝒩 𝑢𝜃 − 𝑓 𝐿2 Ω + ℬ 𝑢𝜃 − 𝑔 𝐿2 𝜕Ω

𝒩 𝑢𝜃 = 𝑓, 𝑥 ∈ Ω

ℬ 𝑢𝜃 = 𝑔, 𝑥 ∈ 𝜕Ω

𝒩 𝑢𝜃 𝑥𝑖 = 𝑓 𝑥𝑖 , 𝑥𝑖 ∈ Ω

ℬ 𝑢𝜃 𝑥𝑗 = 𝑔 𝑥𝑗 , 𝑥𝑗 ∈ 𝜕Ω

ℒ 𝑢𝜃 =

𝑖

𝒩 𝑢𝜃 𝑥𝑖 − 𝑓 𝑥𝑖
2
+

𝑗

ℬ 𝑢𝜃 𝑥𝑗 − 𝑔 𝑥𝑗
2

𝜃 𝑡 + 1 = 𝜃 𝑡 − 𝜂∇ℒ 𝑢𝜃 𝑡

ሶ𝜃 𝑡 = −∇ℒ 𝑢𝜃 𝑡

Theoretical Setting Practical Setting



Convergence of PINNs

𝑦

𝑥
𝑢𝜃

Network ≈ Exact sol.

𝜃 = argmin
𝜃

ℒ 𝑢𝜃

ℒ 𝑢𝜃 = 𝒩 𝑢𝜃 − 𝑓 𝐿2 Ω + ℬ 𝑢𝜃 − 𝑔 𝐿2 𝜕Ω

𝑢𝜃 − 𝑢∗ ≤ 𝐶ℒ 𝑢𝜃

Minimize residual ≈ Minimize error

Expected residual ≈ Sampled residual

ℒ 𝑢𝜃 = 𝒩 𝑢𝜃 − 𝑓 𝐿2 Ω + ℬ 𝑢𝜃 − 𝑔 𝐿2 𝜕Ω

ℒ 𝑢𝜃 =

𝑖

𝒩 𝑢𝜃 𝑥𝑖 − 𝑓 𝑥𝑖
2
+

𝑗

ℬ 𝑢𝜃 𝑥𝑗 − 𝑔 𝑥𝑗
2

Training result ≈ Loss minimizer

𝜃 = argmin
𝜃

ℒ 𝑢𝜃

𝜃 𝑡 + 1 = 𝜃 𝑡 − 𝜂∇ℒ 𝑢𝜃 𝑡

lim
𝑡→∞

𝜃 𝑡

ሶ𝜃 𝑡 = −∇ℒ 𝑢𝜃 𝑡



Training Convergence of PINNs

𝑥𝑑

𝑥1

𝑢𝜃

𝑢𝜃 =
1

𝑚


𝑟=1

𝑚

𝑎𝑟 𝜎 𝑊𝑖𝑗𝑥𝑗 + 𝑏𝑖

𝑚 nodes

𝜎 𝑥 = max 0, 𝑥 𝑝

𝒩 𝑢 = 

𝛼 ≤𝑘

𝑎𝛼 𝒙
𝜕𝛼

𝜕𝒙𝛼
𝑢 𝒙 ,

𝒩 𝑢𝜃 𝑥𝑖 = 𝑓 𝑥𝑖 , 𝑥𝑖 ∈ Ω

𝑢𝜃 𝑥𝑗 = 𝑔 𝑥𝑗 , 𝑥𝑗 ∈ 𝜕Ω

ℒ 𝑢𝜃 =

𝑖

𝒩 𝑢𝜃 𝑥𝑖 − 𝑓 𝑥𝑖
2
+

𝑗

ℬ 𝑢𝜃 𝑥𝑗 − 𝑔 𝑥𝑗
2

ℬ 𝑢 = 

𝛼 ≤1

𝑎𝛼 𝒙
𝜕𝛼

𝜕𝒙𝛼
𝑢 𝒙
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Main result 1

Loss at time t Initial loss

Width

PDE order

▪ Higher 𝑘 and 𝑝 requires exponentially wide width.

▪ 𝑝 = 𝑘 + 1 is optimal order for RePU, since 𝑝 ≥ 𝑘 + 1.



Main result 1

Loss at time t Initial loss

Width RePU power

▪ Higher 𝑘 and 𝑝 requires exponentially wide width.

▪ 𝑝 = 𝑘 + 1 is optimal order for RePU, since 𝑝 ≥ 𝑘 + 1.



Experiment 1

Harmonic equation: 𝒖𝒙𝒙 + 𝒖𝒚𝒚 = 𝒇𝟏

Biharmonic equation: 𝒖𝒙𝒙𝒙𝒙 + 𝟐𝒖𝒙𝒙𝒚𝒚 + 𝒖𝒚𝒚𝒚𝒚 = 𝒇𝟐



Variable Splitting

Δ𝑢 = 𝑓 ቊ
∇ ⋅ 𝑉 = 𝑓
𝑉 = ∇𝑢

𝑢𝑡 − 𝑢𝑥𝑥 = 𝑓 ቊ
𝑢𝑡 − 𝑣𝑥 = 𝑓
𝑣 = 𝑢𝑥

Higher-order PDEs System of lower-order PDEs

Auxiliary variable

Auxiliary variable

primary variable



Variable Splitting

Higher-order PDEs System of lower-order PDEs

𝒩 𝑢 = 

𝛼 ≤𝑘

𝑎𝛼
𝜕𝛼

𝜕𝒙𝛼
𝑢 𝒩 𝑢 =

ℓ



𝛼 ≤𝜉ℓ



𝛽 ≤Δ𝜉ℓ+1

ො𝑎ℓ,𝛼,𝛽
𝜕Δ𝜉ℓ+1

𝜕𝒙𝛽
𝜙ℓ 𝛼

𝟎 = 𝝃𝟎 ≤ 𝝃𝟏 ≤ ⋯ ≤ 𝝃𝑳+𝟏 = 𝒌

𝚫𝝃ℓ = 𝝃ℓ+𝟏 − 𝝃ℓ



Main result 2

𝝃 = 𝐦𝐚𝐱 𝚫𝝃ℓ

▪ Lower 𝜉 reduces width requirement.

▪ 𝑝 = 𝜉 + 1 is optimal order for RePU.



Experiment 2

Heat equation



Experiment 3

Convection-Diffusion equation



Experiment 4

Elastic beam equation Bi-harmonic equation



Computational cost

▪ Auxiliary variables need additional models.
▪ Reducing the number of differentiation in loss is more critical.



Sketch of Proofs

𝐺 0

𝐺∞

𝐺 𝑡

≈

① 𝜆0 > 0

𝑤 0

𝑤∗

≈
③ Small 𝑡

② Large 𝑚



Sketch of Proofs

𝑑

𝑑𝑡
𝑢 𝑡 = 𝐺 𝑡 (𝑦 − 𝑢 𝑡 )

𝑑

𝑑𝑡
𝑤𝑟 𝑡 = −

𝜕

𝜕𝑤𝑟
𝑢 𝑡 − 𝑦 2

2

𝐺 0

𝐺∞

𝐺 𝑡

≈

① 𝜆0 > 0

𝑤 0

𝑤∗

≈
③ Small 𝑡 ④ 𝜆0 𝑡 >

1

2
𝜆0

𝑢 𝑡 − 𝑦 2 ≤ exp −𝜆0𝑡 𝑢 0 − 𝑦

𝑤 𝑡 − 𝑤 0 2 ≤ න
0

𝑡

𝑢 𝑠 − 𝑦 2𝑑𝑠

⑤ Fast decrease 𝑢 𝑡

② Large 𝑚



Sketch of Proofs

𝑑

𝑑𝑡
𝑢 𝑡 = 𝐺 𝑡 (𝑦 − 𝑢 𝑡 )

𝑑

𝑑𝑡
𝑤𝑟 𝑡 = −

𝜕

𝜕𝑤𝑟
𝑢 𝑡 − 𝑦 2

2

𝐺 0

𝐺∞

𝐺 𝑡

≈

① 𝜆0 > 0

𝑤 0

𝑤∗

≈
③ Small 𝑡 ④ 𝜆0 𝑡 >

1

2
𝜆0

𝑢 𝑡 − 𝑦 2 ≤ exp −𝜆0𝑡 𝑢 0 − 𝑦

𝑤 𝑡 − 𝑤 0 2 ≤ න
0

𝑡

𝑢 𝑠 − 𝑦 2𝑑𝑠
⑥ Small difference

⑤ Fast decrease 𝑢 𝑡

② Large 𝑚

⑦ 𝑤 𝑡 ≈ 𝑤(0) ⑧ 𝜆0 𝑡 >
1

2
𝜆0
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