# How does PDE order affect the convergence of PINNs?

Changhoon Song, Yesom Park, Myungjoo Kang

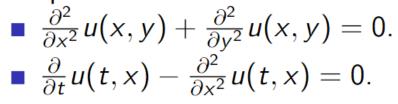
24.11.06

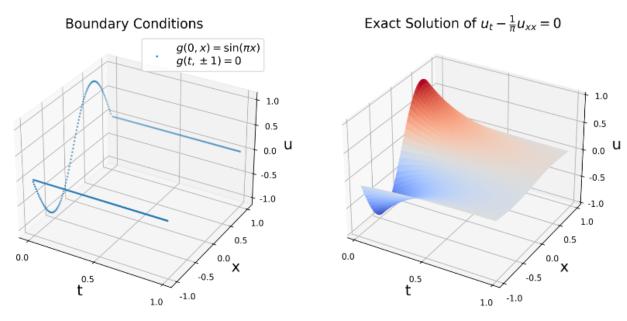
- I. Introduction of physics-informed neural network (PINNs)
- II. Convergence of PINNs
- III. Width condition for PINNs to converge
- IV. Reduction of PDE order enhance the condition

#### Partial Differential Equations

A partial differential equation(PDE) is an equation that computes a function between various partial derivatives of a multivariate function.

Examples:





A neural network  $u_{\theta}$  is a solution of PDE if it satisfies

$$\left\{ egin{aligned} \mathcal{N}\left[ u_{ heta}, Du_{ heta}, D^2u_{ heta} 
ight] (oldsymbol{x}) &= f\left(oldsymbol{x}
ight), \quad oldsymbol{x} \in \Omega, \ &u_{ heta}\left(oldsymbol{x}
ight) &= g\left(oldsymbol{x}
ight), \quad oldsymbol{x} \in \partial\Omega, \end{aligned} 
ight.$$

Physics-Informed Neural Networks (PINNs) [DPT94, RPK19] PINNs learn a solution by minimizing the residual of the PDE:

$$\mathcal{L}(u_{\theta}) \coloneqq \|\mathcal{N}[u_{\theta}] - f\|_{L^{2}(\Omega)} + \|u_{\theta} - g\|_{L^{2}(\partial\Omega)}.$$

#### Physics-Informed Neural Networks

Theoretical Setting $\mathcal{N}[u_{\theta}] = f, \quad x \in \Omega$  $\mathcal{B}[u_{\theta}] = g, \quad x \in \partial\Omega$ 

 $\mathcal{L}(u_{\theta}) = \|\mathcal{N}[u_{\theta}] - f\|_{L^{2}(\Omega)} + \|\mathcal{B}[u_{\theta}] - g\|_{L^{2}(\partial\Omega)}$ 

 $\theta = \arg\min_{\theta} \mathcal{L}(u_{\theta})$ 

# Practical Setting

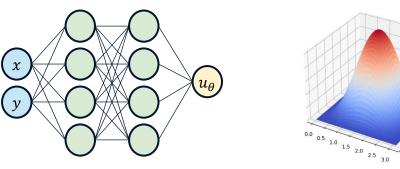
 $\mathcal{N}[u_{\theta}](x_{i}) = f(x_{i}), \quad x_{i} \in \Omega$  $\mathcal{B}[u_{\theta}](\tilde{x}_{j}) = g(\tilde{x}_{j}), \quad \tilde{x}_{j} \in \partial\Omega$ 

$$\mathcal{L}(u_{\theta}) = \sum_{i} \left( \mathcal{N}[u_{\theta}](x_{i}) - f(x_{i}) \right)^{2} + \sum_{j} \left( \mathcal{B}[u_{\theta}](\tilde{x}_{j}) - g(\tilde{x}_{j}) \right)^{2}$$
$$\theta(t+1) = \theta(t) - \eta \nabla \mathcal{L}(u_{\theta(t)})$$

$$\dot{\theta}(t) = -\nabla \mathcal{L}\big(u_{\theta(t)}\big)$$

## Convergence of PINNs

Network  $\approx$  Exact sol.



# Expected residual $\approx$ Sampled residual $\mathcal{L}(u_{\theta}) = \|\mathcal{N}[u_{\theta}] - f\|_{L^{2}(\Omega)} + \|\mathcal{B}[u_{\theta}] - g\|_{L^{2}(\partial\Omega)}$ $\mathcal{L}(u_{\theta}) = \sum_{i} (\mathcal{N}[u_{\theta}](x_{i}) - f(x_{i}))^{2} + \sum_{i} (\mathcal{B}[u_{\theta}](\tilde{x}_{i}) - g(\tilde{x}_{i}))^{2}$

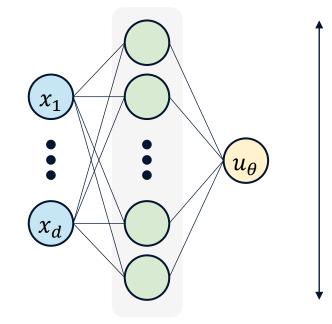
#### Minimize residual $\approx$ Minimize error

$$\begin{aligned} \mathcal{L}(u_{\theta}) &= \|\mathcal{N}[u_{\theta}] - f\|_{L^{2}(\Omega)} + \|\mathcal{B}[u_{\theta}] - g\|_{L^{2}(\partial\Omega)} \\ \theta &= \arg\min_{\theta} \mathcal{L}(u_{\theta}) \\ \|u_{\theta} - u^{*}\| \leq C\mathcal{L}(u_{\theta}) \end{aligned}$$

Training result  $\approx$  Loss minimizer

$$\theta(t+1) = \theta(t) - \eta \nabla \mathcal{L}(u_{\theta(t)})$$
$$\dot{\theta}(t) = -\nabla \mathcal{L}(u_{\theta(t)})$$
$$\lim_{t \to \infty} \theta(t)$$
$$\theta = \arg \min_{\theta} \mathcal{L}(u_{\theta})$$

# Training Convergence of PINNs





$$\mathcal{N}[u_{\theta}](x_i) = f(x_i), \quad x_i \in \Omega$$
  
 $u_{\theta}(\tilde{x}_j) = g(\tilde{x}_j), \quad \tilde{x}_j \in \partial \Omega$ 

$$\mathcal{N}[u] = \sum_{|\alpha| \le k} a_{\alpha}(\mathbf{x}) \frac{\partial^{\alpha}}{\partial \mathbf{x}^{\alpha}} u(\mathbf{x}), \qquad \mathcal{B}[u] = \sum_{|\alpha| \le 1} \tilde{a}_{\alpha}(\mathbf{x}) \frac{\partial^{\alpha}}{\partial \mathbf{x}^{\alpha}} u(\mathbf{x})$$
$$\mathcal{L}(u_{\theta}) = \sum_{i} \left( \mathcal{N}[u_{\theta}](x_{i}) - f(x_{i}) \right)^{2} + \sum_{i} \left( \mathcal{B}[u_{\theta}](\tilde{x}_{i}) - g(\tilde{x}_{i}) \right)^{2}$$

$$u_{\theta} = \frac{1}{\sqrt{m}} \sum_{r=1}^{m} a_r \, \sigma \big( W_{ij} x_j + b_i \big)$$

$$\sigma(x) = \max\{0, x\}^p$$

Theorem (Brief)  
$$m = \Omega \left( \log \frac{m}{\delta} \right)^{4p} \Longrightarrow P \left( \lim_{t \to \infty} \mathcal{L} \left( u \left( t \right) \right) = 0 \right) \ge 1 - \delta.$$

#### Theorem (Special Case)

There exists a constant C, independent of d, k, and p, such that for any  $\delta \ll 1$ , if

$$m > C \binom{d+k}{d}^{14} p^{7k+4} 2^{6p} \left( \log \frac{md}{\delta} \right)^{4p}$$

then with probability of at least  $1-\delta$  over the initialization, we have

 $\mathcal{L}_{PINN}\left( \boldsymbol{w}\left(t
ight), \boldsymbol{v}\left(t
ight)
ight) \leq \exp\left(-\lambda_{0}t
ight) \mathcal{L}_{PINN}\left( \boldsymbol{w}\left(0
ight), \boldsymbol{v}\left(0
ight)
ight), \ \forall t\geq0.$ 

#### Theorem (Special Case)

There exists a constant C, independent of d, k, and p, such that for any  $\delta \ll 1$ , if  $\int c \left( d + k \right)^{14} \int dependent dependent of d, k, and p, such that for any dependent of d, k, and p, such that for any dependent of d, k, and p, such that for any dependent of d, k, and p, such that for any dependent of d, k, and p, such that for any dependent of d, k, and p, such that for any dependent of d, k, and p, such that for any dependent of d, k, and p, such that for any dependent of d, k, and p, such that for any dependent of d, k, and p, such that for any dependent of d, k, and p, such that for any dependent of d, k, and p, such that for any dependent of d, k, and p, such that for any dependent of d, k, and p, such that for any dependent of d, k, and p, such that for any d, su$ 

$$\frac{m}{Width} > C \binom{d+k}{d}^{1} p^{7k+4} 2^{6p} \left(\log \frac{md}{\delta}\right)^{4}$$

then with probability of at least  $1-\delta$  over the initialization, we have

$$\mathcal{L}_{PINN}\left(oldsymbol{w}\left(t
ight),oldsymbol{v}\left(t
ight)
ight)\leq\exp\left(-\lambda_{0}t
ight)\mathcal{L}_{PINN}\left(oldsymbol{w}\left(0
ight),oldsymbol{v}\left(0
ight)
ight),\,\,orall t\geq0.$$

Loss at time t

**Initial loss** 

- Higher k and p requires exponentially wide width.
- p = k + 1 is optimal order for RePU, since  $p \ge k + 1$ .

#### Theorem (Special Case)

There exists a constant C, independent of d, k, and p, such that for any  $\delta \ll 1$ , if

$$\frac{m}{k} > C \binom{d+k}{d}^{14} \frac{p^{7k+4}}{k} 2^{6p} \left(\log \frac{md}{\delta}\right)^{4p}$$

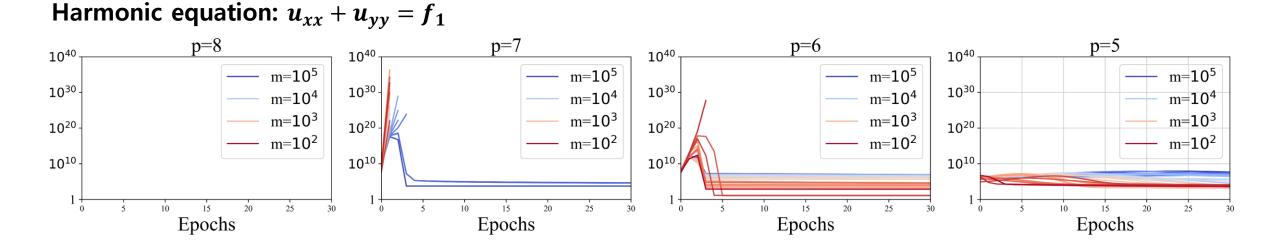
then with probability of at least  $1-\delta$  over the initialization, we have

$$\mathcal{L}_{PINN}\left(oldsymbol{w}\left(t
ight),oldsymbol{v}\left(t
ight)
ight)\leq\exp\left(-\lambda_{0}t
ight)\mathcal{L}_{PINN}\left(oldsymbol{w}\left(0
ight),oldsymbol{v}\left(0
ight)
ight),\,\,orall t\geq0.$$

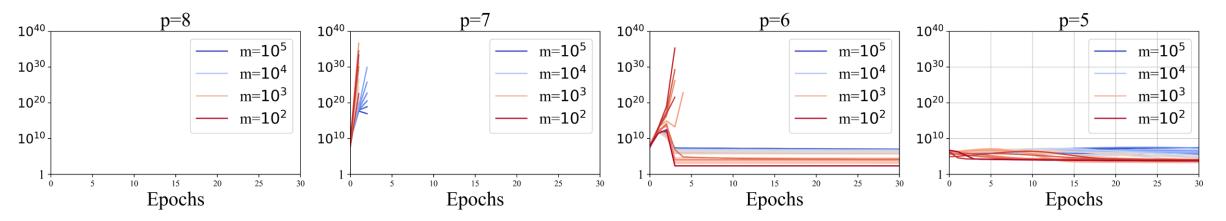
Loss at time t

**Initial loss** 

- Higher k and p requires exponentially wide width.
- p = k + 1 is optimal order for RePU, since  $p \ge k + 1$ .



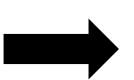
Biharmonic equation:  $u_{xxxx} + 2u_{xxyy} + u_{yyyy} = f_2$ 



#### Higher-order PDEs

$$\Delta \boldsymbol{u} = \boldsymbol{f}$$

primary variable



#### System of lower-order PDEs

$$\begin{cases} \nabla \cdot \boldsymbol{V} = f \\ \boldsymbol{V} = \nabla u \\ \text{Auxiliary variable} \end{cases}$$

$$u_t - u_{xx} = f$$

$$\begin{cases} u_t - v_x = f \\ v = u_x \end{cases}$$

Auxiliary variable

#### Higher-order PDEs

$$\begin{cases} \mathcal{N}[u](\boldsymbol{x}) = f(\boldsymbol{x}), \\ \mathcal{B}[u](\boldsymbol{x}) = g(\boldsymbol{x}), \end{cases}$$

$$\mathcal{N}[u] = \sum_{|\alpha| \le k} a_{\alpha} \frac{\partial^{\alpha}}{\partial x^{\alpha}} u$$

#### System of lower-order PDEs

$$\begin{cases} \hat{\mathcal{N}} \left[ \phi_0, \cdots, \phi_L \right] \left( \boldsymbol{x} \right) = f \left( \boldsymbol{x} \right), \\ \frac{\partial^{\beta}}{\partial \boldsymbol{x}^{\beta}} \left( \phi_{\ell-1} \right)_{\alpha} \left( \boldsymbol{x} \right) = \left( \phi_{\ell} \right)_{\alpha+\beta} \left( \boldsymbol{x} \right) \\ \mathcal{B} \left[ \phi_0 \right] \left( \boldsymbol{x} \right) = g, \end{cases}$$

$$\mathcal{N}[u] = \sum_{\substack{\ell \mid |\alpha| \le \xi_{\ell} \mid \beta \mid \le \Delta \xi_{\ell+1}}} \widehat{a}_{\ell,\alpha,\beta} \frac{\partial^{\Delta \xi_{\ell+1}}}{\partial x^{\beta}} (\phi_{\ell})_{\alpha}$$
$$\mathbf{0} = \xi_{\mathbf{0}} \le \xi_{\mathbf{1}} \le \dots \le \xi_{L+1} = \mathbf{k}$$
$$\Delta \xi_{\ell} = \xi_{\ell+1} - \xi_{\ell}$$

#### Main result 2

#### Theorem (General Case)

There exists a constant *C*, independent of *d*, *k*,  $|\xi|$ , and *p*, such that for any  $\delta \ll 1$ , if  $|\xi| = \max \Delta \xi_{\ell}$ 

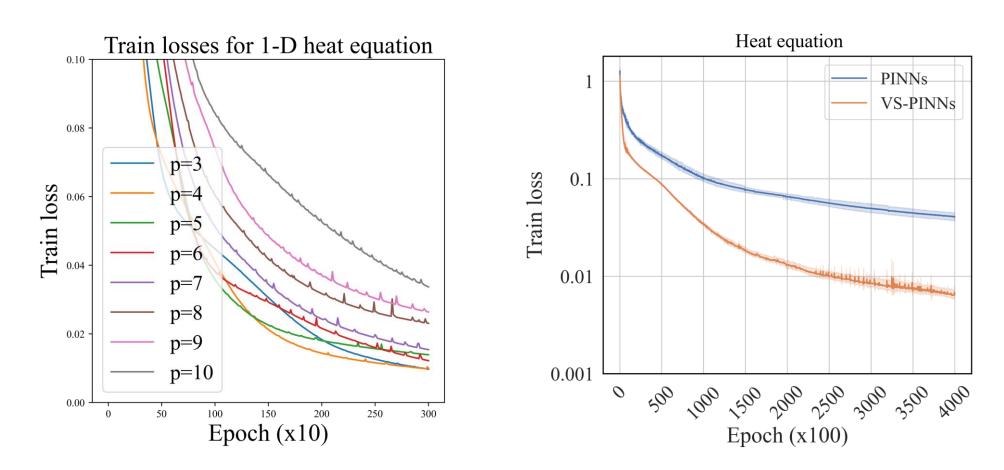
$$m > C \binom{d+k}{d}^6 \binom{d+|\xi|}{d}^8 p^{7|\xi|+4} 2^{6p} \left(\log \frac{md}{\delta}\right)^{4p},$$

then with probability of at least  $1-\delta$  over the initialization, we have

$$\mathcal{L}_{PINN}^{VS}\left( oldsymbol{w}\left(t
ight),oldsymbol{v}\left(t
ight)
ight) \leq\exp\left(-\lambda_{0}t
ight)\mathcal{L}_{PINN}^{VS}\left(oldsymbol{w}\left(0
ight),oldsymbol{v}\left(0
ight)
ight),\,\,orall t\geq0.$$

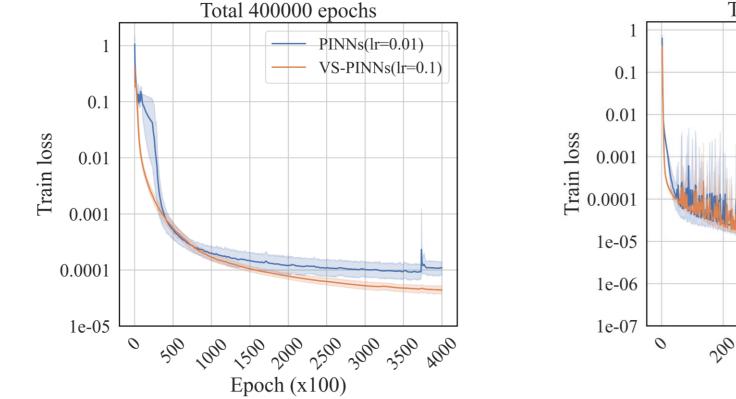
- Lower  $|\xi|$  reduces width requirement.
- $p = |\xi| + 1$  is optimal order for RePU.

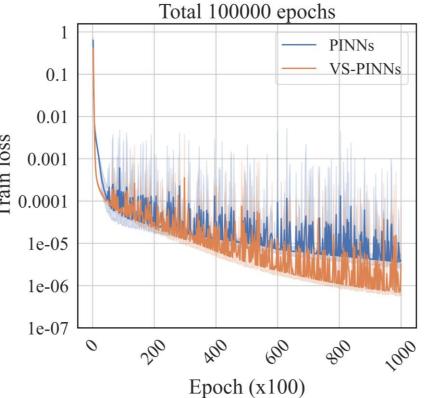
Heat equation  $\begin{cases} u_t = u_{xx} \\ u(t, -1) = u(t, 1) = 0 \\ u(0, x) = \sin(\pi x) \end{cases}$ 



**Convection-Diffusion equation** 

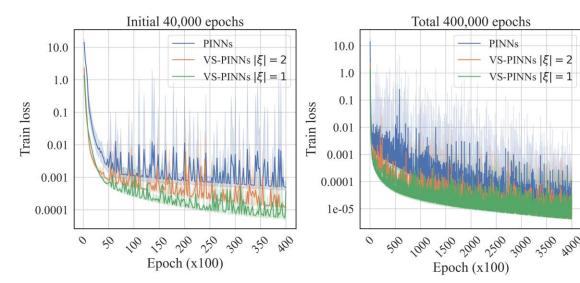
 $\begin{cases} u_t + u_x - \frac{1}{4}u_{xx} = 0\\ u(0, x) = \sin(x)\\ u(t, 0) = -e^{-\frac{1}{4}t}\sin(t)\\ u(t, \pi) = e^{-\frac{1}{4}t}\sin(\pi - t) \end{cases}$ 





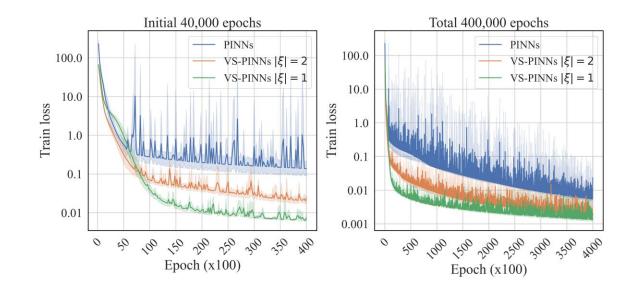
#### **Elastic beam equation**

 $\begin{cases} u_t + u_{xxxx} = 0\\ u(t,0) = u(t,\pi) = u_{xx}(t,0) = u_{xx}(t,\pi) = 0\\ u(0,x) = 2\sin(x) \end{cases}$ 



#### **Bi-harmonic equation**

 $\begin{cases} u_{xxxx} + 2u_{xxyy} + u_{yyyy} = f_2 \\ u(x,0) = u(x,\pi) = u(0,y) = u(\pi,y) = 0 \\ \frac{\partial}{\partial \mathbf{n}}u(x,0) = \frac{\partial}{\partial \mathbf{n}}u(x,\pi) = \frac{\partial}{\partial \mathbf{n}}u(0,y) = \frac{\partial}{\partial \mathbf{n}}u(\pi,y) = 0 \end{cases}$ 



| PDE         | $\mathbf{Method}$                                                                                      | GPU memory                            | running time                                    | parameters              |
|-------------|--------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------|-------------------------|
| Bi-harmonic | $\begin{array}{l} \text{PINN} \\ \text{VS-PINN} \  \xi  = 2 \\ \text{VS-PINN} \  \xi  = 1 \end{array}$ | 801.052 Mb<br>481.094 Mb<br>81,466 Mb | 0.053 s/epoch<br>0.049 s/epoch<br>0.053 s/epoch | $4000 \\ 9000 \\ 20000$ |
| Beam        | $\begin{array}{l} \text{PINN} \\ \text{VS-PINN} \  \xi  = 2 \\ \text{VS-PINN} \  \xi  = 1 \end{array}$ | 323.772 Mb<br>240.689 Mb<br>80.836 Mb | 0.037 s/epoch<br>0.038 s/epoch<br>0.040 s/epoch | $4000 \\ 9000 \\ 17000$ |

- Auxiliary variables need additional models.
- Reducing the number of differentiation in loss is more critical.

(1)  $\lambda_0 > 0$  $G^{\infty}$  $\boldsymbol{\mathcal{X}}$  $\stackrel{\text{(3) Small }t}{\approx} G(t)$ G(0)(2) Large mw(0) $W_*$ 

#### Proposition

 $\boldsymbol{G}_{\boldsymbol{v}}^{\infty} = \mathbb{E}_{\boldsymbol{w},\boldsymbol{v}} \left[ \boldsymbol{G}_{\boldsymbol{v}} \left( \boldsymbol{w}, \boldsymbol{v} \right) \right]$  is strictly positive definite and independent of m.

#### Proposition

For  $\delta > 0$  and some constant N<sub>1</sub>, C<sub>1</sub> and R, if m is large enough so that

$$m \geq \frac{32N_1C_1^2R^{4p}}{\lambda_0^2}\log\left(\frac{2N_1}{\delta}\right),$$

then with the probability of at least  $1 - \delta$  over the initialization, we have

$$\|\boldsymbol{G}_{\boldsymbol{v}}\left(\boldsymbol{w}\left(0
ight),\boldsymbol{v}\left(0
ight)
ight)-\boldsymbol{G}_{\boldsymbol{v}}^{\infty}\|_{2}<rac{\lambda_{0}}{4}.$$

## Sketch of Proofs

#### Sketch of Proofs

