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Overview

In the series of papers1:

provide geometric understanding of the multiclass adversarial
training model by generalized Wasserstein barycenter problem.

prove the existence of adversarial robust classifiers, and unify
variants of adversarial training models.

propose a new numerical scheme to approximate a lower bound the
adversarial risk.

1supported by the IFDS at UW-Madison and NSF through TRIPODS grant
2023239, and PIMS postdoctoral fellowship through the Kantorovich Initiative PIMS
Research Network (PRN) as well as National Science Foundation grant NSF-DMS
2133244
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Better than human?: ImageNet
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Figure: Image Classification on ImageNet: top 5 accuracy (Yuan et al.2)

According to Dodge, Karam3, human top-5 classification accuracy on the
large scale ImageNet dataset has been reported to be 94.9%, while 2023
best performance show 99% accuracy.

2Yuan et al., “Florence: A new foundation model for computer vision”.
3Dodge and Karam, “A study and comparison of human and deep learning

recognition performance under visual distortions”.



Instability of neural networks: adversarial attack

Neural networks are sometimes very sensitive to a small noise, the
adversarial attack: x → x + ξ by choosing well-designed ξ with ∥ξ∥ ≤ ε.
It sabotages the performance of neural networks.

Figure: Adversarial examples generated for GoogLeNet (Goodfellow, Shlens,
Szegedy4).

4Goodfellow, Shlens, and Szegedy, “Explaining and harnessing adversarial
examples”.



Questions are

How to understand this phenomenon? What is the meaning of
adversarial attack?

How to compute the risk of this model? How to obtain an optimal
adversarial attack?

How to train a classifier to make it optimal and robust against such
all noise?



Classification problem

(X , d) : Feature space, Y := {1, . . . ,K} : Class space.

∆Y := {(u1, . . . , uK ) : 0 ≤ ui ≤ 1,
∑K

i=1 ui ≤ 1} : the set of
distributions over Y.

µ = (µ1, . . . , µK ) : a data distribution; µi is a distribution over X
given Y = i .

f = (f1, . . . , fK ) : X → ∆Y , a measurable probabilistic classifier.

ℓ(f (x), i) := 1− fi (x) : 0-1 loss function.

A learning problem aims at solving

inf
f
R(f , µ) := inf

f

∑
i∈Y

∫
X
(1− fi (x))dµi (x).
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Optimal transport

Given probability measures µ, ν on spaces S1 and S2, respectively, and a
cost function c : S1 × S2 → [−∞,∞], optimal transport(OT) is defined
as

C (µ, ν) := min
π∈Π(µ,ν)

∫
S1×S2

c(s1, s2)dπ(s1, s2)

where Π(µ, ν) is the set of joint distributions whose marginals are µ and
ν.

Π(µ, ν) is convex and weakly compact.

Under general conditions, there is a solution.



Barycenter problem

μ3

μ2

μ3

μ1

μ∼

Introduced by Ekeland5, Chiappori, McCann, Nesheim6, Agueh,
Carlier7.

µ̃ ∈ argminν
∑K

i=1 C (µi , ν).

5Ekeland, “An optimal matching problem”.
6Chiappori, McCann, and Nesheim, “Hedonic price equilibria, stable matching, and

optimal transport: equivalence, topology, and uniqueness”.
7Agueh and Carlier, “Barycenters in the Wasserstein space”.



Multimarginal optimal transport(MOT)

The multimarginal optimal transport(MOT) problem is the generalization
of OT to K -marginal constraints:

inf
π∈Π(µ1,...,µK )

∫
S1×···×SK

c(s1, . . . , sK )dπ(s1, . . . , sK ).

Applications in physics (density function theory).

Deep connection to barycenter problems (by taking

c(x1, . . . , xK ) = infx
∑K

i=1 c(x , xi )).

Machine learning, statistics and etc.



DRO adversarial model

The adversary perturbs the distribution µ:

µ 7−→ µ̃ ∈ argmax
ν

{R(f , ν)− C (µ, ν)}

where C (µ, µ̃) is a transport cost defined as

C (µ, µ̃) :=
∑
i∈Y

inf
πi∈Π(µi ,µ̃i )

∫
c(x , x̃)dπ(x , x̃).

The distributionally robust optimization(DRO) adversarial model is

inf
f
sup
µ̃

{R(f , µ̃)− C (µ, µ̃)} .



Optimal adversarial attack

μ1

μ3

μ2

λ
μ2

μ3

μ1

A classification problem becomes harder as µi ’s are similar.

The optimal adversarial attacks will be µ̃i ≈ µ̃j , or a barycenter λ of
µi ’s such that λ ≈ µ̃i in some sense.



Generalized barycenter problem

λ{1,3}

λ{1,2}
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Using decompositions, it can be written in terms of µi,A’s and λA’s.

λA ∈ argminλ′
A

∑
i∈A C (µi,A, λ

′
A), a solution to a classical

(Wasserstein) barycenter problem of µi,A’s.



Equivalence

Theorem (K., Garćıa Trillos, Jacobs8(JMLR))
DRO model is equivalent to generalized barycenter problem. Also,
generalized barycenter problem has a solution, and MOT formulation.

First geometric understanding of the adversarial training model.

Connect it to MOT, so computable explicitly.

Extend previous literature of the binary setting (Bhagoji, Cullina,
Mittal9, Pydi, Jog10, Garćıa Trillos, Murray11).

8Garćıa Trillos, Kim, and Jacobs, “The multimarginal optimal transport
formulation of adversarial multiclass classification”.

9Bhagoji, Cullina, and Mittal, “Lower Bounds on Adversarial Robustness from
Optimal Transport”.

10Pydi and Jog, “The Many Faces of Adversarial Risk”.
11Garćıa Trillos and Murray, “Adversarial Classification: Necessary Conditions and

Geometric Flows”.



Existence of robust classifier

Theorem (K., Garćıa Trillos, Jacobs12(accepted by EJAM))
DRO model has a (Nash) equilibrium, a pair of optimal classifiers and
adversarial attacks. Also, variants of adversarial training models are
equivalent.

Rigorous proof of the existence results beyond the binary setting
(Awasthi, Frank, Mohri13, Frank, Niles-Weed14).

Unify variant adversarial training models and total-variation
regularization problem (Bungert, Garćıa Trillos, Murray15).

12Garćıa Trillos, Jacobs, and Kim, On the existence of solutions to adversarial
training in multiclass classification.

13Awasthi, Frank, and Mohri, “On the existence of the adversarial bayes classifier”.
14Frank and Niles-Weed, “Existence and minimax theorems for adversarial surrogate

risks in binary classification”.
15Bungert, Garćıa Trillos, and Murray, “The geometry of adversarial training in

binary classification”.



Efficient Algorithm

Theorem (K., Garćıa Trillos, Jacobs, Werenski16(accepted by
JMLR))
With truncation level L < K, there is an algorithm to compute a lower
bound of the adversarial risk within Õ(nL).

Crucially depends on the special structure of this problem.

Use entropic regularization (Lin et al.17 shows for MOT with K
marginals, its complexity is Õ(NK )).

MOT is NP-hard in the worst case (Altschuler, Boix-Adserà18).

16Garćıa Trillos et al., An Optimal Transport Approach for Computing Adversarial
Training Lower Bounds in Multiclass Classification.

17Lin et al., “On the complexity of approximating multimarginal optimal transport”.
18Altschuler and Boix-Adserà, “Wasserstein barycenters are NP-hard to compute”.



Synthetic data analysis
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Some future works

Return to neural networks: how to apply this technique for them?

PAC learnability of the multiclass adversarial learning: adversarial
learning of the binary setting (Montasser, Hanneke, Srebro19),
vanilla multiclass learning (Brukhim et al.20).

Quantify the regularity of robust classifier (Bungert, Garćıa Trillos,
Murray21).

Sample complexity; unlike W2, a popular cost function in adversarial
training models is very singular.

19Montasser, Hanneke, and Srebro, “VC classes are adversarially robustly learnable,
but only improperly”.

20Brukhim et al., “A characterization of multiclass learnability”.
21Bungert, Garćıa Trillos, and Murray, “The geometry of adversarial training in

binary classification”.



Thank you for your attention!
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