## **Exploring Quasi-One-Dimensional Systems for Advanced Electronic Applications**

Bikash Das, Bipul Karmakar, Subhadeep Datta\*

School of Physical Sciences, Indian Association for the Cultivation of Science, 2A & B Raja S. C. Mullick Road, Jadavpur, Kolkata- 700032, India

Email: <a href="mailto:sspsdd@iacs.res.in">sspsdd@iacs.res.in</a>

sspsuu@iacs.ies.iii

**Abstract** 

In condensed matter physics, one-dimensional (1D) systems display electronic properties distinct from higher-dimensional materials. Confining electron motion to a single dimension enhances electron-electron interactions and introduces size quantization effects, yielding discrete energy levels. These quantization effects, combined with strong correlations, enable phenomena such as the Kondo effect in quasi-1D carbon nanotubes (CNTs), where a localized magnetic impurity couples with conduction electrons. The Kondo effect manifests as a characteristic increase in conductance below the Kondo temperature,  $T_K \sim e^{(-1/(J p))}$ , where J is the exchange coupling and  $\rho$  is the density of states. We also examine quasi-1D tellurium (Te) nanowires, which form nanoscale van der Waals (vdW) diodes with nanosized depletion regions, enhancing charge control for efficient rectification. Additionally, hybrid 1D-2D vdW heterostructures are explored for CMOS applications, leveraging 1D directional transport and 2D material flexibility, suggesting a pathway to next-generation CMOS technology through miniaturization and enhanced quantum control.

## Reference:

- [1] Nygard et al. Nature 2000 408, 342-346
- [2] Datta et al. ACS Nano **2019** 13 (9), 10029-10035.
- [3] Das et al. Applied Physics Letters **2023** 122 (26).