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0 Generative Al motivation
0 Fluid dynamics and conservation laws

0 Fokker-Planck equation and reverse
diffusion

0 Supervised learning and discriminant
analysis

0 Learning dynamics of neural weights



Success of Generative Al
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Normalizing flow models



Density estimation
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v Many ML algorithms are methods for density estimation,
e.g. the probability density of natural images in pixel space
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v Continuum models of the motions of many particles,
e.g. hydrodynamics and traffic models
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u Dynamical motion of particles described by
velocity flows and differential equations



Conservation of mass

Number of particles
enclosed in moving volume

d
— | p(x)dr =0

Ocy /@/ Vs at Jv.

Vi

+ 00
Total number of particles / p(m)dm — 1
IS conserved —00

v WIith no sources or sinks, particles are neither created
nor destroyed



Flux vector field is
current flow per unit area

J(@) = p(a)i(x)

Particle flow per unit time
across surface

v Flux measures the rate of particle flow across surfaces




Continuity equation
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u  Green’s theorem relates total flux to temporal change in
density within volume



Diffusion

Random white noise 7;
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u Process of adding Brownian random noise to particle
motion



Diffusion equation

Flux from diffusion
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u  Diffusion causes net flow from regions of high density
to low density



Fokker-Planck equation
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u Continuity equation with drift velocity and diffusion



Reverse diffusion
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Score function: 7, = V log p;

Reverse diffusion Laplacian term:
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v Velocity flow field with score function will counteract
diffusive flux



Diffusion models
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v Learn score function with neural network from
forward diffusion process



Ornstein-Uhlenbeck process

Process with parameter: (< g <1
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v Forward Ornstein-Uhlenbeck process model



Reverse diffusion
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v Score function for reverse diffusion can be written as
expectation of mixture distribution



Reverse diffusion schedule
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Gauge freedom
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u Freedom to add any divergence-free velocity-
field from vector potential term



Reverse diffusion with curl

Rotational velocity from score function:

U = (I + A)Vlogp;

Antisymmetric matrix gauge freedom:

Aij = —Aj;

v Adding rotational dynamics to reverse diffusion onto a
low-dimensional manifold



Supervised learning

Fluid Dynamic Models for Bhattacharyya-Based
Discriminant Analysis

Yung-Kyun Noh™, Jihun Hamm, Frank Chongwoo Park, Fellow, IEEE,
Byoung-Tak Zhang, and Daniel D. Lee, Fellow, IEEE

IEEE Trans. Pattern Analysis and Machine Intelligence, 2018

Bayes Optmal
Bhattacharyya
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Two Interacting fluids
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u What is the induced flow from minimizing the potential
energy between two fluids?



Flow fields
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Force field on fluids:  Fo(T) = —L—}pgv ;}_;

Newton’s second law:  F) (Z) = —F5(Z)

u Induced flow field derived from equation of continuity



Discriminant analysis
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Flow correlation matrix:
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u Optimal low-dimensional projection defined by
principal eigenvectors of flow fields




Learning dynamics

Learning via Gaussian Herding

Koby Crammer Diamiel I, Lee
Diepariment of Electrical Enginering Dept. of Electrical and Systems Enginecring
The Technion University of Pennsylvania
Haifa, 32000 larac] Philadelphia, PA 19104
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Online learning
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u  Tracking flow of Gaussian weight distribution
during online learning



Multilayer neural networks
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u Analyzing weight distributions during learning
In multilayer neural networks



SGD dynamics
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Mei, Montanari, Nguyen (PNAS 2018)

v Mean-field flow-based analysis of stochastic
gradient descent



Mean field predictions
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Mei, Montanari, Nguyen (PNAS 2018)

u  PDE accurately predicts convergence of stochastic
gradient descent



Population estimates
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Chun, Chung, Lee (preprint, 2024)
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u  Estimating kernel integral operator properties
from finite measurement matrices



sSummary

Continuum fluid descriptions in Al

Fokker-Planck equation describes
time evolution of density functions

Reverse diffusion dynamics

Fluid models for learning dynamics
In supervised learning

Continuum population estimates from
finite networks and sampling
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