Fluid Dynamic Models in Machine Learning

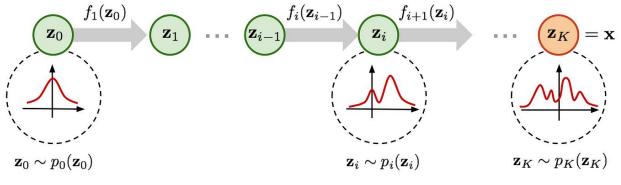
Daniel D. Lee

Yung-Kyun Noh

Outline

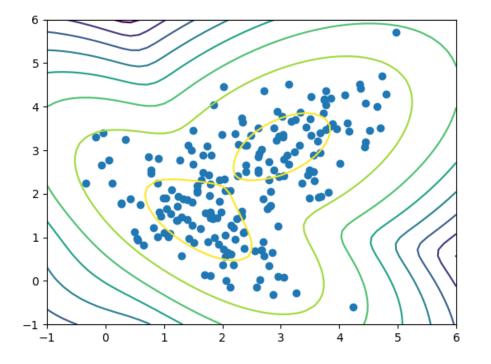
- □ Generative AI motivation
- Fluid dynamics and conservation laws
- Fokker-Planck equation and reverse diffusion
- Supervised learning and discriminant analysis
- Learning dynamics of neural weights

Success of Generative AI



Normalizing flow models

Density estimation

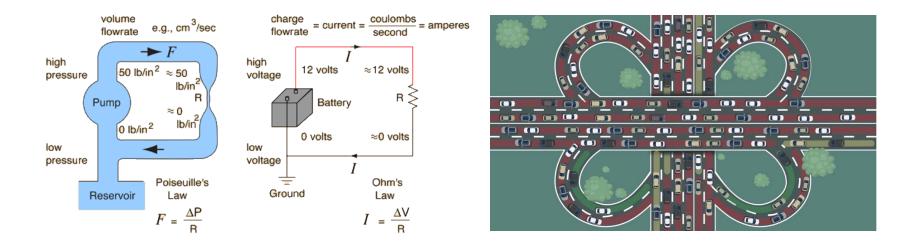


$$\vec{x} \in \mathbb{R}^N$$

Probability density function $p(\vec{x}) \ge 0$

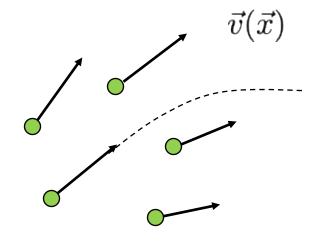
Many ML algorithms are methods for density estimation,e.g. the probability density of natural images in pixel space

Fluid models



Continuum models of the motions of many particles,
 e.g. hydrodynamics and traffic models

Flows



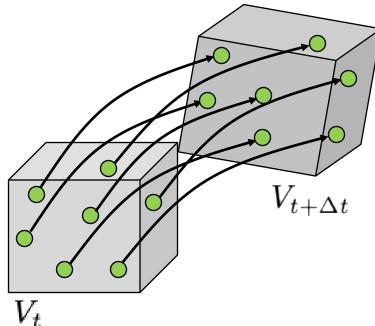
Velocity flow field $\vec{v} \in \mathbb{R}^N$

Particle motion described by differential equation:

 $d\vec{x}_t = \vec{v}(\vec{x}_t)dt$

u Dynamical motion of particles described by velocity flows and differential equations

Conservation of mass



Number of particles enclosed in moving volume

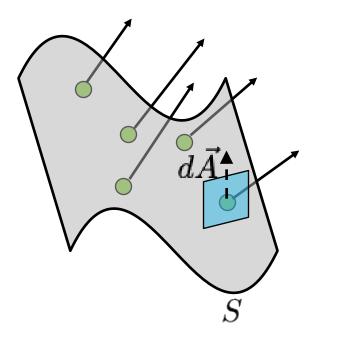
$$\frac{d}{dt}\int_{V_t} p(x)dx = 0$$

Total number of particles is conserved

$$\int_{-\infty}^{+\infty} p(x) dx = 1$$

 With no sources or sinks, particles are neither created nor destroyed

Flux



Flux vector field is current flow per unit area $\vec{J}(x) = p(x)\vec{v}(x)$

Particle flow per unit time across surface

$$\iint_S \vec{J}(x) \cdot d\vec{A}$$

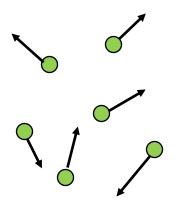
^u Flux measures the rate of particle flow across surfaces

Continuity equation

$$\begin{aligned} \frac{\partial p}{\partial t} + \nabla \cdot \vec{J} &= 0 \\ \vec{\nabla} \cdot \vec{J} &= \frac{J_x(x + dx) - J_x(x)}{dx} + \\ S_x & S_{x+dx} & \nabla \cdot \vec{J} &= \frac{J_x(x + dx) - J_x(x)}{dx} + \\ \frac{J_y(y + dy) - J_y(y)}{dy} + \\ \frac{J_z(z + dz) - J_z(z)}{dz} \end{aligned}$$

u Green's theorem relates total flux to temporal change in density within volume

Diffusion



Random white noise $\vec{\eta_t}$

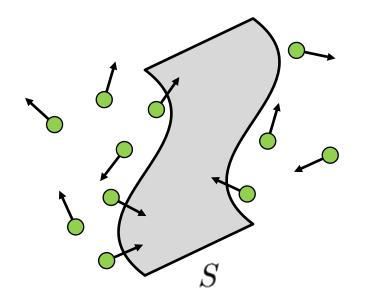
$$\langle \vec{\eta}_t \rangle = 0 \quad \langle \vec{\eta}_t \vec{\eta}_{t'}^\top \rangle = \delta_{tt'} I_{N \times N}$$

Stochastic differential equation:

 $d\vec{x}_t = \epsilon d\vec{\eta}_t$

Process of adding Brownian random noise to particle motion

Diffusion equation



Flux from diffusion

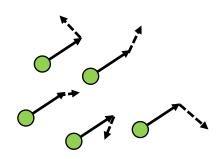
$$\vec{J}_D = -\frac{1}{2}\epsilon^2 \nabla p(\vec{x})$$

Diffusion equation:

$$\frac{\partial p}{\partial t} = -\nabla \cdot \vec{J_D} = \frac{1}{2} \epsilon^2 \nabla^2 p$$

 Diffusion causes net flow from regions of high density to low density

Fokker-Planck equation



Drift and diffusion:

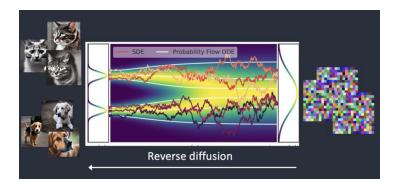
$$d\vec{x}_t = \vec{v}(\vec{x}_t)dt + \epsilon d\vec{\eta}_t$$

Fokker-Planck:

$$egin{aligned} &rac{\partial p_t}{\partial t} = -
abla \cdot ec{J_v} -
abla \cdot ec{J_D} \ &= -
abla \cdot (p_t ec{v}_t) + rac{1}{2} \epsilon^2
abla^2 p_t \end{aligned}$$

u Continuity equation with drift velocity and diffusion

Reverse diffusion



$$\frac{\partial p_t}{\partial t} = -\nabla \cdot (p_t \vec{v}_t) + \frac{1}{2} \epsilon^2 \nabla^2 p_t$$

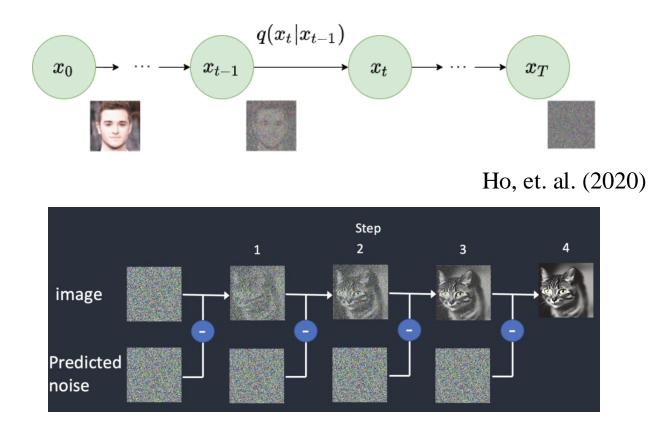
Score function: $\vec{v}_t = \nabla \log p_t$

Reverse diffusion Laplacian term:

$$-\nabla \cdot (p_t \vec{v}_t) = -\nabla^2 p_t$$

u Velocity flow field with score function will counteract diffusive flux

Diffusion models



u Learn score function with neural network from forward diffusion process

Ornstein-Uhlenbeck process

Process with parameter: $0 \le \sigma \le 1$

Base distribution
$$P_{\sigma=0}(\vec{x}) \longrightarrow P_{\sigma=1}(\vec{x}) = \mathcal{N}(0, I)$$

$$dx_t = -\frac{\sigma}{1+\sigma}x_t dt + \sqrt{\frac{2\sigma}{1+\sigma}}d\eta_t \qquad \sigma(t) = 1 - e^{-t}$$

$$P_{\sigma}(\vec{x}) = \int d\vec{x}' P_0(\vec{x}') \mathcal{N}_{\sigma^2}(\vec{x} - \sqrt{1 - \sigma^2} \vec{x}')$$

u Forward Ornstein-Uhlenbeck process model

Reverse diffusion

Score function:
$$\nabla \log P_{\sigma}(\vec{x}) = -\frac{1}{\sigma^2}\vec{x} + \frac{\sqrt{1-\sigma^2}}{\sigma^2}\langle \vec{x}' | \vec{x} \rangle_{\sigma}$$

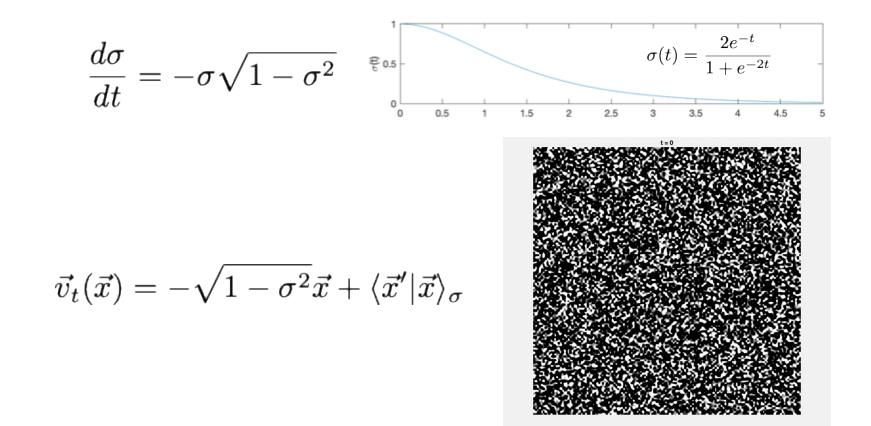
$$\langle \vec{x}' | \vec{x} \rangle_{\sigma} = \frac{1}{P_{\sigma}(\vec{x})} \int d\vec{x}' \, \vec{x}' P_0(\vec{x}') \mathcal{N}_{\sigma^2}(\vec{x} - \sqrt{1 - \sigma^2} \vec{x}')$$

$$\frac{\partial P}{\partial P} = 1 \quad [P_{\sigma}(\vec{x}) - \sqrt{1 - \sigma^2} \vec{x}']$$

$$\frac{\partial P_{\sigma}}{\partial \sigma} = \frac{1}{\sigma} \nabla \cdot \left[-P_{\sigma} \vec{x} + \frac{P_{\sigma}}{\sqrt{1 - \sigma^2}} \langle \vec{x}' | \vec{x} \rangle_{\sigma} \right]$$

u Score function for reverse diffusion can be written as expectation of mixture distribution

Reverse diffusion schedule



Alternative reverse diffusion schedule with slow initial descent

Gauge freedom

$$\frac{\partial p_t}{\partial t} = -\nabla \cdot (p_t \vec{v}_t)$$

Helmholtz decomposition: $\vec{v}_t = \nabla \log p_t + \frac{1}{p_t} \nabla \times \vec{A}_t(\vec{x})$

Divergence-free term: $\nabla \cdot (\nabla \times \vec{A}_t) = 0$

u Freedom to add any divergence-free velocityfield from vector potential term

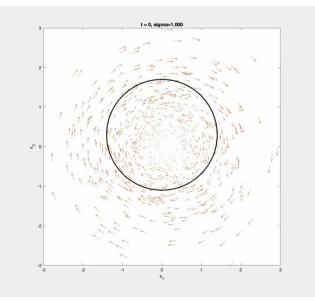
Reverse diffusion with curl

Rotational velocity from score function:

$$\vec{v}_t = (I+A)\nabla\log p_t$$

Antisymmetric matrix gauge freedom:

$$A_{ij} = -A_{ji}$$



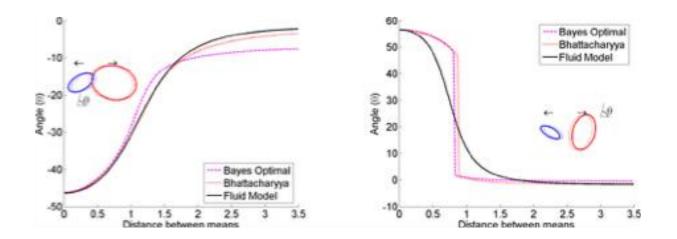
u Adding rotational dynamics to reverse diffusion onto a low-dimensional manifold

Supervised learning

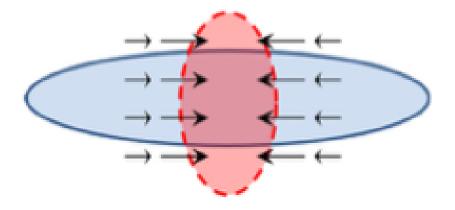
Fluid Dynamic Models for Bhattacharyya-Based Discriminant Analysis

Yung-Kyun Noh[®], Jihun Hamm, Frank Chongwoo Park, *Fellow, IEEE*, Byoung-Tak Zhang, and Daniel D. Lee, *Fellow, IEEE*

IEEE Trans. Pattern Analysis and Machine Intelligence, 2018



Two interacting fluids



Energy based upon
Bhattacharyya coefficient:
$$U(p_1, p_2) = \int \sqrt{p_1(\vec{x})p_2(\vec{x})} d\vec{x}$$

u What is the induced flow from minimizing the potential energy between two fluids?

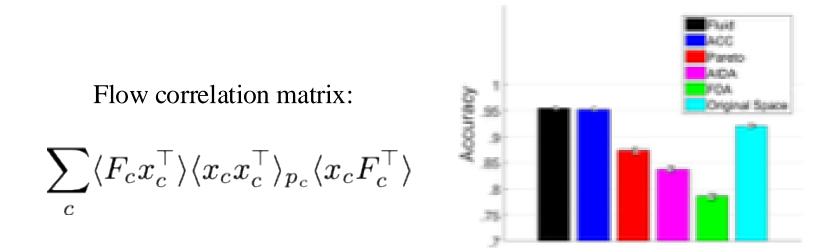
Flow fields



Force field on fluids: $F_2(\vec{x}) = -\frac{1}{2}p_2 \nabla \sqrt{\frac{p_1}{p_2}}$ Newton's second law: $F_1(\vec{x}) = -F_2(\vec{x})$

u Induced flow field derived from equation of continuity

Discriminant analysis



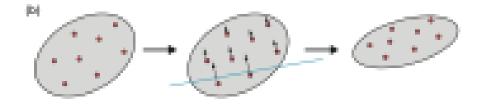
u Optimal low-dimensional projection defined by principal eigenvectors of flow fields

Learning dynamics

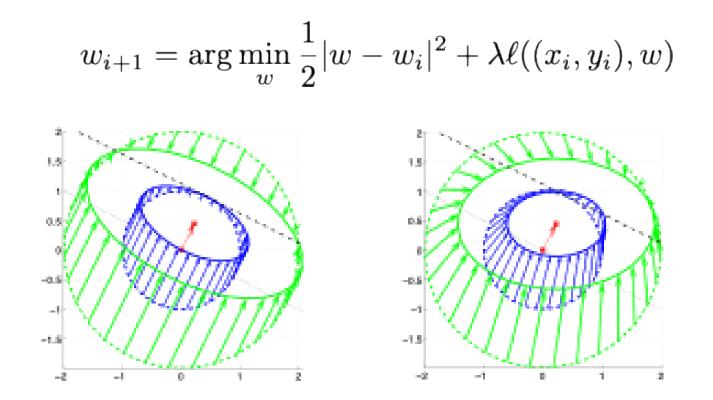
Learning via Gaussian Herding

Koby Crammer Department of Electrical Enginering The Technion Haifa, 32000 Israel koby@ee.technion.ac.il Daniel D. Lee Dept. of Electrical and Systems Engineering University of Pennsylvania Philadelphia, PA 19104 ddlee@seas.upenn.edu

NeurIPS, 2010

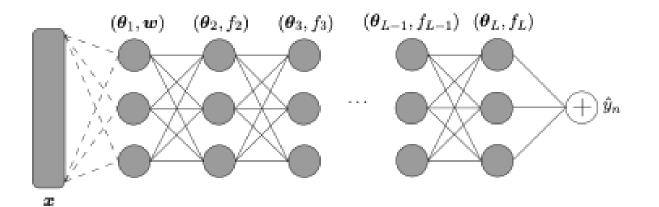


Online learning



u Tracking flow of Gaussian weight distribution during online learning

Multilayer neural networks



$$\hat{y}(ec{x}) = \int p(ec{w}) \sigma(ec{x}, ec{w}) dec{w}$$

u Analyzing weight distributions during learning in multilayer neural networks

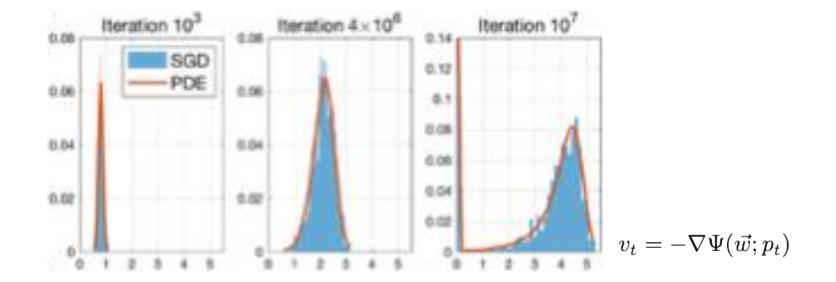
SGD dynamics

$$w_i^{k+1} = w_i^k - \eta(y_k - \hat{y}(x_k))\nabla_w \sigma(x_k; w)$$
$$\frac{\partial p_t(\vec{w})}{\partial t} = -\nabla \cdot [p_t \nabla \Psi(\vec{w}; p_t)]$$
$$\Psi(\vec{w}; p_t) = V(\vec{w}) + \int U(\vec{w}, \vec{w}') p(\vec{w}') d\vec{w}'$$

Mei, Montanari, Nguyen (PNAS 2018)

u Mean-field flow-based analysis of stochastic gradient descent

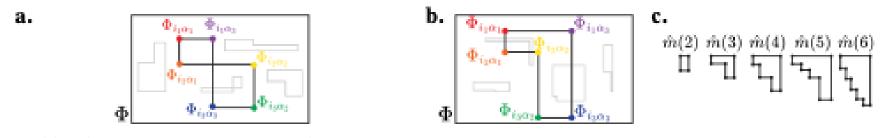
Mean field predictions



Mei, Montanari, Nguyen (PNAS 2018)

u PDE accurately predicts convergence of stochastic gradient descent

Population estimates



 $\hat{m}^*(3) = \langle \Phi_{i_1 \alpha_1} \Phi_{i_2 \alpha_1} \Phi_{i_2 \alpha_2} \Phi_{i_3 \alpha_2} \Phi_{i_3 \alpha_3} \Phi_{i_1 \alpha_3} \rangle_{i_1 \neq i_2 \neq i_3, \alpha_1 \neq \alpha_2 \neq \alpha_3} \quad \hat{m}(3) = \langle \Phi_{i_1 \alpha_1} \Phi_{i_2 \alpha_1} \Phi_{i_2 \alpha_2} \Phi_{i_3 \alpha_2} \Phi_{i_3 \alpha_3} \Phi_{i_1 \alpha_3} \rangle_{i_1 \leq i_2 \leq i_3, \alpha_1 \leq \alpha_2 \leq \alpha_3}$

Chun, Chung, Lee (preprint, 2024)

$$k(x, x') = \int dw \, p(w) \phi(x, w) \phi(x', w)$$

 $T_k f = \int dx \, p(x) k(\cdot, x) f(x)$

u Estimating kernel integral operator properties from finite measurement matrices

Summary

- □ Continuum fluid descriptions in AI
- Fokker-Planck equation describes time evolution of density functions
- Reverse diffusion dynamics
- Fluid models for learning dynamics in supervised learning
- Continuum population estimates from finite networks and sampling